Weak Underwater Signals’ Detection by the Unwrapped Instantaneous Phase
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Canales, L.L. Random Noise Reduction; SEG Annual Meeting 1984, Expanded Abstracts; SEG: Tulsa, OK, USA, 1984; pp. 525–527. [Google Scholar] [CrossRef]
- Gulunay, N. FXDECON and Complex Wiener Prediction Filter; SEG Annual Meeting 1986, Expanded Abstracts; SEG: Tulsa, OK, USA, 1986; pp. 279–281. [Google Scholar] [CrossRef]
- Gulunay, N. Signal leakage in f-x deconvolution algorithms. Geophysics 2017, 82, W31–W45. [Google Scholar] [CrossRef]
- Zhu, W.; Mousavi, S.M.; Beroza, G.C. Seismic signal denoising and decomposition using deep neural networks. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9476–9488. [Google Scholar] [CrossRef]
- Ji, G.; Wang, C. A Denoising Method for Seismic Data Based on SVD and Deep Learning. Appl. Sci. 2022, 12, 12840. [Google Scholar] [CrossRef]
- Li, J.; Trad, D.; Liu, D. Robust seismic data denoising via self-supervised deep learning. Geophysics 2024, 89, V437–V451. [Google Scholar] [CrossRef]
- Oppenheim, A.V.; Schafer, R.W. Digital Signal Processing; Prentice-Hall: Englewood Cliffs, NJ, USA, 1975; ISBN 0132146355. [Google Scholar]
- White, R.S. Applied high-resolution geophysical methods: Offshore geoengineering hazards. Geophys. J. Int. 1986, 86, 214–215. [Google Scholar] [CrossRef]
- Marsset, B.; Missiaen, T.; Noble, M.; Versteeg, W.; Henriet, J.-P. Very high resolution 3D marine seismic data processing for geotechnical applications. Geophys. Prospect. 1998, 46, 105–120. [Google Scholar] [CrossRef]
- Minh Hue Le, T.; Eiksund, R.G.; Strøm, P.J.; Saue, M. Geological and geotechnical characterization for offshore wind turbine foundations: A case study of the Sheringham Shoal wind farm. Eng. Geol. 2014, 177, 40–53. [Google Scholar] [CrossRef]
- Negro, V.; López-Gutierrez, J.-S.; Esteban, M.D.; Matutano, C. Uncertainties in the design of support structures and foundations for offshore wind turbines. Renewable Energy 2014, 63, 125–132. [Google Scholar] [CrossRef]
- Perveen, R.; Kishor, N.; Mohanty, S.R. Off-shore wind farm development: Present status and challenges. Renew. Sustain. Energy Rev. 2014, 29, 780–792. [Google Scholar] [CrossRef]
- Monrigal, O.; de Jong, I.; Duarte, H. An ultra-high-resolution 3D marine seismic system for detailed site investigation. Near Surf. Geophys. 2017, 15, 335–345. [Google Scholar] [CrossRef]
- Wei Min, P.; Yi Gen, W.; Song Chuan, X.; Hu, B.; Zhang, Y.; Li Zheng, S.; Xiao Li, J. Advancing offshore wind farm site assessments in Guangxi using single-channel seismic method. J. Phys. Conf. Ser. 2024, 2895, 012003. [Google Scholar] [CrossRef]
- Wang, R.; Hu, B.; Zhang, H.; Zhang, P.; Li, C.; Chen, F. Seismic interferometry for single-channel data: A promising approach for improved offshore wind farm evaluation. Remote Sens. 2025, 17, 325. [Google Scholar] [CrossRef]
- International Association of Oil & Gas Producers (IOGP). Guidelines for the Conduct of Offshore Drilling Hazard Site Surveys; IOGP Report 373-18-1; 2017; pp. 1–46. Available online: https://www.deparentis.com/wp-content/uploads/2020/04/IGOP-373-18-1-1.pdf (accessed on 7 April 2025).
- Gabor, D. Theory of communications. J. Inst. Electr. Eng.—Part III Radio Commun. 1946, 93, 429–457. [Google Scholar] [CrossRef]
- Ville, J.A. Theorie et application de la notion du signal analytique. Cable Transm. 1948, 2, 61–74. Available online: https://archive.org/details/VilleSigAnalytiqueCablesEtTrans1948Fr (accessed on 1 May 2025).
- Taner, M.T.; Koehler, F.; Sheriff, R.E. Complex seismic trace analysis. Geophysics 1979, 44, 1041–1063. [Google Scholar] [CrossRef]
- Tribolet, J. A new phase unwrapping algorithm. IEEE Trans. Acoust. Speech Signal Process. 1977, 25, 170–177. [Google Scholar] [CrossRef]
- Strand, J.; Taxt, T. Performance evaluation of two-dimensional phase unwrapping algorithms. Appl. Opt. 1999, 38, 4333–4344. [Google Scholar] [CrossRef]
- Egidi, N.; Maponi, P. A comparative study of two fast phase unwrapping algorithms. Appl. Math. Comput. 2004, 148, 599–629. [Google Scholar] [CrossRef]
- Wang, S. An Improved quality guided phase unwrapping method and its applications to MRI. Prog. Electromagn. Res. 2014, 145, 273–286. [Google Scholar] [CrossRef]
- Poggiagliolmi, E.; Vesnaver, A. Instantaneous phase and frequency derived without user-defined parameters. Geophys. J. Int. 2014, 199, 1544–1553. [Google Scholar] [CrossRef]
- Vesnaver, A. Instantaneous frequency and phase without unwrapping. Geophysics 2017, 82, F1–F7. [Google Scholar] [CrossRef]
- Ackroyd, M.H. Instantaneous spectra and instantaneous frequency. Proc. IEEE 1970, 58, 141. [Google Scholar] [CrossRef]
- Saha, J.G. Relationship Between Fourier and Instantaneous Frequency; Expanded Abstracts 1987, SEG Annual Meeting; SEG: Tulsa, OK, USA, 1987; pp. 591–594. [Google Scholar] [CrossRef]
- Quan, Y.; Harris, J. Seismic attenuation tomography using the frequency shift method. Geophysics 1997, 62, 895–905. [Google Scholar] [CrossRef]
- Lin, R.; Vesnaver, A.; Böhm, G.; Carcione, J.M. Broad-band visco-acoustic Q factor imaging by seismic tomography and instantaneous frequency. Geophys. J. Int. 2018, 214, 672–686, https://doi.org/10.1093/gji/ggy168. Erratum in Geophys. J. Int. 2022, 229, 898–899. [Google Scholar] [CrossRef]
- Caldwell, J.; Dragoset, W. A brief overview of seismic air-gun arrays. Lead. Edge 2000, 19, 898–902. [Google Scholar] [CrossRef]
- Dragoset, B. Introduction to air guns and air-gun arrays. Lead. Edge 2000, 19, 892–897. [Google Scholar] [CrossRef]
- Gutowski, M.; Bull, J.; Henstock, T.; Dix, J.K.; Hogarth, P.; Leighton, T.; White, P. Chirp sub-bottom profiler source signature design and field testing. Mar. Geophys. Res. 2002, 23, 481–492. [Google Scholar] [CrossRef]
- Schock, S.G.; LeBlanc, L.R. Chirp Sonar: New technology for sub-bottom profiling. Sea Technol. 1990, 31, 35–43. [Google Scholar]
- Schock, S.G.; LeBlanc, L.R.; Mayer, L.A. Chirp sub-bottom profiler for quantitative sediments analysis. Geophysics 1989, 54, 445–450. [Google Scholar] [CrossRef]
- Simpkin, P.G. The Boomer sound source as a tool for shallow water geophysical exploration. Mar. Geophys. Res. 2005, 26, 171–181. [Google Scholar] [CrossRef]
- Yilmaz, Ö. Seismic Data Analysis; SEG: Tulsa, OK, USA, 2001; p. 2065. [Google Scholar] [CrossRef]
- Vesnaver, A.; Busetti, M.; Baradello, L. Chirp data processing for fluid flow detection at the Gulf of Trieste (Adriatic Sea). Bull. Geophys. Oceanogr. 2021, 62, 365–386. [Google Scholar] [CrossRef]
- Millero, F.J.; Chen-Tung, C.; Bradshaw, A.; Schleicher, K. A new high-pressure equation of state for seawater. Deep Sea Res. Part A. Oceanogr. Res. Pap. 1980, 27, 255–264. [Google Scholar] [CrossRef]
- Vesnaver, A.; Baradello, L. A workflow for processing monochannel Chirp and Boomer surveys. Geophys. Prospect. 2023, 71, 1387–1403. [Google Scholar] [CrossRef]
- Lee, T.-G.; Hein, J.R.; Lee, K.; Moon, J.-W.; Ko, Y.-T. Sub-seafloor acoustic characterization of seamounts near the Ogasawara Fracture Zone in the western Pacific using Chirp (3–7 kHz) sub-bottom profiles. Deep Sea Res. Part I Oceanogr. Res. Pap. 2005, 52, 1932–1956. [Google Scholar] [CrossRef]
- Hamouda, A.Z.; El-Gendy, N.H.; El-Gharabawy, S.; Salah, M.; Barakat, M.K. Marine geophysical surveys and interpretations on the ancient Eunostos harbor area, Mediterranean coast, Egypt. Egypt. J. Pet. 2023, 32, 47–55. [Google Scholar] [CrossRef]
- Toker, M.; Tur, H. Structural patterns of the Lake Erçek Basin, eastern Anatolia (Turkey): Evidence from single-channel seismic interpretation. Mar. Geophys. Res. 2018, 39, 567–588. [Google Scholar] [CrossRef]
- Abramowitz, M. Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables; Dover Publications Inc.: Mineola, NY, USA, 1974; ISBN 978-0-486-61272-0. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vesnaver, A.; Baradello, L.; Denich, E. Weak Underwater Signals’ Detection by the Unwrapped Instantaneous Phase. J. Mar. Sci. Eng. 2025, 13, 907. https://doi.org/10.3390/jmse13050907
Vesnaver A, Baradello L, Denich E. Weak Underwater Signals’ Detection by the Unwrapped Instantaneous Phase. Journal of Marine Science and Engineering. 2025; 13(5):907. https://doi.org/10.3390/jmse13050907
Chicago/Turabian StyleVesnaver, Aldo, Luca Baradello, and Eleonora Denich. 2025. "Weak Underwater Signals’ Detection by the Unwrapped Instantaneous Phase" Journal of Marine Science and Engineering 13, no. 5: 907. https://doi.org/10.3390/jmse13050907
APA StyleVesnaver, A., Baradello, L., & Denich, E. (2025). Weak Underwater Signals’ Detection by the Unwrapped Instantaneous Phase. Journal of Marine Science and Engineering, 13(5), 907. https://doi.org/10.3390/jmse13050907