Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (94)

Search Parameters:
Keywords = secondary nuclei

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3138 KiB  
Article
Unclassified Chromosomal Abnormalities as an Indicator of Genomic Damage in Survivors of Hodgkin’s Lymphoma
by Sandra Ramos, Bertha Molina, María del Pilar Navarrete-Meneses, David E. Cervantes-Barragan, Valentín Lozano and Sara Frias
Cancers 2025, 17(15), 2437; https://doi.org/10.3390/cancers17152437 - 23 Jul 2025
Viewed by 269
Abstract
Background/Objectives: Hodgkin’s lymphoma (HL) affects 2–4 individuals per 100,000 annually. Standard treatment includes radiotherapy and ABVD chemotherapy, achieving a 95% survival rate. However, HL survivors face an elevated risk of treatment-related morbidity, particularly the development of secondary malignancies. Previous studies have demonstrated [...] Read more.
Background/Objectives: Hodgkin’s lymphoma (HL) affects 2–4 individuals per 100,000 annually. Standard treatment includes radiotherapy and ABVD chemotherapy, achieving a 95% survival rate. However, HL survivors face an elevated risk of treatment-related morbidity, particularly the development of secondary malignancies. Previous studies have demonstrated that ABVD treatment induces a high frequency of chromosomal aberrations (CAs) in lymphocytes from HL patients, with higher frequencies one year after treatment than during treatment. This study aimed to determine whether HL treatment also induces unclassified chromosomal/nuclear aberrations (UnCAs) in the lymphocytes of HL patients, and whether these alterations may serve as complementary indicators of genomic instability. Methods: Peripheral blood lymphocytes from HL patients were collected at three time points: before treatment (BT), during treatment (DT), and one year after treatment (1yAT) with ABVD chemotherapy and radiotherapy. A minimum of 3000 nuclei were analyzed per patient to identify and quantify UnCAs. These results were compared to UnCA frequencies in healthy individuals. Results: The percentage of cells presenting UnCAs per 3000 nuclei was 23.92% BT, 18.58% DT, and 30.62% 1yAT. All values were significantly higher (p < 0.016) than the 8.16% observed in healthy controls. The increase was primarily driven by free chromatin and micronuclei clusters. UnCA frequency was lower during treatment than one year after, likely due to the elimination of highly damaged cells through apoptosis or lack of proliferative capacity. Over time, however, persistent genomic damage appears to accumulate in surviving cells, becoming more evident post-treatment. A parallel trend was observed between the frequencies of UnCAs free chromatin, micronucleus and micronuclei clusters, and classical CAs, showing a similar pattern of genomic damage induced by therapy. Conclusions: The post-treatment increase in UnCAs indicates ongoing genomic instability, possibly driven by the selective survival of hematopoietic stem cells with higher genomic fitness. Given their persistence and association with therapy-induced damage, free chromatin and micronuclei clusters may serve as early biomarkers for secondary cancer risk in HL survivors. Full article
(This article belongs to the Special Issue The Role of Chromosomal Instability in Cancer: 2nd Edition)
Show Figures

Figure 1

22 pages, 1173 KiB  
Article
Galactic Cosmic Ray Interaction with the Perseus Giant Molecular Cloud Using Geant4 Monte Carlo Simulation
by Luan Torres and Luiz Augusto Stuani Pereira
Universe 2025, 11(7), 218; https://doi.org/10.3390/universe11070218 - 2 Jul 2025
Viewed by 372
Abstract
Galactic cosmic rays (GCRs), composed of protons and atomic nuclei, are accelerated in sources such as supernova remnants and pulsar wind nebulae, reaching energies up to the PeV range. As they propagate through the interstellar medium, their interactions with dense regions like molecular [...] Read more.
Galactic cosmic rays (GCRs), composed of protons and atomic nuclei, are accelerated in sources such as supernova remnants and pulsar wind nebulae, reaching energies up to the PeV range. As they propagate through the interstellar medium, their interactions with dense regions like molecular clouds produce secondary particles, including gamma-rays and neutrinos. In this study, we use the Geant4 Monte Carlo toolkit to simulate secondary particle production from GCR interactions within the Perseus molecular cloud, a nearby star-forming region. Our model incorporates realistic cloud composition, a wide range of incidence angles, and both hadronic and electromagnetic processes across a broad energy spectrum. The results highlight molecular clouds as significant sites of multi-messenger emissions and contribute to understanding the propagation of GCRs and the origin of diffuse gamma-ray and neutrino backgrounds in the Galaxy. Full article
(This article belongs to the Special Issue Ultra-High Energy Cosmic Rays: Past, Present and Future)
Show Figures

Figure 1

12 pages, 611 KiB  
Article
Cutaneous Allodynia of the Withers in Cattle: An Experimental In Vivo Neuroanatomical Preliminary Investigation of the Dichotomizing Sensory Neurons Projecting into the Reticulum and Skin of the Withers—A Case Study on Two Calves
by Roberto Chiocchetti, Luciano Pisoni, Monika Joechler, Adele Cancellieri, Fiorella Giancola, Giorgia Galiazzo, Giulia Salamanca, Rodrigo Zamith Cunha and Arcangelo Gentile
Animals 2025, 15(12), 1689; https://doi.org/10.3390/ani15121689 - 6 Jun 2025
Viewed by 581
Abstract
The presence of dichotomizing neurons in the dorsal root ganglia (DRG) of cattle, innervating both the reticulum and the withers, may indicate a pre-spinal convergence of visceral and cutaneous sensory information, i.e., that the DRG primary sensory neurons may elaborate the sensory information [...] Read more.
The presence of dichotomizing neurons in the dorsal root ganglia (DRG) of cattle, innervating both the reticulum and the withers, may indicate a pre-spinal convergence of visceral and cutaneous sensory information, i.e., that the DRG primary sensory neurons may elaborate the sensory information coming from two different anatomical areas before reaching the secondary sensory neurons within the spinal cord. This anatomical feature could be the underlying basis for the cutaneous allodynia observed in traumatic reticuloperitonitis, also known as the “Kalchschmidt pain test”. The aim of the study was to identify the DRG primary sensory neurons innervating the reticulum and the withers by using two different retrograde fluorescent tracers, Fast Blue (FB, affinity for cytoplasm) and Diamidino Yellow (DY, affinity for nucleus). In two anesthetized calves, FB and DY were injected into the reticulum and skin of the withers, respectively. At the end of the experimental period, the calves were deeply anesthetized and then euthanatized. The thoracic (T1–T8) DRG were collected and processed to obtain cryosections which were examined on a fluorescent microscope. A large number of neurons localized, especially in the T7 DRG, presented nuclei labeled with DY. On the contrary, only a few neurons localized exclusively in T6 and T7 DRG presented the cytoplasm labeled with FB. No neurons displayed FB and DY simultaneously within the cytoplasm and nucleus, respectively. The absence of double-labeled DRG neurons suggests that the convergence of visceral and somatic sensory inputs underlying the Kalchschmidt pain response likely does not occur at the level of individual DRG neurons. Rather, it may involve higher-order integrative centers, possibly including vagal pathways and brainstem nuclei which integrate the afferent information to coordinate respiratory movements of the diaphragm, intercostal muscles, and larynx. Although limited by the sample size, this case study provides a neuroanatomical basis for further investigation into central mechanisms of referred visceral pain in cattle. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

17 pages, 858 KiB  
Article
Optical Photometric Monitoring of the Blazar OT 355 and Local Standard Stars’ Calibration
by R. Bachev, Tushar Tripathi, Alok C. Gupta, A. Kurtenkov, Y. Nikolov, A. Strigachev, S. Boeva, G. Latev, B. Spassov, M. Minev, E. Ovcharov, W.-X. Yang, Yi Liu and J.-H. Fan
Universe 2025, 11(6), 171; https://doi.org/10.3390/universe11060171 - 27 May 2025
Viewed by 623
Abstract
OT 355 (4FGL J1734.3 + 3858) is a relatively rarely studied but highly variable, moderate-redshift (z = 0.975) flat-spectrum radio quasar (blazar). With this work, we aim to study its optical variability on different timescales, which can help us to better understand the [...] Read more.
OT 355 (4FGL J1734.3 + 3858) is a relatively rarely studied but highly variable, moderate-redshift (z = 0.975) flat-spectrum radio quasar (blazar). With this work, we aim to study its optical variability on different timescales, which can help us to better understand the physical processes in relativistic jets operating in blazar-type active galactic nuclei. OT 355 was observed in four colors (BVRI) during 41 nights between 2017 and 2023 using three 1 and 2 m class telescopes. The object was also monitored on intra-night timescales, for about 100 h in total. In addition, secondary standard stars in the field of OT 355 were calibrated in order to facilitate future photometric studies. We detected significant intra-night and night-to-night variations of up to 0.5 mag. Variability characteristics, color changes, and a possible “rms-flux” relation were studied and discussed. Using simple arguments, we show that a negative “rms-flux” relation should be expected if many independent processes/regions drive the short-term variability via Doppler factor changes, which is not observed in this and other cases. This finding raises arguments for the idea that more complex multiplicative processes are responsible for blazar variability. Studying blazar variability, especially on the shortest possible timescales, can help to estimate the strength and geometry of their magnetic fields, the linear sizes of the emitting regions, and other aspects, which may be of importance for constraining and modeling blazars’ emitting mechanisms. Full article
(This article belongs to the Special Issue Multi-wavelength Properties of Active Galactic Nuclei)
Show Figures

Figure 1

16 pages, 4545 KiB  
Article
Patterns of Heartwood Formation and Its Key Response Signaling Molecules in Dalbergia odorifera T. Chen
by Jiawen Li, Yuanjing Zhu, Guangyao Ma, Haoling Li, Yun Yang, Hui Meng and Jianhe Wei
Int. J. Mol. Sci. 2025, 26(10), 4629; https://doi.org/10.3390/ijms26104629 - 12 May 2025
Viewed by 446
Abstract
The heartwood of Dalbergia odorifera T. Chen has garnered significant attraction due to its high medicinal, aromatic and timber values; however, its formation mechanism remains unexplored. This study utilized the sapwood (N-B), transition zone (N-T), and heartwood (N-H) of the xylem of 15-year-old, [...] Read more.
The heartwood of Dalbergia odorifera T. Chen has garnered significant attraction due to its high medicinal, aromatic and timber values; however, its formation mechanism remains unexplored. This study utilized the sapwood (N-B), transition zone (N-T), and heartwood (N-H) of the xylem of 15-year-old, naturally heartwood-forming D. odorifera to observe the nuclei of parenchyma cells, revealing that no living cells were specialized in synthesizing the secondary metabolites of heartwood in the N-H. Additionally, analysis of gene expression patterns across different compartments indicated that differentially expressed genes (DEGs) involved in the synthesis of secondary metabolites of heartwood were primarily up-regulated in the N-T, suggesting that the pattern of heartwood formation in D. odorifera follows the Type-I (Robinia-Type) model, wherein secondary metabolites are synthesized in situ in the ray parenchyma cells of the N-T, followed by programmed cell death (PCD) leading to heartwood formation. Furthermore, DEGs related to ethylene biosynthesis and signaling pathways were up-regulated in the N-T, suggesting that ethylene signaling may play a critical role in regulating the heartwood formation process of D. odorifera. Treatment of suspension cells with polyethylene glycol (PEG) and an ethylene synthesis inhibitor (AVG) further confirmed that ethylene acts as a key signaling molecule in the formation of heartwood-like material in D. odorifera. This study provides initial insights into the molecular mechanisms underlying heartwood formation in D. odorifera and offers a foundation for developing heartwood formation and promotion technologies. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

41 pages, 10191 KiB  
Review
Impact of Land-Use Change on Vascular Epiphytes: A Review
by Thorsten Krömer, Helena J. R. Einzmann, Glenda Mendieta-Leiva and Gerhard Zotz
Plants 2025, 14(8), 1188; https://doi.org/10.3390/plants14081188 - 11 Apr 2025
Cited by 1 | Viewed by 1035
Abstract
Human-caused habitat conversion, degradation, and climate change threaten global biodiversity, particularly in tropical forests where vascular epiphytes—non-parasitic plants growing on other plants—may be especially vulnerable. Epiphytes play vital ecological roles, in nutrient cycling and by providing habitat, but are disproportionately affected by land-use [...] Read more.
Human-caused habitat conversion, degradation, and climate change threaten global biodiversity, particularly in tropical forests where vascular epiphytes—non-parasitic plants growing on other plants—may be especially vulnerable. Epiphytes play vital ecological roles, in nutrient cycling and by providing habitat, but are disproportionately affected by land-use changes due to their reliance on host trees and specific microclimatic conditions. While tree species in secondary forests recover relatively quickly, epiphyte recolonization is slower, especially in humid montane regions, where species richness may decline by up to 96% compared to primary or old-growth forests. A review of nearly 300 pertinent studies has revealed a geographic bias toward the Neotropics, with limited research from tropical Asia, Africa, and temperate regions. The studies can be grouped into four main areas: 1. trade, use and conservation, 2. ecological effects of climate and land-use change, 3. diversity in human-modified habitats, and 4. responses to disturbance. In agricultural and timber plantations, particularly those using exotic species like pine and eucalyptus, epiphyte diversity is significantly reduced. In contrast, most native tree species and shade-grown agroforestry systems support higher species richness. Traditional polycultures with dense canopy cover maintain up to 88% of epiphyte diversity, while intensive management practices, such as epiphyte removal in coffee and cacao plantations, cause substantial biodiversity losses. Conservation strategies should prioritize preserving old-growth forests, maintaining forest fragments, and minimizing intensive land management. Active restoration, including the translocation of fallen epiphytes and planting vegetation nuclei, is more effective than passive approaches. Future research should include long-term monitoring to understand epiphyte dynamics and assess the broader impacts of epiphyte loss on biodiversity and ecosystem functioning. Full article
Show Figures

Figure 1

9 pages, 219 KiB  
Article
Correlation of Neuroanatomical Structures Related to Speech in Cerebral Palsy Patients Aged 0–17: A Retrospective MRI Study
by Erhan Berk, Rümeysa Üzümcüoğlu, Feyza İnceoğlu, Merve Aydın, Muhammed Furkan Arpacı, Ahmet Sığırcı and Hıdır Pekmez
Children 2025, 12(2), 249; https://doi.org/10.3390/children12020249 - 19 Feb 2025
Viewed by 692
Abstract
Background/Objectives: Cerebral Palsy (CP) is a non-progressive clinical condition characterized by secondary issues, including speech impairments. Our study aims to evaluate the volumes of brain areas related to speech in patients diagnosed with CP between the ages of 0–17. Methods: this [...] Read more.
Background/Objectives: Cerebral Palsy (CP) is a non-progressive clinical condition characterized by secondary issues, including speech impairments. Our study aims to evaluate the volumes of brain areas related to speech in patients diagnosed with CP between the ages of 0–17. Methods: this study includes the images of 84 children: 42 in the control group who applied to the hospital between the specified dates and were reported as healthy by MRI from the patient records, and 42 patients with CP. Results: in the CP group, white and gray matter, cerebrum, cerebellum, thalamus, lobus frontalis, lobus temporalis, lobus parietalis, lobus insularis, gyrus cinguli, and nuclei basales volumes were observed to decrease statistically significantly compared to the control group (p ˂ 0.001). Conclusions: we found a significant decrease in the volumes of speech-related brain areas in CP patients, indicating that CP can significantly impact the brain’s speech-related regions. Full article
(This article belongs to the Section Pediatric Radiology)
15 pages, 3547 KiB  
Article
Exploring the Enigmatic Spread and Spatial Dynamics of Bursatella leachii in the Mediterranean Sea
by Luca Castriota, Manuela Falautano, Teresa Maggio and Patrizia Perzia
Biology 2025, 14(2), 133; https://doi.org/10.3390/biology14020133 - 27 Jan 2025
Viewed by 935
Abstract
The invasion history of the gastropod mollusk Bursatella leachii in the Mediterranean Sea demonstrates a dynamic progression through distinct phases, comprising arrival, establishment, and expansion phases. Initial records in the 1930s trace its entry through the Suez Canal, likely followed by larval transport [...] Read more.
The invasion history of the gastropod mollusk Bursatella leachii in the Mediterranean Sea demonstrates a dynamic progression through distinct phases, comprising arrival, establishment, and expansion phases. Initial records in the 1930s trace its entry through the Suez Canal, likely followed by larval transport to the Aegean Sea facilitated by natural currents. The subsequent spread to Maltese and Italian waters suggests secondary dispersion favored by maritime traffic or aquaculture activities. The establishment phase shows a significant increase in occurrences and spatial dispersion, with aggregated nuclei in the central Mediterranean. The expansion phase was characterized by rapid dispersal and intensified densities, particularly in the Aegean, Adriatic, and Spanish coasts. These findings underscore the species’ capability to invade from multiple fronts, driven by both natural and human-mediated processes. A new location in the Strait of Sicily, i.e., the island of Lampedusa, is reported in the present paper for the species. Given the low number of observations, its establishment with a viable population on the island is not confirmed, although its detection validates the Straits of Sicily as a key area of intense settlement of the species. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

18 pages, 4616 KiB  
Article
The AP2/ERF Transcription Factor ERF56 Negatively Regulating Nitrate-Dependent Plant Growth in Arabidopsis
by Guoqi Yao, Chunhua Mu, Zhenwei Yan, Shijun Ma, Xia Liu, Yue Sun, Jing Hou, Qiantong Liu, Bing Cao, Juan Shan and Bingying Leng
Int. J. Mol. Sci. 2025, 26(2), 613; https://doi.org/10.3390/ijms26020613 - 13 Jan 2025
Viewed by 863
Abstract
ERF56, a member of the APETALA2/ETHYLENE-RESPONSIVE FACTOR (AP2/ERF) transcription factor (TF) family, was reported to be an early nitrate-responsive TF in Arabidopsis. But the function of ERF56 in nitrate signaling remains not entirely clear. This study aimed to investigate the role of [...] Read more.
ERF56, a member of the APETALA2/ETHYLENE-RESPONSIVE FACTOR (AP2/ERF) transcription factor (TF) family, was reported to be an early nitrate-responsive TF in Arabidopsis. But the function of ERF56 in nitrate signaling remains not entirely clear. This study aimed to investigate the role of ERF56 in nitrate-dependent plant growth and nitrate signaling. We confirmed with reverse transcription quantitative PCR (RT-qPCR) that the transcription of ERF56 is quickly induced by nitrate. ERF56 overexpressors displayed decreased nitrate-dependent plant growth, while erf56 mutants exhibited increased plant growth. Confocal imaging demonstrated that ERF56 is localized into nuclei. Assays with the glucuronidase (GUS) reporter showed that ERF56 is mainly expressed at the region of maturation of roots and in anthers. The dual-luciferase assay manifested that the transcription of ERF56 is not directly regulated by NIN-LIKE PROTEIN 7 (NLP7). The transcriptome analysis identified 1038 candidate genes regulated by ERF56 directly. A gene ontology (GO) over-representation analysis showed that ERF56 is involved in the processes of water transport, inorganic molecule transmembrane transport, secondary metabolite biosynthesis, and cell wall organization. We revealed that ERF56 represses nitrate-dependent growth through regulating the processes of inorganic molecule transmembrane transport, the secondary metabolite biosynthesis, and cell wall organization. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

38 pages, 8036 KiB  
Review
Overview of High-Performance Timing and Position-Sensitive MCP Detectors Utilizing Secondary Electron Emission for Mass Measurements of Exotic Nuclei at Nuclear Physics Facilities
by Zhuang Ge
Sensors 2024, 24(22), 7261; https://doi.org/10.3390/s24227261 - 13 Nov 2024
Cited by 1 | Viewed by 1832
Abstract
Timing and/or position-sensitive MCP detectors, which detect secondary electrons (SEs) emitted from a conversion foil during ion passage, are widely utilized in nuclear physics and nuclear astrophysics experiments. This review covers high-performance timing and/or position-sensitive MCP detectors that use SE emission for mass [...] Read more.
Timing and/or position-sensitive MCP detectors, which detect secondary electrons (SEs) emitted from a conversion foil during ion passage, are widely utilized in nuclear physics and nuclear astrophysics experiments. This review covers high-performance timing and/or position-sensitive MCP detectors that use SE emission for mass measurements of exotic nuclei at nuclear physics facilities, along with their applications in new measurement schemes. The design, principles, performance, and applications of these detectors with different arrangements of electromagnetic fields are summarized. To achieve high precision and accuracy in mass measurements of exotic nuclei using time-of-flight (TOF) and/or position (imaging) measurement methods, such as high-resolution beam-line magnetic-rigidity time-of-flight (Bρ-TOF) and in-ring isochronous mass spectrometry (IMS), foil-MCP detectors with high position and timing resolution have been introduced and simulated. Beyond TOF mass measurements, these new detector systems are also described for use in heavy ion beam trajectory monitoring and momentum measurements for both beam-line and in-ring applications. Additionally, the use of position-sensitive timing foil-MCP detectors for Penning trap mass spectrometers and multi-reflection time-of-flight (MR-TOF) mass spectrometers is proposed and discussed to improve efficiency and enhance precision. Full article
(This article belongs to the Special Issue Particle Detector R&D: Design, Characterization and Applications)
Show Figures

Figure 1

9 pages, 1116 KiB  
Article
Hurst Exponent and Event-by-Event Fluctuations in Relativistic Nucleus–Nucleus Collisions
by Anastasiya I. Fedosimova, Khusniddin K. Olimov, Igor A. Lebedev, Sayora A. Ibraimova, Ekaterina A. Bondar, Elena A. Dmitriyeva and Ernazar B. Mukanov
Particles 2024, 7(4), 918-926; https://doi.org/10.3390/particles7040055 - 15 Oct 2024
Viewed by 1064
Abstract
A joint study of multi-particle pseudo-rapidity correlations and event-by-event fluctuations in the distributions of secondary particles and fragments of the target nucleus and the projectile nucleus was carried out in order to search for correlated clusters of secondary particles. An analysis of the [...] Read more.
A joint study of multi-particle pseudo-rapidity correlations and event-by-event fluctuations in the distributions of secondary particles and fragments of the target nucleus and the projectile nucleus was carried out in order to search for correlated clusters of secondary particles. An analysis of the collisions of the sulfur nucleus with photoemulsion nuclei at an energy of 200 A·GeV is presented based on experimental data obtained at the SPS at CERN. The analysis of multi-particle correlations was performed using the Hurst method. A detailed analysis of each individual event showed that in events of complete destruction of a projectile nucleus with a high multiplicity of secondary particles, long-distance multi-particle pseudo-rapidity correlations are observed. The distribution of average pseudo-rapidity in such events differs significantly from others, as it is much narrower, and its average value is noticeably shifted towards lower values <η>. Full article
(This article belongs to the Special Issue Feature Papers for Particles 2023)
Show Figures

Figure 1

17 pages, 5871 KiB  
Article
DNA Damage, Cell Death, and Alteration of Cell Proliferation Insights Caused by Copper Oxide Nanoparticles Using a Plant-Based Model
by Sazada Siddiqui
Biology 2024, 13(10), 805; https://doi.org/10.3390/biology13100805 - 9 Oct 2024
Cited by 3 | Viewed by 1478
Abstract
The speedy growth of copper oxide nanoparticle (CuO NP) manufacturing due to their wide application in industries has caused concerns due to their increased discharge into the environment from both purposeful and accidental sources. Their presence at an elevated concentration in the environment [...] Read more.
The speedy growth of copper oxide nanoparticle (CuO NP) manufacturing due to their wide application in industries has caused concerns due to their increased discharge into the environment from both purposeful and accidental sources. Their presence at an elevated concentration in the environment can cause potential hazards to the plant kingdom, specifically to staple food crops. However, limited research is available to determine the consequences of CuO NPs. The present study aimed to assess the morphological and cytological changes induced by CuO NPs on Pisum sativum L., a key staple food crop. Seeds of Pisum sativum were exposed to various concentrations of CuO NPs (0, 25, 50, 75, 100, and 125 ppm) for 2 h, and their effects on seed germination (SG), radicle length (RL), cell proliferation kinetics (CPK), mitotic index (MI), cell death (CD), micronucleus frequency (MNF), and chromosomal aberration frequency (CAF) were studied. The results indicate a significant reduction in SG, RL, CPK, and MI and a significant dose-dependent increase in CD, MNF, and CAF. CuO NP treatment has led to abnormal meiotic cell division, increased incidence of micronucleus frequency, and chromosomal aberration frequency. Additionally, the CuO NP-treated groups showed an increase in the percentage of aberrant meiotic cells such as laggard (LG), double bridge (DB), stickiness (STC), clumped nuclei (CNi), precocious separation (PS), single bridge (SB), and secondary association (SA). CuO NP treatment led to reductions in SG as follows: 55% at 24 h, 60.10% at 48 h, and 65% at 72 h; reductions in RL as follows: 0.55 ± 0.021 cm at 24 h, 0.67 ± 0.01 cm at 48 h, and 0.99 ± 0.02 cm at 72 h; reductions in CPK as follows: 34.98% at prophase, 7.90% at metaphase, 3.5% at anaphase, and 0.97% at telophase. It also led to a 57.45% increase in CD, a 39.87% reduction in MI, and a 60.77% increase in MNF at a higher concentration of 125 ppm. The findings of this study clearly show that CuO NPs have a genotoxic effect on the food crop plant Pisum sativum. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

16 pages, 1918 KiB  
Article
Convolutional Neural Network Processing of Radio Emission for Nuclear Composition Classification of Ultra-High-Energy Cosmic Rays
by Tudor Alexandru Calafeteanu, Paula Gina Isar and Emil Ioan Sluşanschi
Universe 2024, 10(8), 327; https://doi.org/10.3390/universe10080327 - 15 Aug 2024
Cited by 1 | Viewed by 1451
Abstract
Ultra-high-energy cosmic rays (UHECRs) are extremely rare energetic particles of ordinary matter in the Universe, traveling astronomical distances before reaching the Earth’s atmosphere. When primary cosmic rays interact with atmospheric nuclei, cascading extensive air showers (EASs) of secondary elementary particles are developed. Radio [...] Read more.
Ultra-high-energy cosmic rays (UHECRs) are extremely rare energetic particles of ordinary matter in the Universe, traveling astronomical distances before reaching the Earth’s atmosphere. When primary cosmic rays interact with atmospheric nuclei, cascading extensive air showers (EASs) of secondary elementary particles are developed. Radio detectors have proven to be a reliable method for reconstructing the properties of EASs, such as the shower’s axis, its energy, and its maximum (Xmax). This aids in understanding fundamental astrophysical phenomena, like active galactic nuclei and gamma-ray bursts. Concurrently, data science has become indispensable in UHECR research. By applying statistical, computational, and deep learning methods to both real-world and simulated radio data, researchers can extract insights and make predictions. We introduce a convolutional neural network (CNN) architecture designed to classify simulated air shower events as either being generated by protons or by iron nuclei. The classification achieved a stable test error of 10%, with Accuracy and F1 scores of 0.9 and an MCC of 0.8. These metrics indicate strong prediction capability for UHECR’s nuclear composition, based on data that can be gathered by detectors at the world’s largest cosmic rays experiment on Earth, the Pierre Auger Observatory, which includes radio antennas, water Cherenkov detectors, and fluorescence telescopes. Full article
(This article belongs to the Special Issue Advanced Studies in Ultra-High-Energy Cosmic Rays)
Show Figures

Figure 1

18 pages, 7843 KiB  
Article
Variations in Cloud Concentration Nuclei Related to Continental Air Pollution Control and Maritime Fuel Regulation over the Northwest Pacific Ocean
by Lei Sun, Wenxin Cui, Nan Ma, Juan Hong, Yujiao Zhu, Yang Gao, Huiwang Gao and Xiaohong Yao
Atmosphere 2024, 15(8), 972; https://doi.org/10.3390/atmos15080972 - 14 Aug 2024
Cited by 1 | Viewed by 1310
Abstract
Here, we compared the concentrations of cloud condensation nuclei (CCN) and particle number size distributions (PNSDs) measured during the transient period from the winter to the summer East Asian monsoon in 2021 with those in 2014 to explore possible responses to how CCN [...] Read more.
Here, we compared the concentrations of cloud condensation nuclei (CCN) and particle number size distributions (PNSDs) measured during the transient period from the winter to the summer East Asian monsoon in 2021 with those in 2014 to explore possible responses to how CCN responds to upwind continental air pollutant mitigation and marine traffic fuel sulfur content (FSC) regulation over the northwest Pacific Ocean (NWPO). We also employed the Positive Matrix Factorization (PMF) analysis to apportion concentrations of CCN (Nccn) to different sources in order to quantify its source-specified responses to mitigation of air pollution during the transient period. Our results showed that (1) upwind continental mitigation likely reduced Nccn by approximately 200 cm−3 and 400 cm−3 at 0.2% and 0.4% supersaturation (SS), respectively, in the marine background atmosphere over the NWPO; (2) FSC regulation resulted in a decrease in Nccn at 0.4% SS by about 50 cm−3 and was nearly negligible at 0.2% SS over the NWPO. Additionally, a PMF-resolved factor, characterized by a dominant nucleation mode, was present only in 2014 and disappeared in 2021, likely due to the reduction. This estimation, however, suffered from uncertainties since seasonal changes were hard to be deducted accurately. PMF-resolved factors accurately represented Nccn in 80–90% of cases, but this accuracy was not observed in the remaining cases. Finally, an integrated analysis of satellite-derived cloud parameters and ship-based measurements indicated that the reduced Nccn over the NWPO might be co-limited with meteorological factors in forming cloud droplets during the transient period. Full article
Show Figures

Graphical abstract

32 pages, 39459 KiB  
Article
Research on Traditional Village Spatial Differentiation from the Perspective of Cultural Routes: A Case Study of 338 Villages in the Miao Frontier Corridor
by Weiqi Zhao, Dawei Xiao, Jing Li, Ziyu Xu and Jin Tao
Sustainability 2024, 16(13), 5298; https://doi.org/10.3390/su16135298 - 21 Jun 2024
Cited by 8 | Viewed by 1997
Abstract
The traditional villages in the Miao Frontier Corridor are the products of migrations, social interactions, and transportation, as well as production interchanges between the central plains and the frontiers of China in ancient times. They have made significant contributions to local multicultural inheritance [...] Read more.
The traditional villages in the Miao Frontier Corridor are the products of migrations, social interactions, and transportation, as well as production interchanges between the central plains and the frontiers of China in ancient times. They have made significant contributions to local multicultural inheritance and regional social development. However, with the increasing pressure of heritage conservation and sustainable development, there is growing attention on how traditional villages can tap into their cultural continuity and distinctiveness. This study introduces the concept of cultural routes, with the aim of integrating traditional villages of different ethnicities, regions, and characteristics from the perspective of diversity. It analyzes their spatial differentiation characteristics and the factors influencing them, providing basic support for the overall protection of traditional villages with special characteristics. Following this idea, 338 remaining traditional villages in the Miao Frontier Corridor were selected as the research objects. With the help of 91-satellite maps and a geographic information system (GIS), a cultural and geographic database of the traditional villages in the Miao Frontier Corridor was constructed to objectively explore the roles of the traditional villages’ natural geography, historical, and humanistic elements in the spatial categorization on a large scale. This study shows that the spatial distribution of the traditional villages in the Miao Frontier Corridor is uneven, exhibiting a cluster structure with of a “single primary nucleus with multiple secondary nuclei”. The spatial differentiation of traditional villages exhibits a similar clustering pattern based on individual natural geographic factors, such as elevation, mountain undulation, slope, and water systems. Additionally, there is discernible regularity concerning historical and humanistic factors, such as ethnicity type, age of village establishment, and the presence of guard stations. Further exploring the micro-spatial level, the natural geographical environment serves as the structural foundation of traditional village space, while the historical and humanistic environment fosters multiple differentiations in traditional village space in terms of influencing factors. Together, these factors jointly influence the spatial differentiation of traditional villages. This study enriches the dynamic aspects of linear cultural heritage preservation and also provides new insights into the specialized development within the overall protection of traditional villages. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

Back to TopTop