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Abstract: The article presents the results of the research on the influence of heat treatment conditions
on corrosion resistance of newly developed HSLA-type (High Strength Low Alloy) steel in selected
corrosive environments. Laboratory tests were carried out with using a salt spray chamber, enabling
the continuous spraying of brine mist (5% NaCl) during 96 h under high humidity conditions.
Additionally, as part of corrosion experiments, tests were carried out using the gravimetric method,
in which the intensity of corrosive processes was measured by the linear corrosion rate. The research
conducted revealed that the best corrosion resistance was noted for steel with a high-temperature
tempered martensite microstructure. Investigated 0.28C–1.4Mn–0.3Si–0.26Cr steel with Nb, Ti, and V
microadditions can be used in offshore drilling constructions and production platforms exposed to
salts present in sea water, chlorides, sulfates, carbonates, and bromides, among others.

Keywords: corrosion resistance; heat treatment; HSLA-type steel; microstructure

1. Introduction

The problem concerning the durability of metallic materials in natural and artificial
environments is exceptionally important during both the design stage and operation of
constructions and devices. Immense economic losses due to the corrosion of metal mate-
rials are the result of their chemical or electrochemical interaction with the surrounding
chemically active environment. Corrosion damage results in continuous reduction of the
effective cross-section of constructions, parts of machines and devices, and thus decreasing
the strength and performance properties over the time of their operation, with a simul-
taneous increase in stress without the load change [1–3]. This creates the necessity to
periodically replace corrosion-damaged parts, often subjected to other wear mechanisms,
causing weakening of operational values, and ultimately leading to unexpected failures,
often hazardous to the environment [4–8].

Modern constructional steels should be characterized not only by high strength, crack
resistance, good weldability, and formability, but also low weight and guaranteed service
life of the constructions made of these steels. The HSLA-type steels, usually containing up
to about 0.2% C and about 1.5% Mn as well as microadditions with high chemical affinity for
carbon and nitrogen (Nb, Ti, and V up to 0.1%), sometimes with increased concentration of
N, and in the case of toughening steel also up to 0.005% B–increasing hardenability, broadly
meet the mentioned requirements [9–14]. The HSLA-type steels are widely used in many
industries due to their high strength-to-weight ratio and high ductility at low production
costs. Both technical and economic aspects determine that HSLA-type microalloyed steels
are widely used in the construction of highly loaded welded structures operated in various
temperature-stress conditions (e.g., oil and gas pipelines, drilling platforms, bridges, means
of heavy transport, self-propelled lifting and port devices [15–17]).

Very interesting research results were presented in the works of Khalaj et al. [18,19] in
which artificial neural networks were used to monitor the corrosion of HSLA-type steels
assigned to the construction of pipelines. Based on the experimental data, a model was
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developed in which the input data were, among others, the chemical composition of steel,
microstructure, and corrosion cell characteristics. It was revealed that the elaborated model
could be used to monitor the corrosion process of microalloyed steels in a wide range of
their chemical composition. In [20], electrochemical tests of API-X70 steel were carried out
in order to connect the microstructure characteristics of the heat-affected zone with their
corrosion properties. Electrochemical tests were used to evaluate the kinetics of corrosion,
dissolution, and passivation. The authors in [21] presented the research results of uniaxial
cyclic creep and incremental damage of HSLA-type steel pipes under various conditions
accelerating corrosion. The impact of exposure time and the size of the load on the cyclic
and monotonic increase in the local load as well as the number of cycles causing corrosion
damage were investigated. It was shown that the effects of corrosion on the examined steel
were more distinct in the case of cyclic loading compared to monotonic loading, and the
creep rate and the number of cycles significantly increased the susceptibility of the steel
to corrosion. Similar issues concerning corrosion resistance of HSLA-type steels were the
subject of research with the results presented in [22–27].

The mentioned works do not change the fact that most studies on HSLA-type steels
have focused on the influence of the microadditions and thermo-mechanical treatment
conditions on the mechanical properties. Therefore, there is a need to determine their
service life when operating in a corroding medium, particularly for new steel grades.

The aim of this study was to investigate the effect of heat treatment conditions on the
corrosion resistance of newly developed HSLA-type constructional steel with Nb, Ti, and V
microadditions in the selected corroding mediums.

2. Material and Experiments

The tests were carried out on the newly elaborated microalloyed HSLA-type steel
with the chemical composition listed in Table 1. The laboratory ingot of 100 kg was
modified with rare earth elements (0.056% Ce, 0.030% La, and 0.022% Nd) to suppress the
deformability of non-metallic inclusions. Casting was performed in an argon atmosphere.
Initial plastic working of ingots into flat bars with a cross-section of 30 mm × 150 mm was
carried out with the method of open die forging on a hydraulic press in a temperature
range of 1200–900 ◦C.

Table 1. Chemical composition of the investigated steel.

C Mn P S Si Cr Nb Ti V B

0.28 1.40 0.008 0.004 0.30 0.26 0.027 0.028 0.019 0.003

In order to obtain a diversified microstructure, samples of the examined steel were
subjected to various heat treatment operations (i.e., normalizing, quenching, and also
quenching and high-temperature tempering). Heating and annealing treatments during
normalizing and quenching were carried out in a HTCT 03/16 type NABERTHERM electric
chamber furnace (Carbolite Gero, Neuhausen, Germany), and during tempering in the
P500 type PROGRAMAT furnace (Ivoclar Vivadent AG, Schaan, Liechtenstein). Detailed
parameters of the performed heat treatment are presented in Table 2.

Table 2. Parameters of the performed heat treatment of the investigated steel samples.

Heat Treatment
Operation

Soaking
Temperature, ◦C Soaking Time, min Cooling Medium

Normalizing
annealing 900 20 Air

Quenching 900 20 Water
Tempering 600 60 Water
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The examined steel, after quenching at the temperature of 900 ◦C and subsequent
tempering at 600 ◦C, revealed the following mechanical properties: Rp0,2 ~939 MPa,
UTS ~990 MPa, TEl ~16%, RA ~58%, and KV−40 ~80 J [14].

Corrosion resistance of the investigated microalloyed steel was evaluated using gravi-
metric and potentiodynamic methods. Additionally, accelerated corrosion tests in a salt
spray chamber were carried out in accordance with EN ISO 9227:2012 [28].

For the purpose of gravimetric tests, 27 specimens with dimensions of 20 mm ×
10 mm x 14 mm were prepared, thoroughly degreased with acetone and subsequently
dried. Samples were weighed on an analytical balance with the accuracy of 0.0001 g and
then placed in 3.5% NaCl solution, in 0.1 M NaOH solution, and in a 0.1 M H2SO4 solution.
They were removed after 168 h, washed with water, and reweighed. The corrosion rate was
assessed based on the calculation of mass loss (Vc) for each of tested samples, according to
the dependence [29–31]:

VC =
∆m
S · t

(1)

where ∆m is the difference in mass of the sample before and after corrosion test; g, S is the
area of the sample, m2; and t is the time of the corrosion test, day.

Subsequently, the unit of the Vp average wear rate of the cross-section was calculated,
which expresses the reduction in the transverse dimension of sample by 1 mm during a
year. Average corrosion rate Vp is calculated from the average mass rate Vc, according to
the equation [29,30]:

Vp =
Vc · 365
1000 · ρ (2)

where ρ is the density, g/cm3.
Potentiodynamic tests were carried out using a Potentiostat-Galvanostat ATLAS

0531 EU device (ATLAS-SOLLICH, Gdańsk, Poland). Prior to testing, specimens with an
average surface area of 100 mm2 were cleaned in ethyl alcohol. The sample of examined
steel was the high-potential working electrode (WE), and Ag/AgCl electrode—the reference
electrode (RE), immersed in a conductive solution in the Luggin’s capillary. The auxiliary
electrode (CE) was made of stainless steel. The corroding medium was a 3.5% NaCl solution
with a volume of 160 mL. The diagram of the implemented meter circuit is presented in
Figure 1a, and its view in Figure 1b. The results of the performed tests were generated with
the use of the AtlasCorr05 software (Rębiechowo, Poland).
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the salt spray chamber accelerated tests. First, samples were weighed using an analytical
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balance along with measuring their geometrical dimensions. Subsequently, specimens were
placed in a chamber with a neutral salt mist atmosphere, obtained through continuous
spraying of an aqueous solution of 5% sodium chloride for 96 h. The temperature in the
chamber was constant throughout the experiment and was equal to 35 ◦C. With the aim to
test corrosion resistance, several criteria were assumed including the appearance of samples
after removing the surface corrosion products, mass loss, time to the first indications of
corrosion, the type, and distribution of corrosion damage.

Microstructure observations were carried out using light and scanning microscopy.
Preparation of specimens for metallographic tests included standard grinding and mechan-
ical polishing procedures. Metallographic specimens were etched in Nital. Microstructure
observations were conducted using a Z1m ZEISS Axio Observer light microscope (Carl
Zeiss AG, Jena, Germany) in a magnification range from 100× to 500×. Fractographic
studies were performed with a SUPRA 35 high-resolution scanning electron microscope
(Carl Zeiss AG, Jena, Germany), applying an accelerating voltage of 20 kV and magnifying
power ranging from 100× to 15,000×. Identification of the chemical composition of corro-
sion products on the surface of samples was carried out using an EDS energy dispersive
x-ray spectrometer (EDAX TRIDENT XM4, Mahwah, NJ, USA).

3. Results

Diversified microstructure of the examined microalloyed steel after applied heat
treatment operations is shown in Figure 2. The steel in as-delivered condition revealed het-
erogeneous ferritic-pearlitic microstructure with a prevailing portion of the α phase in the
acicular form (Figure 2a). Normalizing done at the temperature of 900 ◦C, with subsequent
open air cooling, resulted in the formation of a fine-grained, band-like ferritic-pearlitic
microstructure (Figure 2b). Fine lath martensite, obtained after austenitizing at the tem-
perature of 900 ◦C for 20 min and subsequent quenching in water, is shown in Figure 2c,
whereas Figure 2d presents a fine-grained microstructure of high-temperature tempered
martensite with visible grain boundaries of prior austenite. The microstructure presented
in Figure 2d was obtained as a result of quenching in water after austenitizing at the
temperature of 900 ◦C and successive high-temperature tempering at the temperature
of 600 ◦C.
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Detailed results of the corrosion resistance tests of the examined steel determined
with the use of the gravimetric method and expressed as the corrosion rate (i.e., decrease
in the effective cross-section of sample in mm/year) are presented in Table 3. The dataset
together in this table shows that the corrosion resistance of the investigated steel depends
on both the structural condition and applied corroding medium. Performed tests revealed
that the studied steel in the quenched and tempered condition with the microstructure of
high-temperature tempered martensite was most corrosion resistant, regardless of the acid-
ity of the affecting medium. The lowest average corrosion rate of 0.0076 mm/year in the
mentioned structural state was observed during testing in a 0.1 M solution of NaOH. In this
medium, the highest average corrosion rate of 0.2308 mm/year was noted in the case of
steel after normalizing with a ferritic-pearlitic microstructure. Performed research pointed
out that the examined steel was least corrosion resistant in 0.1 M solution of H2SO4. The av-
erage corrosion rates, obtained for this medium, were 1.9169 mm/year, 1.0445 mm/year,
and 1.0083 mm/year for steel with a ferritic-pearlitic, martensitic, and high-temperature
tempered martensite microstructure, respectively. The tests, performed with the use of
the gravimetric method, revealed that the steel in the quenched and tempered condition
(i.e., after quenching and high-temperature tempering) showed very good corrosion re-
sistance in 0.1 M NaOH solution, corrosion resistance in 3.5% NaCl solution, and low
corrosion resistance in 0.1 M H2SO4 solution. Steel with ferritic-pearlitic microstructure,
obtained after normalizing, had the lowest corrosion resistance regardless of the type of
the environment used.

Table 3. Results of the gravimetric investigations.

Normalizing Quenching Quenching and High-Temperature Tempering

Environment Vp [mm/Year] Environment Vp [mm/Year] Environment Vp [mm/Year]

3.5% NaCl 0.2721 3.5% NaCl 0.0922 3.5% NaCl 0.0877

0.1M NaOH 0.2308 0.1M NaOH 0.0089 0.1M NaOH 0.0076

0.1M H2SO4 1.9169 0.1M H2SO4 1.0445 0.1M H2SO4 1.0083

The conducted potentiodynamic tests showed that the corrosion resistance of the
analyzed microalloyed steel noticeably depends on the microstructure, the differentiation
of which resulted from various heat treatment operations. Based on the performed research,
it can be concluded that the highest corrosion resistance is demonstrated by specimens in
the quenched and tempered condition (after quenching and high-temperature tempering)
with the microstructure of high-temperature tempered martensite. The average value of
corrosion current for this structural state was equal to 0.008 mA/cm2, while the average
polarization resistance was equal to 2.338 kΩ·cm2. Slightly higher average corrosion
current (0.012 mA/cm2) was observed in the case of specimens in quenched condition with
a martensitic microstructure. The lowest corrosion resistance was revealed for samples with
a ferritic-pearlitic microstructure (after normalizing). For this structural state, a distinct
increase in the average value of corrosion current to 0.023 mA/cm2 and a clear decrease in
the mean value of polarization resistance to 1.447 kΩ·cm2 were demonstrated. Detailed
results of the conducted potentiodynamic tests are set together in Table 4, while Figure 3
shows a comparison of the current density changes as a function of corrosion potential
for two structural states: after normalizing (Figure 3a) and after quenching and high-
temperature tempering (Figure 3b).
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Table 4. Results of the potentiodynamic investigations.

Normalizing Quenching Quenching and High-Temperature Tempering

Corrosion Current,
mA/cm2 0.023 Corrosion Current,

mA/cm2 0.012 Corrosion Current,
mA/cm2 0.008

Corrosive
potential, mV −523.19 Corrosive

potential, mV −543.50 Corrosive potential, mV −505.96

polarization
resistance, kΩ cm2 1.447 polarization

resistance, kΩ cm2 1.731 polarization resistance,
kΩ cm2 2.338
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The results of the corrosion resistance tests done with the use of a salt chamber,
enabling continuous spraying of brine mist (5% NaCl) for 96 h under high humidity
conditions, are summarized in Table 5. The data presented in this table correlate with the
test results of the impact of heat treatment on the corrosion resistance of the analyzed steel,
obtained with the use of the gravimetric method. The performed research showed that
the lowest average corrosion rate of 5.97 mm/year was recorded in the case of samples
with a microstructure of high-temperature tempered martensite. A slightly higher average
corrosion rate of approximately 6.38 mm/year was observed for specimens in quenched
condition with a martensitic microstructure whereas specimens after normalizing with a
two-phase ferritic-pearlitic microstructure were least corrosion resistant. For this structural
state, the average corrosion rate was equal to 17.99 mm/year. Significantly higher average
corrosion rate, obtained in the salt spray chamber, compared to the values obtained with
the use of the gravimetric method, were the result of a higher concentration of Cl− ions
and a higher test temperature (35 ◦C).
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Table 5. Research results of the corrosion resistance tests in a salt spray chamber.

Normalizing Quenching Quenching and High-Temperature Tempering

Vp [mm/Year] Vp [mm/Year] Vp [mm/Year]

17.99 6.38 5.97

In order to determine the type of corrosion and the nature of corrosion damage, frac-
tographic tests were carried out using a scanning electron microscope. The surface of
the sample with the lowest corrosion resistance (i.e., after normalizing, exposed to 0.1M
solution of sulfuric acid (VI)) is shown in Figure 4. Based on the conducted observa-
tions, numerous material decrements were found in relatively large areas of the sample
(Figure 4a). Moreover, cracks (Figure 4b) and numerous pits of various shapes (Figure 4c,d)
were revealed on the sample surface. Observed corrosion effects were caused by lowering
the pH and the material becoming active. As a result of direct contact with aggressive
medium, the tested HSLA-type microalloyed steel underwent an accelerated process of
corrosion, in which, in addition to oxygen depolarization, there was also depolarization
with the use of hydrogen ions.
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(VI) solution.

The examined steel samples, exposed to inactive medium (3.5% NaCl solution), un-
derwent uniform corrosion over the entire surface of the material contact with corrod-
ing medium (Figure 5). This was caused by the action of corrosion micro-cells evenly
distributed over the entire corroded surface. Similar to an acidic environment, oxygen
reduction and hydrogen secretion are possible cathode processes. However, due to a too
low concentration of hydrogen ions, their reduction practically did not take place. Oxygen
depolarization occurred on the sample surface, and its rate depended on the access of
oxygen to the material surface. After some time, corrosion products appear on the surface,
which decreases the rate of corrosion processes. Therefore, the observed corrosion rate
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of the tested HSLA-type steel in inactive medium was lower compared to the corrosion
rate in the acidic medium. Moreover, it was found that the sample surface was porous
(Figure 5b).
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Specimens exposed to 5% NaCl solution in the salt spray chamber were subjected to
pitting corrosion as a result of the aggressive impact of chloride ions. Corrosion attack
occurred in areas with the smallest thickness of the protective layer, damage that resulted
in uncovering small fragments of the steel substrate and transition of metal ions into the
solution. As a result of their partial hydrolysis and the presence of H+ hydrogen ions,
the inside of pitting became acidified, while the concentration of chloride ions increased
and the concentration of oxygen decreased [32,33]. Pitting development is autocatalytic.
Partially exfoliated surface of the sample in as-annealed condition after the salt spray
chamber tests is presented in Figure 6a, and in Figure 6b, the spectrum of the chloride
corrosion product.
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Specimens immersed in 0.1 M solution of NaOH were most corrosion resistant. Solid
corrosion products, formed on their surfaces, probably slowed down the corrosion pro-
cesses, almost completely limiting the anodic process. However, a diversified nature of the
damage of the sample surface was found. Few pits with oxide corrosion products could be
observed in the individual areas of the sample (Figures 7 and 8).
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4. Discussion

The corrosion cells in metals are formed as a result of defects or mechanical or chem-
ical damage to the passive layer. The presence of a cathodic process supporting factor,
most often in a form of dissolved oxygen, is necessary in a neutral solution for the corrosion
process to occur. The active-passive cell, which determines the local corrosion process
of metals, is a type of concentration cell with different aeration. Metals are most often
subjected to pitting corrosion, which takes the form of oval pits. Corrosion is initiated in the
areas where the weakening of the oxide layer has occurred. A necessary condition for pitting
corrosion to take place is exceeding the minimum potential, called the breakthrough potential
in the area of metal passivity [33]. In the lowest thickness areas of the passive layer, there was
a high decrease in the potential, which accelerated the penetration of Cl− ions. After small
areas of the substrate metal are locally uncovered, metal ions transit into the solution. Partial
hydrolysis takes place along with the formation of basic salts and H+ ions, acidifying the
pitting microenvironment. Metal ions, migrating from the pitting area to the solution under
the impact of Cl−, precipitate in the form of insoluble hydroxides on the pitting surface [34,35].

On the basis of performed gravimetric tests, the influence of the acidity of the medium
(pH) on corrosion was revealed. The lowest corrosion rate was observed in NaOH solutions
with alkaline pH, and the highest corrosion rate in H2SO4 acid solutions. In strong acid
environments, the oxide layer, being a diffusion barrier located on the iron surface, dissolves
at pH values below 4. In weaker acids, the oxide layer dissolves at higher pH values, hence
the corrosion rate of iron, accompanied by hydrogen precipitation, increases already at
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pH equal to 5 or 6. In the case of a weaker acid, the quantity of H+ ions that can react and
solubilize oxide layer is greater compared to the strong acid. Moreover, easier access of
oxygen to the metal surface with dissolved layer of oxides promotes oxygen depolarization,
which has the most considerable influence on the corrosion rate [5,7].

One of the basic medium parameters, affecting the degree of resistance to pitting
corrosion, is the concentration of chloride ions. In the case of the NaCl solution, there was a
higher conductivity because additional cathodes and anodes are formed at a much greater
distance from each other. The reaction of NaOH with anodic FeCl2 at the cathodes did
not take place immediately. Both substances diffuse into the solution and the interaction
takes place to form Fe(OH)2. Iron hydroxide (II) does not form any protection on the metal
surface, hence iron corrodes rapidly in NaCl solutions as more dissolved oxygen diffuses to
the cathode areas. Decreasing solubility of oxygen becomes important at the concentration
of NaCl above 3%, hence the decrease in the corrosion rate. Minimum concentration of
Cl− ions, leading to pitting corrosion, varies within very wide limits, depending on other
parameters (i.e., environment, type of material, maximum concentration limit of these
ions). Additionally, the concentration of Cl− ions affects pitting corrosion incubation time;
the higher the concentration and the higher the critical potential of pitting nucleation,
the shorter the incubation time [5,34,35].

Corrosion resistance is strictly related to material microstructure, obtained as a result of
the performed heat treatment. It can be concluded, based on the tests carried out, that after
quenching and high-temperature tempering at 600 ◦C, the specimens were characterized
by the lowest value of the average wear rate of cross-section Vp (i.e., the highest corrosion
resistance). On the other hand, the lowest corrosion resistance was observed for samples
subjected to normalizing at the temperature of 900 ◦C with ferritic-pearlitic microstructure.
Pearlite is the eutectoid mixture, consisting of alternating ferrite and cementite plates, each of
which reacts differently to the corroding medium. The anodic nature of ferrite in relation to
cementite leads to the intensification of corrosion processes due to the formation of corrosion
cells at the ferrite and cementite contact. Single-phase microstructure steels are more resistant
to corrosion because, unlike in the case of multi-phase microstructure, the formation of local
cells is less probable. Ferritic steels are characterized by a very good corrosion resistance due
to the uniform distribution of ferrite. While cathode and anode regions are close to each other,
there is no possibility of forming galvanic cells [36–38]. Steels with a strength higher than
ferritic steels, with martensitic or bainitic microstructure, have lower corrosion resistance due
to the presence of high density lattice defects that favor corrosion.

As already mentioned, the corrosion rate is an important parameter for estimating
corrosion losses. Table 6 presents a six-point scale for the corrosion resistance of metals
and metal alloys. Tables 7 and 8 present the degree of corrosion resistance of the examined
microalloyed steel specimens after various heat treatment operations, determined with the
use of the gravimetric method and on the basis of the tests in the salt spray chamber.

Table 6. Summary of corrosion resistance of metals and their alloys [39].

Corrosion Resistance Group Degree of Corrosion
Resistance

Corrosion Rate, Vp
[mm/year]

Corrosion Durability,
Tr * [year/mm]Definition Designation

completely resistance I 1 >0.001 does not specify

very resistant II
2 0.001–0.005 does not specify
3 0.005–0.01

resistant III
4 0.01–0.05

10–1005 0.05–0.1

about less resistant IV
6 0.1–0.5

–1107 0.5–1.0

not very resistant V
8 1.0–5.0

0.1–1.09 5.0–10.0
not resistant VI 10 <10.0 >0.1

* Tr is the ratio of the corrosive environment operating time to the decrement in sample cross-section.
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Table 7. Definitions of corrosion resistance and the degrees of corrosion resistance for average Vp results, determined with
the use of the gravimetric method in various corroding mediums.

Environment

Normalizing Quenching Quenching and
High-Temperature Tempering

Degree of
Corrosion
Resistance

Definitions of
Corrosion
Resistance

Degree of
Corrosion
Resistance

Definitions of
Corrosion
Resistance

Degree of
Corrosion
Resistance

Definitions of
Corrosion
Resistance

3.5% NaCl 6 about less resistant 5 resistant 5 resistant
0.1 M NaOH 6 about less resistant 3 very resistant 3 very resistant
0.1 M H2SO4 8 not very resistant 8 not very resistant 8 not very resistant

Table 8. Definitions of corrosion resistance and the degrees of corrosion resistance for average Vp results, determined on the
basis of the tests in the salt spray chamber.

Environment

Normalizing Quenching Quenching and
High-Temperature Tempering

Degree of
Corrosion
Resistance

Definitions of
Corrosion
Resistance

Degree of
Corrosion
Resistance

Definitions of
Corrosion
Resistance

Degree of
Corrosion
Resistance

Definitions of
Corrosion
Resistance

5% NaCl 10 not resistant 9 not very resistant 9 not very resistant

Based on the data presented in Tables 7 and 8, it can be concluded that the best corro-
sion resistance was demonstrated by the specimens after quenching and high-temperature
tempering, with a microstructure of high-temperature tempered martensite. According to
the classification of environments for temperate climate included in ISO 12944-2:2018 [40],
steel with high corrosion resistance can be used even in industrial and coastal areas with
medium salinity as well as in chemical plants or for elements used for shipbuilding.

Similar issues concerning the impact of the microstructure of high strength low al-
loy steels on corrosion resistance in various environments were the subject of research
in [36,41–45]. Gou et al. [41] examined the effect of the behavior of diversified microstruc-
ture in 3.5% NaCl solution medium on the corrosion resistance of HSLA-type steels. The re-
sults of the mass loss measurements, obtained in this work, and the results of the po-
tentiodynamic tests revealed that the fine-grained single-phase microstructure steel was
characterized by the best corrosion resistance. Chen and Zhang, on the basis of tests of
0.12C–1.7Mn–0.25Si–0.6Cr steel with 0.06% Nb microaddition, revealed that corrosion
resistance significantly depends on the microstructure and grain size, controlled by heat
treatment and the precipitation of niobium carbides and niobium carbonitrides [42]. Sherif
and Seikh [43] investigated the behavior of 0.12C–1.0Mn–0.1Si–0.07Al–0.060Nb steel in
1 N solution of H2SO4 after single and multiple quenching. This work showed that the
corrosion rate depends on the obtained microstructure, which is a function of the applied
heat treatment. The results presented in the above-mentioned studies fully correlate with
the results of the analyzed HSLA-type microalloyed steel.

5. Conclusions

Corrosion resistance of the examined HSLA-type microalloyed steel significantly de-
pends on the microstructure, which is a derivative of the applied heat treatment operations.
Conducted comprehensive evaluation of corrosion resistance of 0.28C–1.40Mn–0.3Si–0.26Cr
steel with Nb, Ti, and V microadditions with concentrations of 0.027%, 0.028%, and 0.019%,
respectively, revealed that the least corrosion resistant were specimens after normalizing.
In this condition, the steel shows a two-phase ferritic-pearlitic microstructure. Ferrite and
cementite, forming a lamellar pearlite morphology, react differently to the presence of
the corroding medium. The anodic nature of ferrite, in relation to cementite, leads to the
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intensification of corrosion processes due to the formation of corrosion cells at the contact
of these two phases.

The research conducted with the use of the gravimetric method, potentiodynamic tests,
and accelerated corrosion tests in the salt spray chamber revealed that the best corrosion re-
sistance was noted for steel with aa high-temperature tempered martensite microstructure,
obtained as a result of combined quenching and high-temperature tempering operations.

Moreover, on the basis of the performed research, the influence of the acidity of the
medium on corrosion was revealed. The highest corrosion resistance of the examined
microalloyed steel was observed in NaOH solutions with alkaline pH, and the lowest in
H2SO4 acid solutions.

The investigated 0.28C–1.40Mn–0.3Si–0.26Cr steel with Nb, Ti, and V microadditions
was corrosion resistant in the environment of chloride ions, hence it is possible to use it in
the shipbuilding industry for vessel hulls. Due to its corrosion resistance in an artificial sea
water environment (3.5% NaCl solution), the analyzed steel can also be used in offshore
drilling constructions and production platforms that are exposed to salts present in sea
water, chlorides, sulfates, carbonates, and bromides, among others.
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