Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = sea spray measurements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4113 KiB  
Article
Assessment of Environmental Parameters in Natural Coastal Scenery and Compositional by Means of an Innovative Approach
by Nicole Mastromatteo, Lia Drudi, Davide Gallione, Rossana Bellopede and Marina Clerico
Atmosphere 2024, 15(11), 1379; https://doi.org/10.3390/atmos15111379 - 15 Nov 2024
Cited by 1 | Viewed by 836
Abstract
Three measurement campaigns were conducted on the island of Culuccia (Sardinia, Italy) to evaluate particulate matter (PM) concentrations and the contribution of sea spray aerosol (SSA) across different seasons in a largely uncontaminated coastal environment. The goal is not only to analyze PM [...] Read more.
Three measurement campaigns were conducted on the island of Culuccia (Sardinia, Italy) to evaluate particulate matter (PM) concentrations and the contribution of sea spray aerosol (SSA) across different seasons in a largely uncontaminated coastal environment. The goal is not only to analyze PM concentration in relation to meteorological parameters such as temperature, relative humidity (rH), and wind speed but also to provide a chemical analysis of SSA. The chemical composition of PM was determined using Raman spectroscopy and SEM-EDX, allowing for precise identification of individual particles. Results showed seasonal variations in PM composition, with sodium nitrate and sodium chloride prevalent in March and June and sulfates dominating in October. A correlation between the PM composition and meteorological parameters was observed according to the value of the deliquescence relative humidity (DRH), highlighting the reciprocal influence of rH and coarse and fine PM trends. This multi-technique approach offers valuable insights into the relative abundance of different PM compound classes based on the varying conditions for SSA formation. This enhances our understanding of the behavior of sea spray aerosol and other PM in natural coastal environments. Full article
Show Figures

Figure 1

10 pages, 2049 KiB  
Article
An Investigation into Using CFD for the Estimation of Ship Specific Parameters for the SPICE Model for the Prediction of Sea Spray Icing: Part 2—The Verification of SPICE2 with a Full-Scale Test
by Per-Arne Sundsbø and Sujay Deshpande
J. Mar. Sci. Eng. 2024, 12(10), 1866; https://doi.org/10.3390/jmse12101866 - 18 Oct 2024
Cited by 2 | Viewed by 862
Abstract
A hybrid CFD–ML model for the prediction of sea spray icing, SPICE2, was developed in Part 1 of this study in Deshpande et al., 2024. The SPICE2 model is an extension of the ML model, SPICE, where some of the variables required for [...] Read more.
A hybrid CFD–ML model for the prediction of sea spray icing, SPICE2, was developed in Part 1 of this study in Deshpande et al., 2024. The SPICE2 model is an extension of the ML model, SPICE, where some of the variables required for icing rate predictions: local wind speed, spray duration, spray period, and spray flux, are computed from CFD simulations. These, along with the air and water temperatures, and the salinity from the metocean data are used for the prediction of icing rates at different locations on a moving vessel. The existing full-scale icing measurements proved to be not detailed enough for the purpose of the verification of sea spray icing prediction models and the verification of the SPICE2 required distribution of sea spray icing data on the vessel surface in addition to the vessel design for simulation. A full-scale sea spray icing test was conducted in 2018 by Sundsbø et al. on a fully enclosed lifeboat equipped for the Goliat field in the Barents Sea. The 3D design of the same lifeboat, together with the corresponding metocean conditions and ship characteristics was used for the simulation of the vessel-specific parameters required for the verification of the icing rate and distribution prediction from the SPICE2 model against the measured distribution of sea spray icing rates on the lifeboat surface. The availability of the 3D model of this lifeboat, in addition to the fact that the icing measurements from this test were detailed enough to attempt a model verification served the purpose of validating the SPICE2 model. The icing rates measured on this lifeboat are used for the full-scale validation of the SPICE2 model that is proposed in Part 1 of this study. It was seen that the icing rates predicted by SPICE2 concurred with 9 of 13 selected locations on the lifeboat. The ones which did not showed very little deviation from the measurements. The icing rate and distribution prediction with SPICE2 were satisfactorily validated against full-scale icing measurements. This is a first attempt in modelling sea spray generation using CFD and further research into CFD for the estimation of spray flux is suggested. Full article
(This article belongs to the Special Issue Novel Maritime Techniques and Technologies, and Their Safety)
Show Figures

Figure 1

18 pages, 4407 KiB  
Article
Aerosol Properties and Their Influences on Marine Boundary Layer Cloud Condensation Nuclei over the Southern Ocean
by Xingyu Zhang, Xiquan Dong, Baike Xi and Xiaojian Zheng
Atmosphere 2023, 14(8), 1246; https://doi.org/10.3390/atmos14081246 - 4 Aug 2023
Cited by 3 | Viewed by 2248
Abstract
Five overcast marine stratocumulus cases during the Southern Ocean Clouds Radiation Aerosol Transport Experimental Study (SOCRATES) aircraft field campaign were selected to examine aerosol and cloud condensation nuclei (CCN) properties with cloud influence. The Aitken- and accumulation-mode aerosols contributed approximately 70% and 30% [...] Read more.
Five overcast marine stratocumulus cases during the Southern Ocean Clouds Radiation Aerosol Transport Experimental Study (SOCRATES) aircraft field campaign were selected to examine aerosol and cloud condensation nuclei (CCN) properties with cloud influence. The Aitken- and accumulation-mode aerosols contributed approximately 70% and 30% of the total aerosols, respectively. The aerosol properties before and after periods of drizzle were investigated using in situ measurements during one case. Sub-cloud drizzle processes impacted accumulation-mode aerosols and CCN distribution. There was a nearly linear increase in CCN number concentration (NCCN) with supersaturation (S) during the ‘before drizzle’ period, but this was not true for the ‘after drizzle’ period, particularly when S > 0.4%. Using the hygroscopicity parameter (κ) to quantitatively investigate the chemical cloud-processing mechanisms, we found that higher κ values (>0.4) represent cloud-processing aerosols, while lower κ values (<0.1) represent newly formed aerosols. When the supersaturation is less than the Hoppel minimum (0.22%), cloud processing is dominant, whereas sea-spray aerosols are dominant contributors to CCN activation when S exceeds 0.22% but is less than 0.32%, the effective supersaturation threshold. Sea salt is considered a non-cloud-processing aerosol and is large and hygroscopic enough to form cloud droplets. Full article
(This article belongs to the Special Issue Understanding of New Atmospheric Particles Formation)
Show Figures

Figure 1

19 pages, 2027 KiB  
Article
Rapid Biotic and Abiotic Transformation of Toxins produced by Ostreopsis. cf. ovata
by Eva Ternon, Olivier P. Thomas, Rodolphe Lemée and William H. Gerwick
Mar. Drugs 2022, 20(12), 748; https://doi.org/10.3390/md20120748 - 28 Nov 2022
Cited by 3 | Viewed by 2439
Abstract
The dinoflagellate Ostreopsis cf. ovata produces several families of toxic polyketides. Despite only a few field measurements of these phycotoxins in seawater and aerosols, they are believed to be responsible for dermatitis and the toxic inhalations reported during blooms of this species. Therefore, [...] Read more.
The dinoflagellate Ostreopsis cf. ovata produces several families of toxic polyketides. Despite only a few field measurements of these phycotoxins in seawater and aerosols, they are believed to be responsible for dermatitis and the toxic inhalations reported during blooms of this species. Therefore, the stability of these compounds in seawater is essential to understanding the causes of these symptoms, however, this has never been assessed. In the current study, the optimization of a solid phase extraction (SPE) procedure was first performed to ensure the most efficient extraction of all phycotoxins known to be produced by this strain, including the recently described liguriatoxins. The SPE cartridge SDBL® under non acidified conditions offered the best option. The stability of the ovatoxins and the liguriatoxins under biotic and abiotic stress was assessed by exposing the spent medium of a culture of Ostreopsis cf. ovata to its bacterial consortium and natural sunlight. A rapid biotic transformation was detected for both families of compounds. When exposed to bacteria, the half-lives of the ovatoxins were reached before 10 h and at 36 h, 97% of these toxins had been transformed. The half-lives of the liguriatoxins were 10 h under these conditions. Photolysis (abiotic degradation) of the ovatoxins (T1/2 < 36 h) was faster than for the liguriatoxins (T1/2 > 62 h). Although none of the catabolites of these phycotoxins were thoroughly identified, an untargeted metabolomics approach combined with molecular networking highlighted the presence of several compounds exhibiting structural similarities with the ovatoxins. Additional work should confirm the preliminary findings on these potential ovatoxins’ catabolites and their biological properties. The rapid transformation of O. cf. ovata’s phycotoxins introduces questions concerning their presence in seawater and their dispersion in the sea spray aerosols. The compounds involved in the toxic inhalations and dermatitis often experienced by beachgoers may stem from the catabolites of these toxins or even unrelated and as yet unidentified compounds. Full article
Show Figures

Figure 1

19 pages, 11026 KiB  
Article
Fatigue Strength of Structural Steel-Welded Connections with Arc-Sprayed Aluminum Coatings and Corrosion Behavior of the Corresponding Coatings in Sea Water
by Andreas Gericke, Michél Hauer, Benjamin Ripsch, Michael Irmer, Jonas Nehlsen and Knuth-Michael Henkel
J. Mar. Sci. Eng. 2022, 10(11), 1731; https://doi.org/10.3390/jmse10111731 - 11 Nov 2022
Cited by 8 | Viewed by 2986
Abstract
The influence of thermally sprayed aluminum coatings (Al99%; arc spraying) on the fatigue strength of gas metal arc welded (GMAW) non-alloyed structural steel specimens with respect to foundations for offshore wind turbines was investigated. Additionally, the corrosion protection effect of such coatings for [...] Read more.
The influence of thermally sprayed aluminum coatings (Al99%; arc spraying) on the fatigue strength of gas metal arc welded (GMAW) non-alloyed structural steel specimens with respect to foundations for offshore wind turbines was investigated. Additionally, the corrosion protection effect of such coatings for water conditions similar to the Baltic Sea was determined. Wöhler tests were carried out on test specimens with different weld details in the as-welded condition as well as in the thermal spray coat under the consideration of different kinds of surface preparation (blast cleaning with corundum and grit). Substrate and coating were characterized by scanning electron microscopy and the influence on the residual stress states was determined. Corrosion rate monitoring via LPR measurements was carried out as well as the monitoring of the galvanic current between coated and uncoated steel to characterize the coatings’ sacrificial capability for minor defects. Fatigue strength was significantly increased through thermal spraying, especially for test specimens with welded transverse stiffeners (Δσc,var = 127 MPa after coating compared to Δσc,var = 89 MPa as welded). With a characteristic value of the stress range of Δσc,var = 153 MPa, the welded butt joint specimens already exhibited a high fatigue strength in the as-welded condition. The corrosion studies demonstrated that thermally sprayed Al99% coatings have a high resistance to corrosion in seawater environments and are suitable as planar sacrificial anodes sufficiently polarizing bare steel below 0.8 V. The combination of fatigue strength improvement and corrosion protection makes the thermally sprayed Al coatings promising for design and operation of e.g., offshore structures. Full article
(This article belongs to the Special Issue Fatigue and Fracture Mechanics of Marine Structures)
Show Figures

Figure 1

15 pages, 5321 KiB  
Article
Scaled Sea Surface Design and RCS Measurement Based on Rough Film Medium
by Chenyu Guo, Hongxia Ye, Yi Zhou, Yonggang Xu and Longxiang Wang
Sensors 2022, 22(16), 6290; https://doi.org/10.3390/s22166290 - 21 Aug 2022
Cited by 2 | Viewed by 2940
Abstract
The electromagnetic (EM) scattering characteristics of the rough sea surface is very important for target surveying and detection in a sea environment. This work proposes a scaled sea surface designing method based on a rough thin-film medium. For the prototype sea surface, the [...] Read more.
The electromagnetic (EM) scattering characteristics of the rough sea surface is very important for target surveying and detection in a sea environment. This work proposes a scaled sea surface designing method based on a rough thin-film medium. For the prototype sea surface, the permittivity is calculated with the seawater temperature, salinity, and EM wave frequency according to the Debye model. The scale film material is mixed with carbon black and epoxy, whose volume ratio is optimized with the genetic algorithm through the existing electromagnetic parameter library. This method can overcome the previous difficulties of adjusting the same permittivity of the prototype sea water. According to the EM scaled theory, the scaled geometric sample is numerically generated with the D-V spectrum for the given wind speed, and is fabricated using 3D printing to keep the similar seawater shape. Then, the sample is sprayed with a layer of film material for EM scattering measurement. The simulated and measured radar cross-section (RCS) results show good consistency for the prototype seawater and scaled materials, which indicates the proposed scaled method is a more efficient method to get the seawater scattering characteristics. Full article
(This article belongs to the Special Issue Recent Trends and Advances in Microwave Sea Remote Sensing)
Show Figures

Figure 1

18 pages, 4417 KiB  
Article
Microstructure and Performance of Antibiofouling Coatings on High-Strength Steel Substrates Immersed in the Marine Environment
by Pinelopi P. Falara, Nikolaos D. Papadopoulos and Polyxeni Vourna
Micro 2022, 2(2), 277-294; https://doi.org/10.3390/micro2020018 - 3 May 2022
Cited by 8 | Viewed by 3044
Abstract
High-strength naval steel panels were coated by spraying with five commercial antifouling paints. The first set of coated specimens was subjected to electrochemical measurements and the anticorrosion properties of the paints were evaluated under controlled laboratory conditions. A second series of coated samples [...] Read more.
High-strength naval steel panels were coated by spraying with five commercial antifouling paints. The first set of coated specimens was subjected to electrochemical measurements and the anticorrosion properties of the paints were evaluated under controlled laboratory conditions. A second series of coated samples was statically exposed for nine months in thirteen different harbors, located in the Mediterranean Sea and the Atlantic Ocean, where their in-field antifouling efficiency was determined. The corrosion performance obtained by the electrochemical measurements provides predictions that best match the fouling protection observed at the field sites. The results indicate that the corrosion’s resistivity values determined in the laboratory were in a good agreement with the fouling level observed by examining the sea samples. The reported complementary data show that the laboratory measurements are representative of the sea-field conditions and confirm the originality of the proposed approach, which might lead to the development of innovative low-drag antifouling coatings for the hulls of ships, vessels, and speed crafts. Full article
(This article belongs to the Section Microscale Materials Science)
Show Figures

Figure 1

20 pages, 12881 KiB  
Article
Ka-Band Doppler Scatterometry: A Strong Wind Case Study
by Yury Yu. Yurovsky, Vladimir N. Kudryavtsev, Semyon A. Grodsky and Bertrand Chapron
Remote Sens. 2022, 14(6), 1348; https://doi.org/10.3390/rs14061348 - 10 Mar 2022
Cited by 4 | Viewed by 3304
Abstract
Global joint measurements of sea surface winds and currents are planned using satellite-based Doppler scatterometers operating in the Ka-band to achieve improved spatial resolution and retrieval accuracy. Still, the knowledge of sea surface Ka-band backscatter properties is poor, particularly, at high winds (>20 [...] Read more.
Global joint measurements of sea surface winds and currents are planned using satellite-based Doppler scatterometers operating in the Ka-band to achieve improved spatial resolution and retrieval accuracy. Still, the knowledge of sea surface Ka-band backscatter properties is poor, particularly, at high winds (>20 m s1). Sea surface radar cross-section in the Ka-band, in contrast to that in the lower frequency Ku-/X-/C-/L-bands, is likely more sensitive to sea spray, small-scale particles typically present at high winds. In this paper, tower-based field data collected by a continuous dual-co-polarized Ka-band radar during a strong offshore wind event (with wind speed reaching 33 m s1) are analyzed. This katabatic wind event (≈12 h long) was also recorded by supplementary wave, wind, and current sensors. At the wave fetch of ≈1 km, the maximum wavelength of observed offshore waves was ≈10 m. For such extremely young wind–sea conditions, an apparent sea spray generation was observed during wind gusts. Radar measurements were performed at 20 and 45 incidence angles, mostly for cross- and up-wind azimuth look geometry. Based on these high wind measurements, the previously developed Ka-band empirical model is tested and compared with other published geophysical model functions. Dual-co-polarized measurements are used to infer resonant Bragg and non-Bragg scattering components and assess the short wind wave spectrum, which shows a clear tendency for saturation at high winds. The presence of sea spray signatures is apparent in the high-frequency tails of radar Doppler spectra, but their overall contribution to the Doppler centroid frequency is weak. Hence, the standard modulation transfer function approach developed for moderate winds is still applicable at high winds for interpreting the wave-induced Doppler velocity and inferring sea surface currents. These results can also be useful for understanding Doppler scatterometry measurements in tropical cyclones. Full article
Show Figures

Figure 1

16 pages, 4252 KiB  
Article
A Wind–Wave-Dependent Sea Spray Volume Flux Model Based on Field Experiments
by Xingkun Xu, Joey J. Voermans, Hongyu Ma, Changlong Guan and Alexander V. Babanin
J. Mar. Sci. Eng. 2021, 9(11), 1168; https://doi.org/10.3390/jmse9111168 - 24 Oct 2021
Cited by 23 | Viewed by 3210
Abstract
Sea spray can contribute significantly to the exchanges of heat and momentum across the air–sea interface. However, while critical, sea spray physics are typically not included in operational atmospheric and oceanic models due to large uncertainties in their parameterizations. In large part, this [...] Read more.
Sea spray can contribute significantly to the exchanges of heat and momentum across the air–sea interface. However, while critical, sea spray physics are typically not included in operational atmospheric and oceanic models due to large uncertainties in their parameterizations. In large part, this is because of the scarcity of in-situ sea spray observations which prevent rigorous validation of existing sea spray models. Moreover, while sea spray is critically produced through the fundamental interactions between wind and waves, traditionally, sea spray models are parameterized in terms of wind properties only. In this study, we present novel in-situ observations of sea spray derived from a laser altimeter through the adoption of the Beer–Lambert law. Observations of sea spray cover a broad range of wind and wave properties and are used to develop a wind–wave-dependent sea spray volume flux model. Improved performance of the model is observed when wave properties are included, in contrast to a parameterization based on wind properties alone. The novel in-situ sea spray observations and the predictive model derived here are consistent with the classic spray model in both trend and magnitude. Our model and novel observations provide opportunities to improve the prediction of air–sea fluxes in operational weather forecasting models. Full article
(This article belongs to the Special Issue Models of Ocean-Wave-Atmosphere Interaction Processes)
Show Figures

Figure 1

14 pages, 3748 KiB  
Article
Effect of Heat Treatment Conditions on Corrosion Resistance of 0.28C–1.4Mn–0.3Si–0.26Cr Steel with Nb, Ti, and V Microadditions
by Anna Wojtacha, Monika Kciuk and Marek Opiela
Materials 2021, 14(12), 3254; https://doi.org/10.3390/ma14123254 - 12 Jun 2021
Cited by 5 | Viewed by 2716
Abstract
The article presents the results of the research on the influence of heat treatment conditions on corrosion resistance of newly developed HSLA-type (High Strength Low Alloy) steel in selected corrosive environments. Laboratory tests were carried out with using a salt spray chamber, enabling [...] Read more.
The article presents the results of the research on the influence of heat treatment conditions on corrosion resistance of newly developed HSLA-type (High Strength Low Alloy) steel in selected corrosive environments. Laboratory tests were carried out with using a salt spray chamber, enabling the continuous spraying of brine mist (5% NaCl) during 96 h under high humidity conditions. Additionally, as part of corrosion experiments, tests were carried out using the gravimetric method, in which the intensity of corrosive processes was measured by the linear corrosion rate. The research conducted revealed that the best corrosion resistance was noted for steel with a high-temperature tempered martensite microstructure. Investigated 0.28C–1.4Mn–0.3Si–0.26Cr steel with Nb, Ti, and V microadditions can be used in offshore drilling constructions and production platforms exposed to salts present in sea water, chlorides, sulfates, carbonates, and bromides, among others. Full article
(This article belongs to the Special Issue Corrosion Resistance of Alloy and Coating Materials)
Show Figures

Figure 1

16 pages, 43317 KiB  
Article
Possible Sources of Salinity in the Upper Dibdibba Aquifer, Basrah, Iraq
by Ahmed Abdulameer, Jassim Mohammed Thabit, Wael Kanoua, Oliver Wiche and Broder Merkel
Water 2021, 13(4), 578; https://doi.org/10.3390/w13040578 - 23 Feb 2021
Cited by 8 | Viewed by 5137
Abstract
Salinity increase in groundwater was investigated in the area between Al-Zubair and Safwan, and close to the Khor Al-Zubair Channel of southern Iraq. Thirty-nine groundwater samples from the shallow aquifer and one sample from the Khor Al-Zubair Channel were analyzed. The mean total [...] Read more.
Salinity increase in groundwater was investigated in the area between Al-Zubair and Safwan, and close to the Khor Al-Zubair Channel of southern Iraq. Thirty-nine groundwater samples from the shallow aquifer and one sample from the Khor Al-Zubair Channel were analyzed. The mean total dissolved solids are 7556 mg/L. The δ2H and δ18O plot in two groups are below the global meteoric water line. Group A indicates the evaporation effect of irrigation return-flow, while group B is characterized by depleted δ18O values due to recharge under colder climate. Deuterium excess values plot within the region of modern precipitation and dilution of groundwater by precipitating water. The groundwater residence time is between 1000 and 2000 years and combining 14C -age with SO42− shows a contrasting effect on groundwater on both sides of Khedr Almai Fault and the Zubair anticline, which indicates the role of these geological structures on the hydrochemical evolution in the western part. Jabal Sanam shows no clear effect in this regard. The ratio Cl/Br and sulfate in groundwater showed that the measured salinity in groundwater is the result of a mixing process between groundwater, seawater intruding from Khor Al-Zubair Channel, and water from septic tanks in addition to dry and wet sea spray, and irrigation return-flow. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

33 pages, 49210 KiB  
Article
Baltic Sea Spray Emissions: In Situ Eddy Covariance Fluxes vs. Simulated Tank Sea Spray
by Ernst Douglas Nilsson, Kim A. H. Hultin, Eva Monica Mårtensson, Piotr Markuszewski, Kai Rosman and Radovan Krejci
Atmosphere 2021, 12(2), 274; https://doi.org/10.3390/atmos12020274 - 18 Feb 2021
Cited by 13 | Viewed by 4034
Abstract
We present the first ever evaluation of sea spray aerosol eddy covariance (EC) fluxes at near coastal conditions and with limited fetch, and the first over water with brackish water (on average 7 ppt). The measurements were made on the island of Garpen [...] Read more.
We present the first ever evaluation of sea spray aerosol eddy covariance (EC) fluxes at near coastal conditions and with limited fetch, and the first over water with brackish water (on average 7 ppt). The measurements were made on the island of Garpen in the Baltic Sea (56°23′ N, 16°06′ E) in September 2005. We found that wind speed is a major factor that is driving an exponential increase in sea spray sea salt emissions, comparable to previous studies over waters with higher salinity. We were able to show that the inclusion of a thermodenuder in the EC system allowed for the parallel measurements of the dry unheated aerosol flux (representing both organic and sea salt sea spray emissions) and the heated (300 °C) non-volatile sea salt emissions. This study’s experimental approach also included measurements of the artificial sea spray formed in a tank in locally sampled water at the same location as the EC fluxes. We attempted to use the EC aerosol flux measurements to scale the tank measurements to aerosol emissions in order to derive a complete size distribution for the sea spray emission fluxes below the size range (0.3–2 µm dry diameter) of the optical particle counters (OPCs) in the EC system, covering in total 0.01 µm to 2 µm diameter. In the wind directions with long fetches (corresponding to conditions similar to open sea), we were able to distinguish between the aerosol emission fluxes of dry aerosol and heated non-volatile (sea salt only) in the smallest size bins of the OPC, and could therefore indirectly estimate the organic sea spray fraction. In agreement with several previous ambient and tank experiments deriving the size resolved chemical mass concentration of sea salt and water-insoluble organic sea spray, our EC fluxes showed that sea sprays were dominated by sea salt at sizes ≥1 µm diameter, and by organics at the smallest OPC sizes. Since we used direct measures of the sea spray emission fluxes, we confirmed previous suggestions that this size distribution of sea salt and organics is a signature of sea spray aerosols. We were able to show that two sea salt source parameterizations (Mårtensson et al. (2003) and Salter et al. (2015)) agreed fairly well with our observed heated EC aerosol emission fluxes, as long as their predicted emissions were modified for the actual salinity by shifting the particle diameters proportionally to the cubic rote of the salinity. If, in addition, we added organics to the parameterized sea spray following the mono-layer model by Ellison et al. (1999), the combined sea spray parameterizations for sea salt and organics fell reasonably close to the observed fluxes for diameters > 0.15 µm, while one of them overpredicted the sea spray emissions below this size. The organic mono-layer model by Ellison et al. appeared to be able to explain most of the differences we observed between the aerosol emission fluxes with and without the thermodenuder. Full article
Show Figures

Figure 1

12 pages, 3102 KiB  
Article
Characteristics of Rain and Sea Spray Droplet Size Distribution at a Marine Tower
by Hiroki Okachi, Tomohito J. Yamada, Yasuyuki Baba and Teruhiro Kubo
Atmosphere 2020, 11(11), 1210; https://doi.org/10.3390/atmos11111210 - 9 Nov 2020
Cited by 6 | Viewed by 2988
Abstract
The effects of sea spray on open-ocean rainfall measurements-the drop size distribution (DSD) and rainfall intensities-were studied using a state-of-the-art optical disdrometer. The number of rain droplets less than 1 mm in diameter is affected by several factors, including the type of rainfall [...] Read more.
The effects of sea spray on open-ocean rainfall measurements-the drop size distribution (DSD) and rainfall intensities-were studied using a state-of-the-art optical disdrometer. The number of rain droplets less than 1 mm in diameter is affected by several factors, including the type of rainfall and seasonality. Over the ocean, small rain and large sea spray droplets co-exist in the same diameter size class (0.072 to 1000 mm); hence, sea spray creates uncertainty when seeking to characterize the drop size distribution (DSD) of rain droplets over the ocean. We measured droplet sizes at a marine tower using a state-of-the-art optical disdrometer, a tipping-bucket rain gauge, a wind anemometer, and a time-lapse camera, over a period that included typhoon Krosa of 2019. The number of rain droplets of diameter less than 1 mm increased monotonically as the horizontal wind speed became stronger. Thus, the shape parameter μ of the Ulbrich distribution decreased. This decreasing trend can be recognized as an increase in sea spray. During no-rainfall hours (indicated by rain gauges on the ocean tower and nearby land), sea spray DSDs were obtained at various horizontal wind speeds. Furthermore, the proportions of sea spray to rainfall at different rainfall intensities and horizontal wind speeds were determined; at a horizontal wind speed of 16 to 20 m s−1, the average sea spray proportions were 82.7%, 19.1%, and 5.3% during total rainfall periods of 2.1 mm h−1, 8.9 mm h−1, and 32.1 mm h−1, respectively. Representation of sea spray DSDs, as well as rainfall DSDs, is a key element of calculating real rainfall intensities over the open ocean. Full article
Show Figures

Figure 1

17 pages, 9867 KiB  
Article
Investigation of Aerosol Climatology, Optical Characteristics and Variability over Egypt Based on Satellite Observations and In-Situ Measurements
by Islam Abou El-Magd, Naglaa Zanaty, Elham M. Ali, Hitoshi Irie and Ahmed I. Abdelkader
Atmosphere 2020, 11(7), 714; https://doi.org/10.3390/atmos11070714 - 3 Jul 2020
Cited by 8 | Viewed by 3572
Abstract
Egypt experiences high rates of air pollution, which is a major threat to human health and the eco-environment and therefore needs to be tackled by defining major causes to hinder or mitigate their impacts. The major driving forces of air pollution are either [...] Read more.
Egypt experiences high rates of air pollution, which is a major threat to human health and the eco-environment and therefore needs to be tackled by defining major causes to hinder or mitigate their impacts. The major driving forces of air pollution are either of local and/or regional origin. In addition, seasonal aerosols may be natural, such as dust particles transported from the western desert, or anthropogenic aerosols which are transported from industrial areas and smoke particles from seasonal biomass burning. Monitoring the optical properties of aerosols and their pattern in the atmosphere on a daily basis requires a robust source of information and professional analytical tools. This research explored the potential of using time series of Moderate Resolution Imaging Spectroradiometer (MODIS) and Aerosol Robotic Network (AERONET) data to comprehensively investigate the aerosol optical depth (AOD) and variability for the period 2012–2018 on a daily basis. The data show that spring, summer and autumn seasons experienced the highest anomaly originating from regional and national sources. The high AOD in spring associated with a low Ångström exponent (AE) indicates the presence of coarse particles which naturally originate from desert dust or sea spray. In contrast, the high AE in summer and autumn demonstrated the dominance of fine anthropogenic aerosols such as smoke particles from local biomass burning. The observation of a high number of fire incidents over Egypt in October and November 2018, during the months of rice crop harvesting, showed that these incidents contribute to the presence of autumn aerosols across the country. In-situ measurements of Particulate Matter (PM10) from local stations from an environmental based network as well as the AERONET AOD were used to validate the MODIS AOD, providing a high correlation coefficient of r = 0.73. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

14 pages, 2149 KiB  
Article
Recognition of Trace Element Contamination Using Ficus macrophylla Leaves in Urban Environment
by Maria Grazia Alaimo and Daniela Varrica
Int. J. Environ. Res. Public Health 2020, 17(3), 881; https://doi.org/10.3390/ijerph17030881 - 31 Jan 2020
Cited by 7 | Viewed by 3117
Abstract
Urban areas are characterized by numerous pollutants emitted by anthropic sources both in the form of solid and gaseous particulates. Biomonitoring is an easy, economical, and accessible approach for the determination of atmospheric pollutants. In this study, we used the leaves of Ficus [...] Read more.
Urban areas are characterized by numerous pollutants emitted by anthropic sources both in the form of solid and gaseous particulates. Biomonitoring is an easy, economical, and accessible approach for the determination of atmospheric pollutants. In this study, we used the leaves of Ficus macrophylla Desf. ex Pers., collected in the city of Palermo (Italy), to determine major and trace elements. Geogenic elements exhibited the highest concentrations, making up 99% of the weight of the analyzed elements (Ca, K, Mg, P, S, Na, Fe, and Al); they range 21,400 (Ca) to 122 µg g−1 (Al). The remaining elements showed median concentrations in the range 47.5–0.05 µg g−1 in the following order of abundance: Sr > Cu > Mn > Zn > Br > Rb > Ba > Pb > Cr > Sb > As > Mo = Sc. Cluster analysis, with Spearman’s coefficient to measure sample similarity, identified five main groups, namely, three clusters related to the geogenic background and marine spray; one cluster linked to elements essential to plants, and a final group attributed to the influence of traffic emissions. Calculated enrichment factors (EF) showed that the enrichments found for P and K were linked to plant metabolism; Na and Mg confirmed the role of sea spray; Cu and Zn underlined the contribution linked to anthropic processes and the role of micronutrients in plants.. As, Cr, and Mo had EF values ranging from 10 and 20, and Sb had EF > 90. From geochemical distribution maps of As, Cr, Mo, and Sb it was observed that metal and metalloid concentrations were higher in urban areas and immediately decreased as one moved away from these areas. Local pollution sources play a great role in trace element concentrations in airborne particulate matter. The present study confirms that Ficus macrophylla leaves are suitable for screening an urban environment to identify concentrations of inorganic chemicals, since they have high tolerance to pollution. Full article
(This article belongs to the Collection Environmental Risk Assessment)
Show Figures

Figure 1

Back to TopTop