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Abstract: High-strength naval steel panels were coated by spraying with five commercial antifouling
paints. The first set of coated specimens was subjected to electrochemical measurements and the anti-
corrosion properties of the paints were evaluated under controlled laboratory conditions. A second
series of coated samples was statically exposed for nine months in thirteen different harbors, located
in the Mediterranean Sea and the Atlantic Ocean, where their in-field antifouling efficiency was
determined. The corrosion performance obtained by the electrochemical measurements provides
predictions that best match the fouling protection observed at the field sites. The results indicate that
the corrosion’s resistivity values determined in the laboratory were in a good agreement with the
fouling level observed by examining the sea samples. The reported complementary data show that
the laboratory measurements are representative of the sea-field conditions and confirm the originality
of the proposed approach, which might lead to the development of innovative low-drag antifouling
coatings for the hulls of ships, vessels, and speed crafts.
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1. Introduction

Biofouling in the marine environment can be defined as the undesirable adhesion,
formation, growth, and agglomeration of composite layers consisting of microorganisms,
algae, and animals on solid artificial surfaces in contact with seawater [1,2]. The process
begins the moment the surface is immersed in sea water and consists of four distinct
stages [2–4]; Stage 1: From the first minute they are submerged in water, reefs accumulate
organic matter and pre-existing molecules in the water, such as polysaccharides, proteins,
and proteoglicans. A continuous film of chemical compounds is formed through natural
adhesion of the organic particles. This stage begins seconds after immersion, is stabilized
within a few minutes, and prepares the surface for the next stages, as it increases the free
energy of the surface and increases its wettability by organic elements of microfouling
(primary colonization), Stage 2: Microscopic organisms, such as bacteria and microalgae
(mainly diatoms), are adsorbed on the surface, secreting organic matter (mainly polysaccha-
rides) and creating a sticky layer (biofilm). Essentially, physical forces such as electrostatic
interactions, Brownian movement, and Van der Walls forces lead to instantaneous attraction
of planktonic cells to the metal surface, Stage 3: The sticky texture of the biofilm and the
roughness of the surface due to the existence of the microbial community facilitate the
attachment of other, more complex organisms, such as fungi and protozoa. The transition
from biofilm to a more complex biocommunity initiates secondary colonization, Stage 4:
Tertiary colonization involves the settlement of larger marine invertebrates such as mus-
sels, barnacles, and macroalgae, which forms macrofouling. The formation of this film
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takes about 2–3 weeks and happens due to the presence of the biofilm and the roughness
produced by the irregular microbial colonies.

This natural phenomenon constitutes a huge economic problem for marine industries,
as it raises the costs related to materials’ maintenance, repair, and cleaning [5–7]. During
recent years, numerous attempts have been made to develop efficient antifouling coatings,
combining developments in materials science and recent information regarding marine
chemistry and biology. Thus, the development of innovative low-drag antifouling coatings
for the hulls of ships, vessels, and speed crafts is essential [8–12].

Biofouling of the ship’s reefs is directly related to the roughness of its reefs. It has
been calculated that for each increase in reef roughness by 10–20 µm, the friction resistance
increases by 0.5% for ships at high speeds. In general, the surface roughness of the reefs
is increased by mechanical detachments or structural defects and is affected by improper
surface preparation or the improper application of antifouling coating. The increase in
surface roughness results in 3–4% higher fuel consumption [13,14].

In addition to surface roughness, seawater parameters affect the ability of microor-
ganisms, algae, and plants to adhere and settle on a surface. The salinity of seawater, the
temperature, and pH fluctuations are critical parameters in the design of an efficient coat-
ing [14–16]. It has been observed that small changes in the alkaline behavior of seawater,
either due to hydrosulfide production (decrease of pH) or due to a decrease in CO2 by the
presence of algae (increase of pH), cause variations in the behavior of the coatings, both
in terms of the solubility of biocides and the rate of corrosion of the coating [6]. Annual
fluctuations and seasonal changes in temperature significantly affect the reproductive
cycles of the microorganisms, and consequently the species of the growing microorganisms,
their sequence on the ship’s reefs, and the extent of the biofouling. At high temperatures,
the rate of chemical and enzymatic reactions increases, thereby enhancing the gradual
stages of cell growth, the rate of corrosion, and the rate of crystallization of the polymeric
coating, thus limiting the effect of antifouling reef paint. At low temperatures, although the
rate of reactions is limited, the biological deposits of the microorganisms solidify, making it
difficult to deal with the biofouling using common coatings [14,17]. Thus, further research
is necessary to evaluate and optimize the efficiency of preventive systems [18].

To protect immersed structures against biofouling and avoid related corrosion issues,
several strategies for surface protection were adopted, including non-toxic materials de-
velopment [19] and coating procedures commercialization [20]. Traditionally, chemical
biocides have been widely used as the standard approach to controlling marine biofouling.
Compounds such as tributyltin oxide (C24H54OSn2) and tributyltin fluoride (C12H27FSn)
are mixed with polymeric binders and applied to the ships’ and vessels’ hull. However,
through years of study, researchers have found that tributyltin (TBT) is harmful to aquatic
ecosystems around the globe. TBT-based antifouling coatings were then restricted in most
European countries and finally banned worldwide in 2008 [21,22], leading to the urgency
of developing alternative materials and find new strategies for antifouling coatings. The ap-
plication of antifouling paint containing copper oxide is recommended by the Environment
Protection Agents (EPA) as the replacement of TBT. Copper Oxide (Cu2O) in the water will
be bound with other substances; therefore, its toxicity is reduced. According to the new
and strict environmental and health restrictions, the materials for marine applications may
be divided in two main approaches: nonbiocide-release-based antifouling coatings and
biocide-release-based coatings [23].

Besides their chemical composition, the efficiency of the commercial paints depends
on several factors, including the nature of the substrate surface, the coating deposition
technique, and their behavior in the corresponding marine environments that mainly differ
in water salinity and mean temperature. In addition, the recent literature lacks detailed
data depicting the behavior of commercial shipbuilding anti-biofouling coatings in sea
environments. There is an urgent need for comparative evaluation that will determine their
performance under real conditions, which might directly benefit the key players of the
marine transport industry. Thus, in this study, high strength naval steel panels were coated
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with five commercial antifouling paints. The coated panels were characterized electrochemi-
cally to evaluate the paints’ anticorrosion properties under controlled laboratory conditions.
Additionally, in order to control the influence of factors such as temperature, salinity, and
latitude in static port conditions, thirteen different harbors (in the Mediterranean Sea and
in the Atlantic Ocean) were chosen, and another set of coated panels was immersed for
nine months in each of them.

2. Materials and Methods

Commercial sheets of AH36 steel (Lloyd’s Register of Shipping, Athens, Greece) were
utilized as the substrate material. This high-strength steel is a standard type of alloy used
in the shipbuilding industry. The elemental composition was examined using the XRF
technique, and the results are summarized in Table 1.

Table 1. Mass fraction of elements in AH36 steel (w%).

Elements Fe Mn Si C P S

Mass fraction base 1.25–1.45 0.15–0.45 0.15–0.18 0.025 0.1

The microstructural characterization of the steel substrate was performed using scan-
ning electron microscopy (SEM). The use of the electron microscope instead of the optical
microscope was necessary due to the need for a higher resolution and appropriate field
depth. The metallographic characterization was performed with a JEOL 6380LV scanning
electron microscope (high vacuum; accelerating voltage of e−: 20 kV). Firstly, orthogonal
samples from the normal, as well as the longitudinal and transverse direction of the initial
alloyed steel were cut from the initial sample using waterjet cutting. After proper prepa-
ration, they were placed in a metal sample carrier. These samples constituted the surface
of the substrate and its longitudinal and cross-section. Then, using conductive graphite
plasticine, the surface of the resin was attached to the metal part of the sample carrier and
placed inside the electron microscope chamber. Through the secondary electrons imaging
(SEI mode) and the use of artificial topographic relief, the morphology and distribution
of the grains were determined, both on the surface of the samples and in their vertical
section. Through backscattered electrons imaging (BES mode), the individual phases and
microstructural components that characterized the substrate were identified. The SEM
micrographs were embedded in a 3D reconstruction in order to quickly retrieve information
on the variation of the materials’ density, as the set of images is obtained simultaneously.
The microscope was equipped with a Noran TS 5500 microanalyzer, enabling the simul-
taneous performance of chemical microanalyses using the EDS system (emission current:
high; measurement time: 20 s) to find the percentage of alloying elements.

In order to study the anticorrosive properties in static port conditions, panels of alloyed
naval steel (40 cmL × 35 cmW × 5 mmT) were coated by spraying on their surfaces with five
different types of commercial antifouling coatings available on the Greek market (named
as A, B, C, D and E), as shown in Table 2.

These antifouling coatings were selected based on their availability in the Greek market
and were chosen as representative study coatings for comparison reasons. Thus, A and B
paints were classified as hard antifouling coatings with biocide contents ranging from 6 to
12 wt%, respectively. C was a self-polishing copolymer antifouling coating for controlling
both the release of biocides and the ablative level of the paint. Finally, D and E coatings
were characterized as soft antifouling paints; thus, they present erosion of the upper level of
the coating when submerged in the sea water. According to the paints’ product data sheets,
no booster biocides were presented in any of the coatings. Steel panels were previously
degreased with acetone, polished with sandpaper (grain size #150), rinsed with deionized
water, and degreased again. After surface preparation, one side of each panel was painted
with one layer of anticorrosive primer. No primer coating was applied. The commercial
antifouling coatings were applied on one side of the panels and their edges. All panels were
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painted with an airless sprayer (SATA MINITET 4400B HVLP) and an airless compressor
(4 hp). According to the local restrictions, the applicator must have the proper protection
appearance (mask, gloves, wear). The antifouling paints were not diluted, as they do not
clog the nozzle. Prior to the final application of the coatings to the panels, several tests were
made in order to adjust the pressure value (~2 bar) to the lowest setting with a good spray
pattern. Thus, a controlled thickness and a proper coverage of the paint were achieved.

Table 2. Overview of the investigated paints.

Paint Manufacturer Characteristics

A Jotun Hard antifouling coating
biocide Cu2O ~6%

B Hempel Hard antifouling coating
biocide Cu2O ~12%

C International A high-solids, high-performance, TBT-free, low-friction, self-polishing copolymer
antifouling. Particularly suitable for use where solvent emissions need to be reduced.

D Yacht Care Retains a bio-active surface throughout its life thanks to its self-renewing effect and is
compatible with most antifouling systems.

E Plastimo High-performance gradual polishing paint. Recommended for high fouling areas

Two sets of panels were prepared: one set for corrosion evaluation in laboratory
conditions and one set for in situ determination of antifouling efficiency. For the first
set of panels, five coated samples and one non-coated were prepared and subjected to
electrochemical tests. Electrochemical measurements were performed using a Gamry
potentiostat (Model 3000) using a three-electrode set-up, where the steel samples constituted
the working electrode (exposed surface was 0.2 cm2), an Ag/AgCl electrode was utilized
as the reference electrode, and a graphite rod was used as the counter electrode. The
electrochemical tests were performed in a 0.6 M NaCl solution under ambient conditions
and the open-circuit potential (OCP) was monitored for 30 min to ensure that the steady
state was reached before the next measurements. Electrochemical impedance spectroscopy
(EIS) measurements were measured with reference to the OCP by applying a sinusoidal
voltage ±10 mV and obtaining impedance responses in a frequency range between 100 mHz
and 10 kHz. Likewise, linear polarization resistance (LPR) was measured over a polarized
voltage range (±0.025 V) at a scan rate of 0. 125 mV/s. The potential dynamic polarization
test (PDP) was performed by polarizing the system with a scan rate of 0.5 mV/s at a
potential of −0.25 V downstream and 0.5 V upstream, relative to the OCP. The corrosion
rate (CR) in mm per year was calculated using Faraday’s law according to the G102
ASTM standard:

CR = 3.27 × 10−3 × IcorrEW
ρ

(1)

in which Icorr is the density of the corrosion current in µA/cm2, EW is the equivalent
weight in g/µA cm yr, and ρ is the density in g/cm3. After PDP measurement, an atomic
force microscope (AFM, MFP-3D Origin, Oxford Instruments) was used to characterize the
exposed surfaces of the coated samples.

In the spring of 2021, the second set of coated sheets was immersed statically at ~1 m
depth in the sea for 9 months near the coasts of 13 European cities (in the Mediterranean
Sea and Atlantic Ocean): Rafina, Thessaloniki, Volos, Heraklion, Rethymno, Venice, Brin-
disi, Tergeste, Palermo, Aveiro, Leixões, Lisboa, and Portimão (Figure 1). Five coated
samples and one non-coated sample were sunk on each shore; thus, 78 samples were
obtained. In order to monitor the seawater temperature for the duration of this study, a
digital temperature data logger model (HOBO Pendant® Temperature data logger) was
submerged into every study port. According to the manufacture, this model is suitable
for underwater applications. The immersed loggers recorded temperature at one-minute
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intervals. These thermometer’s readings were recorded, and following their analysis, the
average temperature was extracted as the mean value of these records.
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Figure 1. European map showing the thirteen locations along the Mediterranean Sea and Atlantic
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the 9 months period.

The resulting substrates with micro biofoulings were recovered from the marine
environment and placed in the laboratory at room temperature for 5 days. The name of
the samples was derived from the serial letter of the coating and the first three letters of
the shore (for example, APor is the sample on the coast of Portimão with coating A). The
surface of the captured panels was subjected to both visual inspections and morphology
examination of their existing fouling level.

3. Results and Discussion

The results of the microstructural characterization of the as-received steel alloy through
backscattered electrons imaging using field contrast are demonstrated in Figure 2a. The
3D reconstruction of the SEM images, as well as the corresponding 2D images from the
normal (ND), longitudinal (LD), and Transverse (TD) direction were also presented. A
biphasic matrix was observed, characterized by the presence of pro-eutectoid ferrite grains
(F) and eutectoid perlite (P). The image analyzer software was used to indirectly estimate
the volume fraction of the two components. The results showed that the pro-eutectoid
ferrite was the predominant phase, about 89% on the surface of the sample, while the
eutectoid perlite participated with a percentage of only 11%.

The imaging using secondary electrons (Figure 2b) proved that the substrate consisted
of isaxonal polygonal grains of pro-eutectoid ferrite, as well as homogeneously arranged
perlite grains, which appeared to have a characteristic stacking of eutectoid ferrite and ce-
mentite tiles. Nevertheless, morphological inhomogeneity of the grains and no orientation
of the tiles were observed between different perlite grains. The inhomogeneity was evident
in the distribution of their mean growth size, which was determined at 54 ± 7 µm for the
ferrite grains and at 35 ± 8 µm for the perlite grains. The secondary electron imaging was
also used to examine the cross-section of the coated steel samples. The coating–substrate
interface is shown in Figure 3.

The coating thickness was measured with SEM analysis. Measurements were repeated
eight times in different areas of the sample and the mean and standard deviation were
calculated. The average thickness of the commercial, A, B, C, D, and E antifouling coatings
are summarized in Table 3. In all the samples, the coating (about 18–19 µm in thickness)
presents excellent cohesion with the substrate and a satisfying mechanical adhesion to
it. No internal porosity, cracking, or detachment of the coating was observed in any of
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the samples tested. The coating layer is relatively uniform, as it is not characterized by
discontinuities; however, its surface is wavy, which is reflected in the recording of increased
surface roughness in three-dimensional AFM measurements (Figure 4).
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Figure 3. Cross-section SEM images of the coated steel samples: (a) A; (b) B; (c) C; (d) D; and (e) E.

Table 3. The average thickness of the commercial, A, B, C, D, and E antifouling coatings.

Coated Sample Thickness of Coated Layer (µm)

A 18.7 ± 1.2

B 19.1 ± 1.1

C 18.4 ± 1.2

D 17.8 ± 1.0

E 18.1 ± 1.1

The AFM 3D-surface plots including roughness analysis of samples A, B, C, D, and
E, as well as the substrate, are presented in Figure 4. It is obvious that following coating,
the surface roughness decreases (compared to the uncoated sample (S0)), which can be at-
tributed to the effect of the slow spraying rate during the sample coating process [24]. More
specifically, the surface roughness of the different samples was measured at: RaA = 9.1 nm,
RaB = 8.5 nm, RaC = 5.5 nm, RaD = 7.5 nm, RaE = 7.1 nm, and RAS0 = 38.1 nm. The
corresponding height diagrams show the macro-roughness of the respective surfaces in
which micro-roughness is also observed, which cumulatively satisfies the requirement of
hydrophobic behavior for the commercial coatings.
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The effect of the antifouling coating’s composition on the electrochemical corrosion
behavior of the coated samples was investigated in 0.6 M NaCl solution. The linear
polarization curves (LPR) are presented in Figure 5. The polarization resistance (Rp)
is calculated from the slope of the current density graph according to the Stern-Geary
equation [25] (Table 4).
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Table 4. Corrosion parameters determined by potentiodynamic polarization curves.

Samples Rp (Ω cm2) βa (mV/dec) βc (mV/dec) Ecorr (mV) Icorr (µA/cm2) CR (mm/yr)

A 598 68 227 −581 30 0.34
B 300 89 323 − 594 100 1.20
C 251 90 168 − 585 140 1.60
D 221 140 174 − 592 200 2.30
E 142 83 495 −529 520 6.03

From the LPR curves, it is clear that sample A (598 Ω cm2) has the highest polarization
resistance. It is followed by sample B with 300 Ω cm2, C with 251 Ω cm2, D with 221 Ω cm2,
and E with 142 Ω cm2. Given that Rp is inversely proportional to the corrosion rate, sample
A (with the highest polarization resistance) is expected to exhibit the lowest corrosion rate
in real harbor conditions [26].

The potentiodynamic polarization curves of the samples are shown in Figure 6. Using
the Tafel slope fitting technique [27], the anodic (βa) and the cathodic (βc) Tafel constants
can be determined, as well as the corrosion potential (Ecorr) and the corrosion current
density (Icorr). In addition, the corrosion rate (CR) can be estimated from the values of Icorr
according to Faraday’s law. The determined parameters are summarized in Table 4.
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Figure 6. Potentiodynamic polarization curves of the coated steel samples in 0.6 M NaCl solution.

The PDP curves of samples A, B, C, and D are shifted to the left, i.e., at a lower current
density, with sample B demonstrating the lowest current density value. In addition, the
corrosion potential (Ecorr) values for the above samples were lower compared to the E
samples. Therefore, the coated E samples are expected to have a higher corrosion tendency.
The corrosion rate, which reveals the corrosion kinetics of samples A, B, C, and D, indicates
that these samples had higher resistance to both anodic and cathodic dissolution in 0.6 M
NaCl solution. Notably, the CR values are in accordance with the Rp values. Sample E
exhibited the highest CR (6.03 mm/yr), indicating that it would have the weakest corrosion
protection. In contrast, sample A showed the best corrosion protection properties, as it has
the lowest corrosion rate.

EIS was used to provide further information on the electrochemical behavior of the
samples, as this technique provides a qualitative and quantitative understanding of the
kinetics and corrosion mechanism. The Bode and Nyquist diagrams of the samples in 0.6 M
NaCl solution are shown in Figure 7a,b, respectively.
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The Z mod is inversely proportional to the corrosion rate [28]. Thus, a large Z mod
value indicates a higher charge transfer resistance (Rct) at the interface between the sample
and the electrolyte. Additionally, a larger diameter of the semicircle or capacitive arc of the
Nyquist graph is attributed to higher polarization resistance. An enhanced electrochemical
behavior can also be estimated from the phase angle diagram, where a wider and higher
phase angle diagram shows better stability and improved capacitive behavior over a wide
frequency range. From the qualitative evaluation of these three EIS parameters (absolute
resistance, Nyquist semicircle, or capacitive arc diameter and phase angle), the samples
were evaluated for their corrosion resistance.

Sample E exhibited the lowest Z mod, the lowest phase angle, and the smallest
diameter of the Nyquist semicircular diagram. On the contrary, sample A demonstrated the
highest Z mod, the lowest phase angle, and the largest diameter of the Nyquist semicircular
pattern. These EIS quality parameters proved the enhanced anti-corrosion behavior of
sample A. Therefore, the samples can be sorted in descending order: A > B > C > D > E.

In order to compare the electrochemical properties and the corrosion resistance of
the samples, EIS data were used to estimate the optimum equivalent circuit (EC). The EC
consists of a constant phase element, which represents the capacitance of the electrical
double layer (CPEdl), in parallel with the load transfer resistance (Rct). Both CPEdl and Rct
are connected in parallel with an inductive element (L) to consider the inductive behavior
of the samples. The resistance of the solution (Ru) is connected in series with the element L.
The obtained EIS parameters are presented in Table 5.

The Rct results represent the resistance of the coating to the entry of corrosive species
from the electrolyte. The Rct value of A paint was the highest, and the results gradually
decreased, with sample E exhibiting the lowest value. These values are compatible with
the corrosion resistance rating obtained from LPR and PDP measurements.

Surface texture and post-corrosion roughness are basic parameters used to assess
the degree of corrosion protection. A rougher surface after immersion in a corrosive
environment usually indicates active dissolution of the metal or alloy in the electrolyte. It
can be used to qualitatively measure the severity of corrosion depending on the extent of
roughness. Therefore, the surface profile and the roughness of the exposed surface in the
0.6 M NaCl solution were evaluated by atomic force microscope (AFM). Figure 8 shows
the 3D AFM images of the roughness of the surface of the steel samples after immersion
for 1 h in a corrosive medium before the corrosion test. It was observed that the surface
roughness increased for all samples after corrosion, although to a different degree. Sample
E, which showed the highest corrosion rate based on LPR, PDP, and EIS results, exhibited
the highest increase in surface roughness from 10 nm before corrosion, up to about 80 nm
after corrosion exposure. Sample A, which had the lowest corrosion rate as determined by
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the test methods, exhibited a slight increase in surface roughness after corrosion, at about
20 nm from its initial value of 9 nm. Interestingly, the surface roughness of the samples
after the corrosion test was in the order: A < B < C < D < E. This order was in agreement
with the corrosion resistance rating of the samples, and thus it was found that Sample A
demonstrated the best anti-corrosion performance.

Table 5. EIS parameters determined from the analysis of both the Bode and the Nyquist diagrams
and the corresponding equivalent circuit.

Samples Ru (Ω cm2) Rct (kΩ cm2) CPEp (µF cm2) L (kHΩ s)

A 22.93 2.35 195 19.6
B 21.36 1.63 143 9.09
C 22.36 1.18 207 2.86
D 19.43 0.40 576 0.019
E 22.01 0.12 851 0.003
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It is important to study the effect of surface free energy and work of adhesion according
to the equation of Neumann and Young [29]:

WA = γ1V ·
(

1 + cos2θ
)

(2)

In which the variables θ and γsV are the contact angle of the sample and the surface
free energy of the substrate, respectively. Constant γ1V is the surface tension of water
(72.0 mJ/m2) and β is 0.0001247 ± 0.000010 (mJ/m2). The calculated results are illustrated
in Figure 9. While the free energy of the surface increases, the adhesion of the coating to
the substrate is enhanced. It is clear from Figure 9 that A is optimal.
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The investigation of the corrosion properties of substrate and coated specimens
under laboratory conditions was followed by the in-field testing of the panels, which
were immersed for 9 months in thirteen different coasts (Figure 1). In Figure 10, pic-
tures from all the different samples are exhibited, obtained in order to carry out their
macroscopic examination.

The visual examination of the panels’ surface, after their 9-month immersion in sea
water, showed the gradual adhesion of biofoulers to their surface. The presence of both
biofilm and bacterial–algal biofilm was evident in all samples, while bryozoans and tube-
worms were present in panels with C and D coating. Coated samples with E paint showed
individual macrofoulers (bryozoans, barnacles, ascidians, shellfish, and tube worms). The
uncoated samples (S0) were more burdensome, as they presented an increased variety of
marine organisms on their surface. However, it is clear that the coated sample A signifi-
cantly inhibited the deposition of biofoulers in all coasts in which it was immersed.

Figure 11 shows the coverage percentage of the coated samples (A, B, C, D, and E)
and the uncoated sample (S0) per immersion locations. Compared to the uncoated sample,
A showed a significant reduction in fouling coverage (approximately 48%), followed by
sample B, with a coverage rate of ~72%. Coated samples C and D were unable to inhibit
the deposition of biofilms in the harsh conditions of multi-month static immersion, with
their percentage coverage being around 92%. As expected from the results of controlled
laboratory corrosion tests, sample E was the least effective in antifouling performance and
presented a low efficiency.

Biofilms on the coated surfaces and uncoated reference sample were visualized after
9 months of immersion (to corrosive sea water media) using scanning electron microscopy
(SEM) (Figure 12). For the sake of simplicity, only the SEM’s secondary electron results
from Rafina (RAF) coast are illustrated. It was evident that biofilms formed substantially
on the surface of all samples, suggesting that the initial attachment of microbes on the
antifouling surfaces was not prevented. After 9 months of continuous immersion, severe
biofouling was observed. Figure 12c-d indicate the growth of macro-organisms visually
resembling shellfishes on the surface of the samples coated with C and D paints. As the
foulant presence increases, the upper layers become more porous with a greater fraction of
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large colloids/particles (Figure 12e). On the surface of the uncoated sample (Figure 12f), the
foulant layer was composed of large organic substances and a dense and compressed sludge
deposition. In coated sample A (Figure 12a), it can be seen that a micro-contamination
is residual on its surface. The microorganisms appear elongated, as in coated sample
B (Figure 12b), and engage multimodally to form heterotrophic-oriented clusters. The
thickness of the foulant layer on all the coated and uncoated surfaces determined by SEM
are shown in Table 6.
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Figure 10. Fouling macroscopic view of all immersed panels at the harbors of 13 European cities (in
Mediterranean Sea and Atlantic Ocean). RAF: Rafina; TES: Thessaloniki; VOL: Volos; HER: Heraklion,
RET: Rethymno; VEN: Venice; BRI: Brindisi; TER: Tergeste; PAL: Palermo; AVE: Aveiro; LEI: Leixões;
LIS: Lisboa; and POR: Portimão. Ref: uncoated sample.
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Table 6. The foulant layer thickness (in mm) on the coated samples.

Coated Samples

Location A B C D E

Rafina 1.21 8.74 16.22 28.42 37.42
Volos 2.02 9.35 16.87 27.18 38.01

Thessaloniki 2.11 7.99 16.97 27.98 37.94
Heraklion 2.21 9.01 16.54 28.21 37.42
Rethymno 3.01 8.24 16.97 27.58 37.64

Venice 2.87 8.67 17.13 29.01 37.51
Brindisi 3.41 8.64 17.25 29.00 37.65
Tergeste 2.54 8.51 16.27 28.57 37.85
Palermo 3.42 9.21 17.17 27.94 38.05
Aveiro 4.21 9.37 16.99 28.01 38.64
Leixões 2.98 8.25 16.94 29.00 37.65
Lisboa 3.41 8.86 17.21 28.31 37.44

Portimão 4.21 9.04 16.32 28.30 38.25

Notably, the coated sample B had higher Cu2O concentration than the coated sample
A. However, according to Table 2, the foulants on the B surface were characterized as more
swollen than on the A surface. For comparison, the foulant layer on the surface of the
uncoated sample (Figure 12f) was comprised of large organic substances and a dense and
compressed sludge deposition. It is generally expected that the antifouling activity of the
coatings increases with the concentration of copper oxide. However, it must be taken into
account that besides loading, the release rate of the biocide is of crucial importance. In
fact, the observed behavior might be attributed to a lower release rate of the copper oxide.
In that case, A coatings combine better antifouling performance with considerably lower
biocide release into the marine environment [30].

Our results on biofouling can be explained in terms of surface energies of the solid
carrier (paint) and cell governing the initial attachment of cells to solid substrata in the
marine environment. In fact, thermodynamic modeling performed on freshwater alga
cells adhesion has shown that cellular attachment strongly depends on their polar surface
energy value with respect to water [31]. Thus, the lower attachment observed on A samples
may be due to the paint disposing lower dispersive surface energy but higher polar surface
energy, in full agreement with the results from the contact angle experiments.

Biofilm adsorption depends not only on the hydrophilic or hydrophobic properties of
materials, but also on topographical features, including surface curvature, roughness, and
geometrical characteristics. It is generally accepted that both the topography and chemical
characteristics of surfaces can influence the growth of biofilm in painted samples. Accord-
ing to the AFM results, the corresponding height diagrams show the macro-roughness of
the respective surfaces in which micro-roughness is also observed. Supposing that complete
contact is retained between the liquid and the solid, this roughness increment indicates the
reduction of the Wenzel contact angle [32], and thus the intrinsic tendency of the coated sur-
face towards enhanced wetting. In fact, the effects of surface topography on the attachment
of marine biofoulers cannot be excluded [33] and the importance of surface characteristics
for precise control of the initial cell attachment and development of multifunctional coatings
with anti-bioadhesion properties was demonstrated [34]. Moreover, it has been demon-
strated that superhydrophobicity and nanoscale surface topography completely prevent
the biofouling [35]. Furthemore, the superhydrophilic surface finishing finds potentially
interesting application for fouling- and corrosion-prevention applications [36], leading to
coatings with enhanced wear resistance and anti-microbial performance [37,38]. Thus, in
our case, AFM analysis has shown that all coated samples present lower roughness than
the reference (uncoated samples), depicting surfaces containing topographical features at
multiple length scales from hundreds of nanometers to hundreds of microns. Our approach
widens the number and variety of the fouling microorganisms that can be prevented [39].
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4. Conclusions

In this study, the antifouling performance of commercial paints was investigated and
their anti-corrosion properties for steel protection were examined. The coated samples
were immersed at thirteen different locations along the Mediterranean Sea and Atlantic
Ocean coast during two yachting seasons (9 months) and the amount of fouling present
at the end of the season was evaluated. The performance of the antifouling paints was
assessed in relation to their laboratory corrosion rates, and the obtained results confirmed
the dependence of the microorganisms’ adsorption and morphology on the coating prop-
erties, as well as on the water salinity and average temperature. The best performance
was observed for paint A (Jotun), which contains an optimum amount of biocide (Cu2O
6%), and following spraying produces a hard antifouling coating endowed with enhanced
protection against corrosion. This work can contribute to the development of innova-
tive, environmentally friendly, low-drag antifouling coatings able to protect the vessels’
hull against biofouling and corrosion and thus considerably reduce the costs for marine
transport and infrastructure maintenance.
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