Hurst Exponent and Event-by-Event Fluctuations in Relativistic Nucleus–Nucleus Collisions
Abstract
1. Introduction
2. Experimental Details
3. Estimation of Target Nucleus and the Collision Geometry
4. Projectile Nucleus Fragmentation and Multiplicity Fluctuations
5. Fluctuations of the Average Pseudo-Rapidity of Secondary Particles
6. Pseudo-Rapidity Correlations
6.1. Method
6.2. Analysis Procedure
- is the number of particles in the i-th bin of the event under consideration;
- is the number of particles in this event;
- = ∑ is total number of particles in the i-th bin for all events;
- = ∑ is the total number of particles in all events.
6.3. Results
7. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, S.; Qin, G.-Y. Medium Response and Jet–Hadron Correlations in Relativistic Heavy-Ion Collisions. Annu. Rev. Nucl. Part. Sci. 2023, 73, 205–229. [Google Scholar] [CrossRef]
- Gelis, F. Some aspects of the theory of heavy ion collisions. Rep. Prog. Phys. 2021, 84, 056301. [Google Scholar] [CrossRef]
- Zhou, K. Exploration of extreme QCD matter with deep learning. J. Phys. Conf. Ser. 2023, 2586, 012159. [Google Scholar] [CrossRef]
- Mishra, A.N.; Paić, G.; Pajares, C.; Scharenberg, R.P.; Srivastava, B.K. Exploring the QGP phase above the deconfinement temperature in pp and A—A collisions at LHC energies. Nucl. Phys. A 2024, 1046, 122865. [Google Scholar] [CrossRef]
- Shuryak, E. Strongly coupled quark-gluon plasma in heavy ion collisions. Rev. Mod. Phys. 2017, 89, 035001. [Google Scholar] [CrossRef]
- Cunqueiro, L.; Sickles, A.M. Studying the QGP with Jets at the LHC and RHIC. Prog. Part. Nucl. Phys. 2022, 124, 103940. [Google Scholar] [CrossRef]
- Hauksson, S.; Jeon, S.; Gale, C. Probes of the quark-gluon plasma and plasma instabilities. Phys. Rev. C 2021, 103, 064904. [Google Scholar] [CrossRef]
- Olimov, K.K.; Liu, F.-H.; Musaev, K.A.; Shodmonov, M.Z.; Fedosimova, A.I.; Lebedev, I.A.; Kanokova, S.Z.; Tukhtaev, B.J.; Yuldashev, B.S. Study of midrapidity pt distributions of identified charged particles in Xe + Xe collisions at (snn) 1/2= 5.44 TeV using non-extensive Tsallis statistics with transverse flow. Mod. Phys. Lett. A 2022, 37, 2250095. [Google Scholar] [CrossRef]
- Ke, W.; Yin, Y. Non-hydrodynamic response in QCD-like plasma. J. High Energy Phys. 2024, 2024, 171. [Google Scholar] [CrossRef]
- Arsene, I.; Bearden, I.; Beavis, D.; Besliu, C.; Budick, B.; Bøggild, H.; Chasman, C.; Christensen, C.; Christiansen, P.; Cibor, J.; et al. Quark–gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment. Nucl. Phys. A 2005, 757, 1–27. [Google Scholar] [CrossRef]
- Adams, J.; Aggarwal, M.; Ahammed, Z.; Amonett, J.; Anderson, B.; Arkhipkin, D.; Averichev, G.; Badyal, S.; Bai, Y.; Balewski, J.; et al. Experimental and theoretical challenges in the search for the quark–gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 2005, 757, 102–183. [Google Scholar] [CrossRef]
- PHOBOS Collaboration; Back, B.B.; Baker, M.D.; Ballintijn, M.; Barton, D.S.; Becker, B.; Betts, R.R.; Bickley, A.A.; Bindel, R.; Budzanowski, A.; et al. The PHOBOS perspective on discoveries at RHIC. Nucl. Phys. A 2005, 757, 28–101. [Google Scholar] [CrossRef]
- Adcox, K.; Adler, S.; Afanasiev, S.; Aidala, C.; Ajitanand, N.; Akiba, Y.; Al-Jamel, A.; Alexander, J.; Amirikas, R.; Aoki, K.; et al. Formation of dense partonic matter in relativistic nucleus–nucleus collisions at RHIC: Experimental evaluation by the PHENIX Collaboration. Nucl. Phys. A 2005, 757, 184–283. [Google Scholar] [CrossRef]
- Collaboration, T.B.; Afanasiev, S.; Agakishiev, G.; Aleksandrov, E.; Aleksandrov, I.; Alekseev, P.; Alishina, K.; Atkin, E.; Aushev, T.; Babkin, V.; et al. Production of π + and K+ mesons in argon-nucleus interactions at 3.2 A GeV. J. High Energy Phys. 2023, 2023, 174. [Google Scholar] [CrossRef]
- Zinchenko, A.; Kapishin, M.; Kireyeu, V.; Kolesnikov, V.; Mudrokh, A.; Suvarieva, D.; Vasendina, V.; Zinchenko, D. A Monte Carlo Study of Hyperon Production with the MPD and BM@N Experiments at NICA. Particles 2023, 6, 485–496. [Google Scholar] [CrossRef]
- Abgaryan, V.; Kado, R.A.; Afanasyev, S.V.; Agakishiev, G.N.; Alpatov, E.; Altsybeev, G.; Hernández, M.A.; Andreeva, S.V.; Andreeva, T.V.; Andronov, E.V.; et al. Status and initial physics performance studies of the MPD experiment at NICA. Eur. Phys. J. A 2022, 58, 140. [Google Scholar] [CrossRef]
- Afanasiev, S.; Agakishiev, G.; Aleksandrov, E.; Aleksandrov, I.; Alekseev, P.; Alishina, K.; Astakhov, V.; Atkin, E.; Aushev, T.; Azorskiy, V.; et al. The BM@N spectrometer at the NICA accelerator complex. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2024, 1065, 169532. [Google Scholar] [CrossRef]
- Gaździcki, M.; Gorenstein, M.; Mrowczynski, S. Fluctuations and deconfinement phase transition in nucleus–nucleus collisions. Phys. Lett. B 2004, 585, 115–121. [Google Scholar] [CrossRef]
- Qin, G.-Y. Collective properties and hard probes of quark-gluon plasma. Kexue Tongbao Chin. Sci. Bull. 2024, 69, 330–345. [Google Scholar]
- Garren, L.; Knowles, I.G.; Navas, S.; Richardson, P.; Sjostrand, T.; Trippe, T. Monte Carlo particle numbering scheme. Eur. Phys. J. C 2000, 15, 205–206. [Google Scholar] [CrossRef]
- Fedosimova, A.I.; Gaitinov, A.S.; Lebedev, I.A.; Temiraliev, A. Study on initial geometry fluctuations via correlation of finite distributions of secondary particles in nucleus-nucleus interactions. J. Phys. Conf. Ser. 2016, 668, 012067. [Google Scholar] [CrossRef]
- Gardim, F.G.; Giacalone, G.; Luzum, M.; Ollitrault, J.-Y. Effects of initial state fluctuations on the mean transverse momentum. Nucl. Phys. A 2020, 1005, 121999. [Google Scholar] [CrossRef]
- Bhalerao, R.S.; Luzum, M.; Ollitrault, J.-Y. Determining initial-state fluctuations from flow measurements in heavy-ion collisions. Phys. Rev. C 2011, 84, 034910. [Google Scholar] [CrossRef]
- Jeon, S. Initial state and flow physics—A theoretical overview. Nucl. Phys. A 2014, 932, 349–356. [Google Scholar] [CrossRef]
- Sarkar, S.; Mali, P.; Mukhopadhyay, A. Simulation study of elliptic flow of charged hadrons produced in Au + Au collisions at energies available at the Facility for Antiproton and Ion Research. Phys. Rev. C 2017, 95, 014908. [Google Scholar] [CrossRef]
- Giacalone, G.; Noronha-Hostler, J.; Ollitrault, J.-Y. Relative flow fluctuations as a probe of initial state fluctuations. Phys. Rev. C 2017, 95, 054910. [Google Scholar] [CrossRef]
- Heiselberg, H. Event-by-event physics in relativistic heavy-ion collisions. Phys. Rep. 2001, 351, 161–194. [Google Scholar] [CrossRef]
- Bhattacharyya, S. Event-by-event fluctuations of maximum particle density with respect to the width of the pseudo-rapidity interval at a few A GeV/c. Europhys. Lett. 2020, 131, 42001. [Google Scholar] [CrossRef]
- Manna, S.K.; Mukhopadhyay, A.; Mali, P. Forward–backward multiplicity correlation and event-by-event multiplicity fluctuation in nucleus–nucleus collisions at 200A GeV. Int. J. Mod. Phys. E 2021, 30, 2150021. [Google Scholar] [CrossRef]
- Fedosimova, A.I.; Gaitinov, A.S.; Grushevskaya, E.B.; Lebedev, I.A. Study of the peculiarities of multiparticle production via event-by-event analysis in asymmetric nucleus-nucleus interactions. EPJ Web Conf. 2017, 145, 19009. [Google Scholar] [CrossRef]
- Burtebayev, N.; Fedosimova, A.I.; Lebedev, I.A.; Ibraimova, S.A.; Bondar, E.A. Fluctuations of Initial State and Event-by-Event Pseudo-Rapidity Correlations in High Energy Nuclear Collisions. Universe 2022, 8, 67. [Google Scholar] [CrossRef]
- Alver, B.; Back, B.B.; Baker, M.D.; Ballintijn, M.; Barton, D.S.; Betts, R.R.; Bickley, A.A.; Bindel, R.; Budzanowski, A.; Busza, W.; et al. Participant and spectator scaling of spectator fragments in Au + Au and Cu + Cu collisions at √sNN = 19.6 and 22.4 GeV. Phys. Rev. C 2016, 94, 024903. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Haiduc, M.; Neagu, A.T.; Firu, E. Centrality dependence of total disintegration of target nuclei in high energy nucleus–nucleus interactions. Can. J. Phys. 2016, 94, 884–893. [Google Scholar] [CrossRef]
- Trzupek, A. Collective Dynamics of Heavy Ion Collisions in ATLAS. Phys. Part. Nucl. 2023, 54, 703–707. [Google Scholar] [CrossRef]
- Kurepin, A.; Topilskaya, N. Heavy-ion collisions in a fixed target mode at the LHC beams. EPJ Web Conf. 2017, 138, 03009. [Google Scholar] [CrossRef]
- Dmitrieva, E.; Fedosimova, A.; Lebedev, I.; Temiraliev, A.; Abishev, M.; Kozhamkulov, T.; Mayorov, A.; Spitaleri, C. Determination of the primary energy using an ultrathin calorimeter. J. Phys. G Nucl. Part. Phys. 2020, 47, 035202. [Google Scholar] [CrossRef]
- Lebedev, I.; Fedosimova, A.; Mayorov, A.; Krassovitskiy, P.; Dmitriyeva, E.; Ibraimova, S.; Bondar, E. Direct Measurements of Cosmic Rays (TeV and beyond) Using an Ultrathin Calorimeter: Lessening Fluctuation Method. Appl. Sci. 2021, 11, 11189. [Google Scholar] [CrossRef]
- Lloyd, E.H.; Hurst, H.E.; Black, R.P.; Simaika, Y.M. Long-Term Storage: An Experimental Study. J. R. Stat. Soc. Ser. A (Gen.) 1966, 129, 591. [Google Scholar] [CrossRef]
- Lebedev, A.I.; Shaikhatdenov, B.G. The use of the Hurst method for rapidity correlation analysis. J. Phys. G Nucl. Part. Phys. 1997, 23, 637–641. [Google Scholar] [CrossRef]
- Kvochkina, T.N.; Lebedev, I.A.; Lebedeva, A. An analysis of high-energy interactions with large transverse momentum of secondary particles. J. Phys. G Nucl. Part. Phys. 2000, 26, 35–41. [Google Scholar] [CrossRef]
- Adamovich, M.I.; Aggarwal, M.M.; Andreeva, N.P.; Anson, Z.V.; Ameeva, Z.V.; Arora, R.; Alexandrov, Y.A.; Azimov, S.A.; Basova, E.; Bhalla, K.B.; et al. Rapidity densities and their fluctuations in central 200 A GeV 32S interactions with Au and Ag, Br nuclei EMU01 collaboration. Phys. Lett. B 1989, 227, 285–290. [Google Scholar] [CrossRef]
- Adamovich, M.I.; Andreeva, N.P.; Avetyan, F.A. Azimuthal correlation of secondary particles in 32S induced interactions with Ag(Br) nuclei at 4.5 GeV/c/nucleon. Part. Nucl. Lett. 2000, 4, 75–82. [Google Scholar]
- Adamovich, M.; Aggarwal, M.; Alexandrov, Y.; Amirikas, R.; Andreeva, N.; Badyal, S.; Bakich, A.; Basova, E.; Bhalla, K.; Bhasin, A.; et al. Fragmentation and multifragmentation of 10.6A GeV gold nuclei. Eur. Phys. J. A 1999, 5, 429–440. [Google Scholar] [CrossRef]
- Adamovich, M.I.; Andreeva, N.P.; Basova, E.S.; Bradnová, V.; Bubnov, V.I.; Chernyavsky, M.M.; Gaitinov, A.S.; Gulamov, K.G.; Haiduc, M.; Hasegan, D.; et al. Flow effects in high-energy nucleus collisions with Ag(Br) in emulsion. Phys. At. Nucl. 2004, 67, 273–280. [Google Scholar] [CrossRef]
- Adamovich, M.I.; Aggarwal, M.M.; Et, A.; Andreeva, N.; Badyal, S.; Bakich, A.; Basova, E.; Bhalla, K.; Bhasin, A.; Bhatia, V.; et al. Factorial Moments of 28 Si Induced Interactions with Ag(Br) Nuclei. Acta Physiol. Hung. 2001, 13, 213–221. [Google Scholar] [CrossRef]
- Andreeva, N.P.; Gaitinov, A.S.; Lebedev, I.A.; Skorobogatova, V.I.; Filippova, L.N.; Shaikhieva, D.B. Full destruction characteristics of light and heavy nuclei with 3.7-158 A GeV energies. Phys. Part. Nucl. Lett. 2007, 4, 67–72. [Google Scholar] [CrossRef]
- Feder, J. Fractals; Plenum Press: New York, NY, USA, 1988. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fedosimova, A.I.; Olimov, K.K.; Lebedev, I.A.; Ibraimova, S.A.; Bondar, E.A.; Dmitriyeva, E.A.; Mukanov, E.B. Hurst Exponent and Event-by-Event Fluctuations in Relativistic Nucleus–Nucleus Collisions. Particles 2024, 7, 918-926. https://doi.org/10.3390/particles7040055
Fedosimova AI, Olimov KK, Lebedev IA, Ibraimova SA, Bondar EA, Dmitriyeva EA, Mukanov EB. Hurst Exponent and Event-by-Event Fluctuations in Relativistic Nucleus–Nucleus Collisions. Particles. 2024; 7(4):918-926. https://doi.org/10.3390/particles7040055
Chicago/Turabian StyleFedosimova, Anastasiya I., Khusniddin K. Olimov, Igor A. Lebedev, Sayora A. Ibraimova, Ekaterina A. Bondar, Elena A. Dmitriyeva, and Ernazar B. Mukanov. 2024. "Hurst Exponent and Event-by-Event Fluctuations in Relativistic Nucleus–Nucleus Collisions" Particles 7, no. 4: 918-926. https://doi.org/10.3390/particles7040055
APA StyleFedosimova, A. I., Olimov, K. K., Lebedev, I. A., Ibraimova, S. A., Bondar, E. A., Dmitriyeva, E. A., & Mukanov, E. B. (2024). Hurst Exponent and Event-by-Event Fluctuations in Relativistic Nucleus–Nucleus Collisions. Particles, 7(4), 918-926. https://doi.org/10.3390/particles7040055