Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,569)

Search Parameters:
Keywords = seL4

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1267 KiB  
Article
Exogenous 24-Epibrassinolide Alleviated Selenium Stress in Peach Seedling
by Zhiyu Hang, Qizhe Cao, Yunyao Du, Jinrong Zhang, Lijin Lin, Mingfei Zhang and Xun Wang
Horticulturae 2025, 11(8), 909; https://doi.org/10.3390/horticulturae11080909 (registering DOI) - 4 Aug 2025
Abstract
Selenium stress can adversely affect plants by inhibiting growth, impairing oxidative stress resistance, and inducing toxicity. In this experiment, we investigated the effect of exogenous 24-epibrassinolide (24-EBL; 2.0 mg/L), a brassinosteroid (BR), on alleviating selenium stress in peach trees by analyzing its impact [...] Read more.
Selenium stress can adversely affect plants by inhibiting growth, impairing oxidative stress resistance, and inducing toxicity. In this experiment, we investigated the effect of exogenous 24-epibrassinolide (24-EBL; 2.0 mg/L), a brassinosteroid (BR), on alleviating selenium stress in peach trees by analyzing its impact on biomass, selenium accumulation, and the expression of selenium metabolism-related genes in peach seedlings. The results demonstrated that 24-EBL could effectively mitigate biomass loss in peach seedlings exposed to selenium stress. Compared to the Se treatment alone, the 24-EBL+Se treatment resulted in a significant 16.55% increase in root selenium content and a more pronounced 30.39% increase in selenium content in the aboveground parts. Regarding the subcellular distribution, the cell wall was the primary site of Se deposition, accounting for 42.3% and 49.8% in the root and aboveground parts, respectively, in the Se treatment. 24-EBL further enhanced Se distribution at this site, reaching 42.9% and 63.2% in root and aboveground parts, respectively, in the 24-EBL+Se treatment. The 24-EBL+Se treatment significantly increased the contents of different chemical forms of Se, including ethanol-soluble, water-soluble, and salt-soluble Se. The quantitative real-time PCR (qRT-PCR) results indicated that the Se treatment promoted the expression of organic Se assimilation genes (SATs, OAS-TL B, and OAS-TL C), and 24-EBL application further increased their expression. Meanwhile, the Se-only treatment up-regulated the organic Se metabolism gene CGS1. Consequently, we propose that 24-EBL alleviates Se stress in peach seedlings by enhancing Se uptake and assimilation, and by adjusting subcellular distribution and chemical forms. Full article
(This article belongs to the Special Issue Biotic and Abiotic Stress Responses of Horticultural Plants)
Show Figures

Figure 1

30 pages, 7811 KiB  
Article
Preparation and Characterization of Cyperus-Derived Exosomes Loaded with Selenium Nanoparticles for Selenium Delivery Based on Exosome Protein Quantitation
by Dexiu Zhao, Xiaojun Yang, Abulimiti Kelimu, Bin Wu, Weicheng Hu, Hongbo Fan, Lei Jing, Dongmei Yang and Xinhong Huang
Foods 2025, 14(15), 2724; https://doi.org/10.3390/foods14152724 - 4 Aug 2025
Abstract
Appropriate carriers or templates are crucial for maintaining the stability, biological activity, and bioavailability of selenium nanoparticles (SeNPs). Selecting suitable templates remains challenging for fully utilizing SeNPs functionalities and developing applicable products. Exosome-like nanoparticles (ELNs) have gained importance in drug delivery systems, yet [...] Read more.
Appropriate carriers or templates are crucial for maintaining the stability, biological activity, and bioavailability of selenium nanoparticles (SeNPs). Selecting suitable templates remains challenging for fully utilizing SeNPs functionalities and developing applicable products. Exosome-like nanoparticles (ELNs) have gained importance in drug delivery systems, yet research on selenium products prepared using exosomes remains limited. To address this gap, we utilized Cyperus bean ELNs to deliver SeNPs, investigated three preparation methods for SeNPs-ELNs, identified the optimal approach, and performed characterization studies. Notably, all three methods successfully loaded SeNPs. Ultrasonic cell fragmentation is the optimal approach, achieving significant increases in selenium loading (5.59 ± 0.167 ng/μg), enlargement of particle size (431.17 ± 10.78 nm), and reduced absolute zeta potential (−4.1 ± 0.43 mV). Moreover, both exosome formulations demonstrated enhanced stability against aggregation during storage at 4 °C, while their stability varied with pH conditions. In vitro digestibility tests showed greater stability of SeNP-ELNs in digestive fluids compared to ELNs alone. Additionally, neither ELNs nor SeNP-ELNs exhibited cytotoxicity toward LO2 cells, and the relative erythrocyte hemolysis remained below 5% at protein concentrations of 2.5, 7.5, 15, 30, and 60 μg/mL. Overall, ultrasonic cell fragmentation effectively loaded plant-derived exosomes with nano-selenium at high capacity, presenting new opportunities for their use as functional components in food and pharmaceutical applications. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

22 pages, 2605 KiB  
Article
Production of Bioadsorbents via Low-Temperature Pyrolysis of Exhausted Olive Pomace for the Removal of Methylene Blue from Aqueous Media
by Safae Chafi, Manuel Cuevas-Aranda, Mª Lourdes Martínez-Cartas and Sebastián Sánchez
Molecules 2025, 30(15), 3254; https://doi.org/10.3390/molecules30153254 - 3 Aug 2025
Viewed by 56
Abstract
In this work, biochars were produced by pyrolysis of exhausted olive pomace and evaluated as low-cost adsorbents for the removal of methylene blue (MB) from aqueous solutions. The biochar obtained at 400 °C for 1 h, which exhibited the best adsorption performance, was [...] Read more.
In this work, biochars were produced by pyrolysis of exhausted olive pomace and evaluated as low-cost adsorbents for the removal of methylene blue (MB) from aqueous solutions. The biochar obtained at 400 °C for 1 h, which exhibited the best adsorption performance, was characterized by FTIR, N2 adsorption–desorption isotherms, SEM-EDX, and proximate analysis, revealing a mesoporous structure with a relatively low specific surface area but enriched in surface functional groups, likely due to the partial degradation of lignocellulosic components. Adsorption experiments were conducted to optimize operational parameters such as solid particle size (2–3 mm), agitation speed (75 rpm), and bioadsorbent dosage (1 g per 0.05 L of MB solution), which allowed for dye removal efficiencies close to 100%. Kinetic studies showed that MB adsorption followed a pseudo-second-order model, while equilibrium data at 30 °C were best described by the Langmuir isotherm (R2 = 0.999; SE = 4.25%), suggesting monolayer coverage and strong adsorbate–adsorbent affinity. Desorption trials using water, ethanol, and their mixtures resulted in low MB recovery, whereas the addition of 10% acetic acid significantly improved desorption performance. Under optimal conditions, up to 52% of the retained dye was recovered. Full article
(This article belongs to the Special Issue Advances in Biomass Chemicals: Transformation and Valorization)
Show Figures

Graphical abstract

16 pages, 3713 KiB  
Article
Synergistic Alleviation of Saline–Alkali Stress and Enhancement of Selenium Nutrition in Rice by ACC (1-Aminocyclopropane-1-Carboxylate) Deaminase-Producing Serratia liquefaciens and Biogenically Synthesized Nano-Selenium
by Nina Zhu, Xinpei Wei, Xingye Pan, Benkang Xie, Shuquan Xin and Kai Song
Plants 2025, 14(15), 2376; https://doi.org/10.3390/plants14152376 - 1 Aug 2025
Viewed by 144
Abstract
Soil salinization and selenium (Se) deficiency threaten global food security. This study developed a composite bioinoculant combining ACC deaminase-producing Serratia liquefaciens and biogenically synthesized nano-selenium (SeNPs) to alleviate saline–alkali stress and enhance Se nutrition in rice (Oryza sativa L.). A strain of [...] Read more.
Soil salinization and selenium (Se) deficiency threaten global food security. This study developed a composite bioinoculant combining ACC deaminase-producing Serratia liquefaciens and biogenically synthesized nano-selenium (SeNPs) to alleviate saline–alkali stress and enhance Se nutrition in rice (Oryza sativa L.). A strain of S. liquefaciens with high ACC deaminase activity was isolated and used to biosynthesize SeNPs with stable physicochemical properties. Pot experiments showed that application of the composite inoculant (S3: S. liquefaciens + 40 mmol/L SeNPs) significantly improved seedling biomass (fresh weight +53.8%, dry weight +60.6%), plant height (+31.6%), and root activity under saline–alkali conditions. S3 treatment also enhanced panicle weight, seed-setting rate, and grain Se content (234.13 μg/kg), meeting national Se-enriched rice standards. Moreover, it increased rhizosphere soil N, P, and K availability and improved microbial α-diversity. This is the first comprehensive demonstration that a synergistic bioformulation of ACC deaminase PGPR and biogenic SeNPs effectively mitigates saline–alkali stress, enhances soil fertility, and enables safe Se biofortification in rice. Full article
(This article belongs to the Special Issue Nanomaterials in Plant Growth and Stress Adaptation—2nd Edition)
Show Figures

Figure 1

18 pages, 14612 KiB  
Article
Integrated Proteomic and Transcriptomic Analysis Reveals the Mechanism of Selenium-Mediated Cell Wall Polysaccharide in Rice (Oryza sativa L.) Cadmium Detoxification
by Sixi Zhu, Xianwang Du, Wei Zhao, Xiuqin Yang, Luying Sheng, Huan Mao and Suxia Su
Toxics 2025, 13(8), 642; https://doi.org/10.3390/toxics13080642 - 30 Jul 2025
Viewed by 219
Abstract
Cadmium (Cd) toxicity destroys plant cells and affects plant growth and development. Due to its unique metallic properties, selenium (Se) has been shown to be effective in antioxidants, cellular immunity, and heavy metal detoxification. When Se and Cd are present together in plants, [...] Read more.
Cadmium (Cd) toxicity destroys plant cells and affects plant growth and development. Due to its unique metallic properties, selenium (Se) has been shown to be effective in antioxidants, cellular immunity, and heavy metal detoxification. When Se and Cd are present together in plants, they antagonize. However, the mechanism of action of the two in the rice cell wall remains to be clarified. In this study, we analyzed the mechanism of Cd detoxification by rice (Oryza sativa L.) cellular polysaccharides mediated by Se, using the cell wall as an entry point. Proteomic and transcriptomic analyses revealed that “Glycosyl hydrolases family 17”, “O-methyltransferase”, and “Polygalacturonase” protein pathways were significantly expressed in the cell wall. The most abundant enzymes involved in polysaccharide biosynthesis were found, including bglB, otsB, HK, PFP, ADH1, and ALDH, which resulted in the synthetic pathway of polysaccharide formation in the rice cell wall. Finally, the essential genes/proteins, such as protein Os03g0170500, were identified. The study showed that Se inhibits Cd uptake and transport when Se (1 mg/kg) is low relative to Cd (3 mg/kg), has little inhibitory effect, and even promotes Cd (3 mg/kg) uptake when Se (5 mg/kg) is relatively high. Full article
Show Figures

Graphical abstract

16 pages, 3203 KiB  
Article
Green Synthesised Carbon Nanodots Using the Maillard Reaction for the Rapid Detection of Elemental Selenium in Water and Carbonated Beverages
by Arjun Muthu, Duyen H. H. Nguyen, Aya Ferroudj, József Prokisch, Hassan El-Ramady, Chaima Neji and Áron Béni
Nanomaterials 2025, 15(15), 1161; https://doi.org/10.3390/nano15151161 - 28 Jul 2025
Viewed by 185
Abstract
Selenium (Se) is an essential trace element involved in antioxidant redox regulation, thyroid hormone metabolism, and cancer prevention. Among its different forms, elemental selenium (Se0), particularly at the nanoscale, has gained growing attention in food, feed, and biomedical applications due to [...] Read more.
Selenium (Se) is an essential trace element involved in antioxidant redox regulation, thyroid hormone metabolism, and cancer prevention. Among its different forms, elemental selenium (Se0), particularly at the nanoscale, has gained growing attention in food, feed, and biomedical applications due to its lower toxicity and higher bioavailability compared to inorganic selenium species. However, the detection of Se0 in real samples remains challenging as current analytical methods are time-consuming, labour-intensive, and often unsuitable for rapid analysis. In this study, we developed a method for rapidly measuring Se0 using carbon nanodots (CNDs) produced from the Maillard reaction between glucose and glycine. The fabricated CNDs were water-dispersible and strongly fluorescent, with an average particle size of 3.90 ± 1.36 nm. Comprehensive characterisation by transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), fluorescence spectroscopy, and Raman spectroscopy confirmed their structural and optical properties. The CNDs were employed as fluorescent probes for the selective detection of Se0. The sensor showed a wide linear detection range (0–12.665 mmol L−1), with a low detection limit (LOD) of 0.381 mmol L−1 and a quantification limit (LOQ) of 0.465 mmol L−1. Validation with spiked real samples—including ultra-pure water, tap water, and soft drinks—yielded high recoveries (98.6–108.1%) and low relative standard deviations (<3.4%). These results highlight the potential of CNDs as a simple, reliable, and environmentally friendly sensing platform for trace-level Se0 detection in complex food and beverage matrices. Full article
Show Figures

Graphical abstract

34 pages, 2268 KiB  
Review
Recent Progress in Selenium Remediation from Aqueous Systems: State-of-the-Art Technologies, Challenges, and Prospects
by Muhammad Ali Inam, Muhammad Usman, Rashid Iftikhar, Svetlozar Velizarov and Mathias Ernst
Water 2025, 17(15), 2241; https://doi.org/10.3390/w17152241 - 28 Jul 2025
Viewed by 462
Abstract
The contamination of drinking water sources with selenium (Se) oxyanions, including selenite (Se(IV)) and selenate (Se(VI)), contains serious health hazards with an oral intake exceeding 400 µg/day and therefore requires urgent attention. Various natural and anthropogenic sources are responsible for high Se concentrations [...] Read more.
The contamination of drinking water sources with selenium (Se) oxyanions, including selenite (Se(IV)) and selenate (Se(VI)), contains serious health hazards with an oral intake exceeding 400 µg/day and therefore requires urgent attention. Various natural and anthropogenic sources are responsible for high Se concentrations in aquatic environments. In addition, the chemical behavior and speciation of selenium can vary noticeably depending on the origin of the source water. The Se(VI) oxyanion is more soluble and therefore more abundant in surface water. Se levels in contaminated waters often exceed 50 µg/L and may reach several hundred µg/L, well above drinking water limits set by the World Health Organization (40 µg/L) and Germany (10 µg/L), as well as typical industrial discharge limits (5–10 µg/L). Overall, Se is difficult to remove using conventionally available physical, chemical, and biological treatment technologies. The recent literature has therefore highlighted promising advancements in Se removal using emerging technologies. These include advanced physical separation methods such as membrane-based treatment systems and engineered nanomaterials for selective Se decontamination. Additionally, other integrated approaches incorporating photocatalysis coupled adsorption processes, and bio-electrochemical systems have also demonstrated high efficiency in redox transformation and capturing of Se from contaminated water bodies. These innovative strategies may offer enhanced selectivity, removal, and recovery potential for Se-containing species. Here, a current review outlines the sources, distribution, and chemical behavior of Se in natural waters, along with its toxicity and associated health risks. It also provides a broad and multi-perspective assessment of conventional as well as emerging physical, chemical, and biological approaches for Se removal and/or recovery with further prospects for integrated and sustainable strategies. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Graphical abstract

15 pages, 1277 KiB  
Article
Selenium Nanoparticles Improve Morpho-Physiological and Fruit Quality Parameters of Tomato
by Juan José Reyes-Pérez, Tomás Rivas-García, Luis Tarquino Llerena-Ramos, Rommel Arturo Ramos-Remache, Luis Humberto Vásquez Cortez, Pablo Preciado-Rangel and Rubí A. Martínez-Camacho
Horticulturae 2025, 11(8), 876; https://doi.org/10.3390/horticulturae11080876 - 28 Jul 2025
Viewed by 315
Abstract
Although favorable effects of Selenium nanoparticles (SeNPs or nSe) in tomato have been reported, research has concentrated on stress alleviation and disease management. From the above it is noticeable that the effect of NPs varies greatly depending on the model plant, nanoparticle (concentration, [...] Read more.
Although favorable effects of Selenium nanoparticles (SeNPs or nSe) in tomato have been reported, research has concentrated on stress alleviation and disease management. From the above it is noticeable that the effect of NPs varies greatly depending on the model plant, nanoparticle (concentration, size, shape), and application (foliar or drenching). For this reason, the objective of this study was to investigate the impact of biostimulating tomato plants under no stressor conditions (Solanum lycopersicum cv. ‘Pomodoro’ L.) with SeNPs on morpho-physiological and fruit quality parameters. Three doses of Selenium nanoparticles (5, 15, and 30 mg L−1), and a control were applied via a foliar application after transplanting. The results indicate that a 5 mg L−1 SeNP treatment improved the growth and yield of the tomato, with the exception of the root length and leaf weight. Moreover, all doses modified the evaluated physiology, bioactive compounds, and fruit quality parameters. This research helped in understanding the SeNPs’ effect on tomato plants in greenhouses under a no stressor condition. Full article
Show Figures

Figure 1

22 pages, 2276 KiB  
Article
Phytochemical Profile, Toxicological Screening, Antitumor Activity, and Immunomodulatory Response of Saline Extract from Euphorbia hirta L. Leaves
by Jainaldo Alves da Costa, Amanda de Oliveira Marinho, Robson Raion de Vasconcelos Alves, Matheus Cavalcanti de Barros, Isabella Coimbra Vila Nova, Sheilla Andrade de Oliveira, João Victor de Oliveira Alves, Vitória Figueiredo Silva, Magda Rhayanny Assunção Ferreira, Alisson Macário de Oliveira, Luiz Alberto Lira Soares, Carina Scanoni Maia, Fernanda das Chagas Ângelo Mendes Tenório, Virgínia Maria Barros de Lorena, Roberto Araújo Sá, Thiago Henrique Napoleão, Leydianne Leite de Siqueira Patriota, Maria Lígia Rodrigues Macedo and Patrícia Maria Guedes Paiva
Molecules 2025, 30(15), 3105; https://doi.org/10.3390/molecules30153105 - 24 Jul 2025
Viewed by 338
Abstract
Euphorbia hirta L. is traditionally used to treat tumors and has demonstrated anticancer effects. This study evaluated the phytochemical composition, toxicity, and antitumor activity of saline extract (SE) from E. hirta leaves in mice. Phytochemical analysis included thin layer chromatography, high-performance liquid chromatography, [...] Read more.
Euphorbia hirta L. is traditionally used to treat tumors and has demonstrated anticancer effects. This study evaluated the phytochemical composition, toxicity, and antitumor activity of saline extract (SE) from E. hirta leaves in mice. Phytochemical analysis included thin layer chromatography, high-performance liquid chromatography, and quantification of phenols, flavonoids, and proteins. Acute toxicity (2000 mg/kg) assessed mortality, hematological, biochemical, histological parameters, water/feed intake, and body weight. Genotoxicity was evaluated via comet and micronucleus assays. Antitumor activity was tested in vitro and in vivo on sarcoma 180. SE contained 107.3 mg GAE/g phenolics and 22.9 mg QE/g flavonoids; the presence of gallic and ellagic acids was detected. Protein concentration was 12.16 mg/mL with lectin activity present. No mortality, organ damage, or genotoxic effects occurred in toxicity tests. SE demonstrated in vitro cytotoxicity against sarcoma cells (IC50: 10 µg/mL). In vivo, SE (50–200 mg/kg) reduced tumor weight by 70.2–72.3%. SE modulated IL-2, IL-4, IL-6, IL-17, IFN-γ, and TNF-α in tumor environment. Tumors showed inflammatory infiltrate, necrosis, and fibrosis after treatment. These findings position the extract as a promising candidate for further development as a safe, plant-based antitumor agent. Full article
(This article belongs to the Special Issue Natural Products in Anticancer Activity: 2nd Edition)
Show Figures

Figure 1

24 pages, 2496 KiB  
Article
Zinc and Selenium Biofortification Modulates Photosynthetic Performance: A Screening of Four Brassica Microgreens
by Martina Šrajer Gajdošik, Vesna Peršić, Anja Melnjak, Doria Ban, Ivna Štolfa Čamagajevac, Zdenko Lončarić, Lidija Kalinić and Selma Mlinarić
Agronomy 2025, 15(8), 1760; https://doi.org/10.3390/agronomy15081760 - 23 Jul 2025
Viewed by 305
Abstract
Microgreens, having short growth cycles and efficient nutrient uptake, are ideal candidates for biofortification. This study investigated the effects of selenium (Se) and zinc (Zn) on photosynthetic performance in four hydroponically grown Brassica microgreens (broccoli, pak choi, kohlrabi, and kale), using direct and [...] Read more.
Microgreens, having short growth cycles and efficient nutrient uptake, are ideal candidates for biofortification. This study investigated the effects of selenium (Se) and zinc (Zn) on photosynthetic performance in four hydroponically grown Brassica microgreens (broccoli, pak choi, kohlrabi, and kale), using direct and modulated chlorophyll a fluorescence and chlorophyll-to-carotenoid ratios (Chl/Car). The plants were treated with Na2SeO4 at 0 (control), 2, 5, and 10 mg/L or ZnSO4 × 7H2O at 0 (control), 5, 10, and 20 mg/L. The results showed species-specific responses with Se or Zn uptake. Selenium enhanced photosynthetic efficiency in a dose-dependent manner for most species (8–26% on average compared to controls). It increased the plant performance index (PItot), particularly in pak choi (+62%), by improving both primary photochemistry and inter-photosystem energy transfer. Kale and kohlrabi exhibited high PSII-PSI connectivity for efficient energy distribution, with increased cyclic electron flow around PSI and reduced Chl/Car up to 8.5%, while broccoli was the least responsive. Zinc induced variable responses, reducing PItot at lower doses (19–23% average decline), with partial recovery at 20 mg/L (9% average reduction). Broccoli exhibited higher susceptibility, with inhibited QA re-oxidation, low electron turnover due to donor-side restrictions, and increased pigment ratio (+3.6%). Kohlrabi and pak choi tolerated moderate Zn levels by redirecting electron flow, but higher Zn levels impaired PSII and PSI function. Kale showed the highest tolerance, maintaining stable photochemical parameters and total electron flow, with increased pigment ratio (+4.5%) indicating better acclimation. These results highlight the beneficial stimulant role of Se and the dual essential/toxic nature of Zn, thus emphasizing genotype and dose-specific optimizations for effective biofortification. Full article
Show Figures

Figure 1

19 pages, 296 KiB  
Article
Evolving Equity Consciousness: Intended and Emergent Outcomes of Faculty Development for Inclusive Excellence
by Jackie E. Shay, Suzanne E. Hizer, Devon Quick, Jennifer O. Manilay, Mabel Sanchez and Victoria Sellers
Trends High. Educ. 2025, 4(3), 37; https://doi.org/10.3390/higheredu4030037 - 22 Jul 2025
Viewed by 661
Abstract
As diversity, equity, and inclusion (DEI) efforts in higher education face increasing political resistance, it is critical to understand how equity-centered institutional change is fostered, and who is transformed in the process. This study examines the intended and emergent outcomes of faculty professional [...] Read more.
As diversity, equity, and inclusion (DEI) efforts in higher education face increasing political resistance, it is critical to understand how equity-centered institutional change is fostered, and who is transformed in the process. This study examines the intended and emergent outcomes of faculty professional development initiatives implemented through the Howard Hughes Medical Institute’s Inclusive Excellence (HHMI IE) program. We analyzed annual institutional reports and anonymous reflections from four public universities in a regional Peer Implementation Cluster (PIC), focusing on how change occurred at individual, community, and institutional levels. Guided by Kezar’s Shared Equity Leadership (SEL) framework, our thematic analysis revealed that while initiatives were designed to improve student outcomes through inclusive pedagogy, the most profound outcome was the development of equity consciousness among faculty. Defined as a growing awareness of systemic inequities and a sustained commitment to address them, equity consciousness emerged as the most frequently coded theme across all levels of change. These findings suggest that equity-centered faculty development can serve as a catalyst for institutional transformation, not only by shifting teaching practices but also by building distributed leadership and deeper organizational engagement with equity. This effort also emphasizes that documenting emergent outcomes is essential for recognizing the holistic impact of sustained institutional change. Full article
Show Figures

Graphical abstract

18 pages, 1782 KiB  
Systematic Review
Exploring the Impact of Selenium Nanoparticles on Growth and Gonadal Development in Asian Seabass (Lates calcarifer): A Systematic Review and Meta-Analysis
by Ilias Ahmed, Mohammad Abu Baker Siddique, Shanur Jahedul Hasan, Mohammad Mahfujul Haque, Md. Mahmudul Hasan and A. K. Shakur Ahammad
Aquac. J. 2025, 5(3), 11; https://doi.org/10.3390/aquacj5030011 - 22 Jul 2025
Viewed by 304
Abstract
Selenium nanoparticles (SeNPs), with their high absorption and antioxidant properties, hold promise as feed additives in aquaculture, enhancing growth and reproductive health in fish. This review evaluates how selenium nanoparticles influence growth and reproductive traits in Asian seabass (L. calcarifer). Using [...] Read more.
Selenium nanoparticles (SeNPs), with their high absorption and antioxidant properties, hold promise as feed additives in aquaculture, enhancing growth and reproductive health in fish. This review evaluates how selenium nanoparticles influence growth and reproductive traits in Asian seabass (L. calcarifer). Using the PRISMA approach, we examined the impacts of selenium nanoparticles (SeNPs) on the growth performance and gonadal development of Asian seabass (L. calcarifer) by synthesizing findings from the existing literature. Meta-analysis explored that selenium nanoparticles (SeNPs) supplementation significantly improved specific growth rate (SGR) (pooled effect size = 3.97; 95% CI: 3.68–4.26) and feed conversion ratio (FCR) (pooled effect size = 0.81; 95% CI: 0.75–0.86), with low heterogeneity. Regarding reproductive outcomes, SeNPs enhanced gonadal development, sperm quality, and steroidogenesis. Significant improvements were observed in gonadosomatic index (effect size = 0.5), fertilization rate (0.6), and testosterone levels (0.5), along with a reduction in abnormal embryogenesis (−0.3) (p < 0.05). While an optimal level of SeNPs is effective for enhancing aquaculture performance, excessive use may lead to toxicity; therefore, their economic viability, environmental impact, and sustainability in large-scale aquaculture warrant further investigation. This review provides insights for researchers, policymakers, and industry stakeholders on the potential of SeNPs in advancing sustainable aquaculture through fish productivity and reproductive performance. Full article
Show Figures

Figure 1

15 pages, 2473 KiB  
Article
Selenium Reduces Cadmium-Induced Cardiotoxicity by Modulating Oxidative Stress and the ROS/PARP-1/TRPM2 Signalling Pathway in Rats
by Yener Yazğan, Ömer Faruk Keleş, Mehmet Hafit Bayir, Hacı Ahmet Çiçek, Adem Ahlatcı and Kenan Yıldızhan
Toxics 2025, 13(8), 611; https://doi.org/10.3390/toxics13080611 - 22 Jul 2025
Viewed by 351
Abstract
Cadmium (CAD) is a prevalent environmental contaminant that poses serious cardiotoxic risks. The heart, kidney, liver, and brain are just a few of the essential organs that can sustain serious harm from CAD, a very poisonous heavy metal. The cardiotoxic mechanism of CAD [...] Read more.
Cadmium (CAD) is a prevalent environmental contaminant that poses serious cardiotoxic risks. The heart, kidney, liver, and brain are just a few of the essential organs that can sustain serious harm from CAD, a very poisonous heavy metal. The cardiotoxic mechanism of CAD is linked to oxidative damage and inflammation. A trace element with anti-inflammatory, anti-apoptotic, and antioxidant qualities, selenium (SEL) can be taken as a dietary supplement. The biotoxicity of heavy metal CAD is significantly inhibited by SEL, a mineral that is vital to human and animal nutrition. Through ROS-induced PARP-1/ADPR/TRPM2 pathways, this study seeks to assess the preventive benefits of selenium against cardiovascular damage caused by CAD. The SEL showed encouraging results in reducing inflammatory and oxidative reactions. Rats were given 0.5 mg/kg SEL and 3 mg/kg 2-Aminoethyl diphenylborinate (2-APB) intraperitoneally for five days, in addition to 25 mg/kg CAD given via gavage. Histopathological examination findings revealed that the morphologic changes in the hearts of the CAD group rats were characterised by marked necrosis and the degeneration of myocytes and congestion of vessels. Compared to the rats in the CAD group, the hearts of the SEL, 2-APB and SEL+2-APB groups showed fewer morphological alterations. Moreover, in rats given CAD, there was an increase in cardiac malondialdehyde (MDA), total oxidant (TOS), reactive oxygen species (ROS), caspase (Casp-3-9), and TNF-α, whereas glutathione (GSH), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and total antioxidant (TAS) decreased. SEL improved antioxidants, avoided tissue damage, and reduced cardiac MDA, TOS, and ROS. In rats given CAD, SEL decreased cardiac PARP-1, TRPM2, TNF-α, and caspase. In summary, by reducing oxidative stress and cardiac damage and modifying the ROS/PARP-1/TRPM2 pathway, SEL protected against CAD cardiotoxicity. Full article
Show Figures

Graphical abstract

23 pages, 4569 KiB  
Article
Multi-Omics Analysis Provides New Insights into the Interplay Between Gut Microbiota, Fatty Acid Metabolism, and Immune Response in Cultured and Wild Coilia nasus from the Yangtze River Area in China
by Chang Yang, Kai Liu, Yanmin Deng, Qianhui Wang, Shiqian Cao and Qunlan Zhou
Microorganisms 2025, 13(7), 1711; https://doi.org/10.3390/microorganisms13071711 - 21 Jul 2025
Viewed by 363
Abstract
To elucidate the interactions among fatty acid metabolism, immune status, and gut microbiota, both cultured and wild Coilia nasus from the Yangtze River were examined in China. The results demonstrated that wild C. nasus exhibited markedly higher lipid and docosahexaenoic acid (DHA) contents, [...] Read more.
To elucidate the interactions among fatty acid metabolism, immune status, and gut microbiota, both cultured and wild Coilia nasus from the Yangtze River were examined in China. The results demonstrated that wild C. nasus exhibited markedly higher lipid and docosahexaenoic acid (DHA) contents, a greater ratio of total ω-3 PUFAs to total ω-6 PUFAs, and more active antioxidant enzymes compared to cultured C. nasus. However, the shear force, water-holding capacity, and total n-6 PUFA content were lower in wild C. nasus. Transcriptome analysis revealed distinct gene expression patterns: wild C. nasus upregulated immune-related genes, while cultured C. nasus downregulated genes related to fatty acid metabolism. Significant differences were observed in alpha and beta diversity between cultured and wild groups. LEfSe analysis identified Clostridium_T, Escherichia, and Glutamicibacter as biomarkers for cultured C. nasus, while eight genera, including Pseudomonas_E and Sphingomonas_L, were predominant in wild C. nasus. Modular analysis identified five modules linked to immune functions and fatty acid metabolism. Clostridium_T, Sphingomonas_L, and Pseudomonas_E were dominant in the first two modules, with Pseudomonas_E and Clostridium_T as key regulators of fatty acid metabolism and immune processes. These differences, likely due to gut microbiota variations, provide insights for C. nasus nutritional studies. Full article
(This article belongs to the Special Issue Microbiome in Fish and Their Living Environment)
Show Figures

Figure 1

13 pages, 7300 KiB  
Article
Strain and Layer Modulations of Optical Absorbance and Complex Photoconductivity of Two-Dimensional InSe: A Study Based on GW0+BSE Calculations
by Chuanghua Yang, Yuan Jiang, Wendeng Huang and Feng Pan
Crystals 2025, 15(7), 666; https://doi.org/10.3390/cryst15070666 - 21 Jul 2025
Viewed by 257
Abstract
Since the definitions of the two-dimensional (2D) optical absorption coefficient and photoconductivity are independent of the thickness of 2D materials, they are more suitable than the dielectric function to describe the optical properties of 2D materials. Based on the many-body GW method and [...] Read more.
Since the definitions of the two-dimensional (2D) optical absorption coefficient and photoconductivity are independent of the thickness of 2D materials, they are more suitable than the dielectric function to describe the optical properties of 2D materials. Based on the many-body GW method and the Bethe–Salpeter equation, we calculated the quasiparticle electronic structure, optical absorbance, and complex photoconductivity of 2D InSe from a single layer (1L) to three layers (3L). The calculation results show that the energy difference between the direct and indirect band gaps in 1L, 2L, and 3L InSe is so small that strain can readily tune its electronic structure. The 2D optical absorbance results calculated taking into account exciton effects show that light absorption increases rapidly near the band gap. Strain modulation of 1L InSe shows that it transforms from an indirect bandgap semiconductor to a direct bandgap semiconductor in the biaxial compressive strain range of −1.66 to −3.60%. The biaxial compressive strain causes a slight blueshift in the energy positions of the first and second absorption peaks in monolayer InSe while inducing a measurable redshift in the energy positions of the third and fourth absorption peaks. Full article
Show Figures

Figure 1

Back to TopTop