Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (32)

Search Parameters:
Keywords = sclerostin inhibition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1208 KiB  
Review
Role of SOST in Response to Mechanical Stimulation in Bone and Extraosseous Organs
by Minyou Chen, Wenjing Li, Le Lei and Lingli Zhang
Biomolecules 2025, 15(6), 856; https://doi.org/10.3390/biom15060856 - 11 Jun 2025
Viewed by 1033
Abstract
Sclerostin (SOST) is a specific osteocyte protein. During the differentiation and proliferation of osteoblasts and osteoclasts, the high expression of SOST can inhibit bone formation and contribute to osteoporosis and the bone metastasis of malignant tumors. Most of the research on SOST has [...] Read more.
Sclerostin (SOST) is a specific osteocyte protein. During the differentiation and proliferation of osteoblasts and osteoclasts, the high expression of SOST can inhibit bone formation and contribute to osteoporosis and the bone metastasis of malignant tumors. Most of the research on SOST has focused on bone cells, but studies have found that SOST is not a specific product of bone cells but that it is also expressed by articular chondrocytes. SOST can regulate the progression of osteoarthritis in bone and cartilage, promote subchondral bone sclerosis, and inhibit cartilage degeneration. A review of the literature found that SOST can not only regulate bone metabolism, but it is also expressed in cardiovascular, kidney, liver, and other tissues, influencing the occurrence and development of diseases in these organs and tissues. Studies have found that diseases of extra-bone organs, such as atherosclerosis, aneurysm, chronic kidney disease, and cirrhosis, may be related to the expression of SOST. Simultaneously, long-term exercise can reduce SOST levels, especially in areas of high bone strain. Prolonged exercise induces bone adaptation to mechanical stress, resulting in diminished responsiveness of bone cells to exercise and a reduction in serum SOST levels. Short-term acute exercise can elevate serum SOST levels, but these results are often limited by age, gender, and energy status. In general, serum SOST rises immediately after short-term acute exercise, returning to baseline or even decreasing after exercise. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

22 pages, 1707 KiB  
Review
Role of Sclerostin in Cardiovascular System
by Ning Zhang, Luyao Wang, Xiaofei Li, Xin Yang, Xiaohui Tao, Hewen Jiang, Yuanyuan Yu, Jin Liu, Sifan Yu, Yuan Ma, Baoting Zhang and Ge Zhang
Int. J. Mol. Sci. 2025, 26(10), 4552; https://doi.org/10.3390/ijms26104552 - 9 May 2025
Cited by 1 | Viewed by 960
Abstract
Sclerostin, encoded by the SOST gene, is a novel bone anabolic target for bone diseases. Humanized anti-sclerostin antibody, romosozumab, was approved for treatment of postmenopausal osteoporosis by the US Food and Drug Administration (FDA), but with a black-box warning on cardiovascular risk. The [...] Read more.
Sclerostin, encoded by the SOST gene, is a novel bone anabolic target for bone diseases. Humanized anti-sclerostin antibody, romosozumab, was approved for treatment of postmenopausal osteoporosis by the US Food and Drug Administration (FDA), but with a black-box warning on cardiovascular risk. The clinical data regarding cardiovascular events from various pre-marketing and post-marketing studies of romosozumab were inconsistent. Overall, the cardiovascular risk of sclerostin inhibition could not be excluded. The restriction of romosozumab in patients with cardiovascular disease history would be necessary. Moreover, genome-wide association study (GWAS) analyses of SOST variants revealed inconsistent results of the association between SOST variations and cardiovascular diseases. Further research incorporating larger sample sizes and functional analyses are necessary. In analyses of serum/tissue sclerostin levels in patients with cardiovascular diseases, the results were controversial but indicated an association between sclerostin and the presence/severity/outcomes of cardiovascular diseases. Nonclinical studies in rodents indicated the inhibitory effect of sclerostin on inflammation, aortic aneurysm, atherosclerosis, and vascular calcification. Sclerostin loop3 participated in the inhibitory effect of sclerostin on bone formation, while the cardiovascular protective effect of sclerostin was independent of sclerostin loop3. Macrophagic sclerostin loop2–apolipoprotein E receptor 2 (ApoER2) interaction participated in the inhibitory effect of sclerostin on inflammation in vitro. Sclerostin in human aortic smooth muscle cells participated in the reduction in calcium deposition. The role of sclerostin in cardiovascular system deserves further investigation. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

12 pages, 1917 KiB  
Article
Real-World Evaluation of 12-Month Romosozumab Treatment in Korean Women with Severe Osteoporosis: Potential Synergy with Hormone Therapy
by Jung Yoon Park, Hyoung Moo Park, Jae-Yen Song, Kyung Jin Hwang, Mee-Ran Kim and Youn-Jee Chung
J. Clin. Med. 2025, 14(9), 2958; https://doi.org/10.3390/jcm14092958 - 24 Apr 2025
Viewed by 1410
Abstract
Background/Objectives: Osteoporosis is a major public health concern, due to its high risk of fractures and disability and associated medical costs. Romosozumab, an anabolic agent, has been approved for the treatment of osteoporosis in postmenopausal women at high risk of fractures. However, limited [...] Read more.
Background/Objectives: Osteoporosis is a major public health concern, due to its high risk of fractures and disability and associated medical costs. Romosozumab, an anabolic agent, has been approved for the treatment of osteoporosis in postmenopausal women at high risk of fractures. However, limited data exist on its long-term effects in the Korean population, particularly regarding its impact on bone mineral density (BMD), bone turnover markers, and body composition. This study aimed to evaluate the 12-month effects of romosozumab treatment on BMD, bone turnover markers, and body composition in postmenopausal Korean women with high-fracture-risk osteoporosis (T-scores ≤ −3.0). Additionally, the impact of concomitant postmenopausal hormone therapy (MHT) on BMD changes was assessed. Methods: This multicenter, retrospective observational study included 50 postmenopausal women diagnosed with osteoporosis (T-scores ≤ −3.0) who received 12 monthly doses of romosozumab (210 mg) at two hospitals in Korea. Changes in BMD in the lumbar spine, femoral neck, and total hip were assessed using dual-energy X-ray absorptiometry (DXA). Bone turnover markers, including procollagen type 1 N-terminal propeptide (P1NP) and C-terminal telopeptide of type 1 collagen (CTX), were measured at baseline and at 3, 6, and 12 months. Changes in body composition, including the skeletal muscle index (SMI), body mass index (BMI), and visceral adipose tissue (VAT), were also analyzed. Results: After 12 months of romosozumab treatment, BMD significantly increased at the lumbar spine (14.65%), femoral neck (6.58%), and total hip (4.19%) (p < 0.05). P1NP levels increased significantly at 3 months (+37.9%), but returned to baseline at 6 months, while CTX levels continuously decreased (−27.8%) over 12 months. No significant changes were observed in SMI or BMI, but the VAT showed a slight decreasing trend (p < 0.05). Additionally, patients receiving concomitant MHT demonstrated a significantly greater increase in lumbar spine BMD compared to those receiving romosozumab alone (p < 0.05), while no significant differences were observed in femoral neck and total hip BMD. Conclusions: This study demonstrated that 12 months of romosozumab treatment significantly improved BMD and bone turnover markers in postmenopausal Korean women with severe osteoporosis. The combination of romosozumab and MHT further enhanced lumbar spine BMD gains. These findings support the use of romosozumab as an effective treatment for high-risk osteoporotic fractures in postmenopausal Korean women, and suggest potential benefits of a combined therapeutic approach. Full article
(This article belongs to the Section Obstetrics & Gynecology)
Show Figures

Figure 1

20 pages, 2575 KiB  
Review
Sclerostin and Cardiovascular Risk: Evaluating the Cardiovascular Safety of Romosozumab in Osteoporosis Treatment
by Shi-Hsun Chiu, Wen-Tien Wu, Ting-Kuo Yao, Cheng-Huan Peng and Kuang-Ting Yeh
Biomedicines 2024, 12(12), 2880; https://doi.org/10.3390/biomedicines12122880 - 18 Dec 2024
Cited by 1 | Viewed by 2907
Abstract
Background/Objectives: Osteoporosis and cardiovascular disease (CVD) share common risk factors and pathophysiological mechanisms, raising concerns about the cardiovascular implications of sclerostin inhibition. Romosozumab, a monoclonal antibody that targets sclerostin, is effective in increasing bone mineral density (BMD) and reducing fracture risk. However, evidence [...] Read more.
Background/Objectives: Osteoporosis and cardiovascular disease (CVD) share common risk factors and pathophysiological mechanisms, raising concerns about the cardiovascular implications of sclerostin inhibition. Romosozumab, a monoclonal antibody that targets sclerostin, is effective in increasing bone mineral density (BMD) and reducing fracture risk. However, evidence suggests that sclerostin inhibition may adversely affect vascular calcification, potentially increasing the risk of myocardial infarction (MI) and stroke. Methods: This review synthesizes data from clinical trials, such as ARCH, BRIDGE, and FRAME, alongside genetic studies and observational analyses, to evaluate the cardiovascular safety of romosozumab. PubMed was searched for relevant studies published within the last five years. Studies addressing the relationship between romosozumab and cardiovascular outcomes were included, emphasizing both its efficacy in osteoporosis management and potential cardiovascular risks. Results: Romosozumab significantly improves BMD and reduces fracture risk in postmenopausal women and men with osteoporosis. However, clinical trials report an increased incidence of major adverse cardiovascular events (MACE), particularly in patients with pre-existing cardiovascular conditions such as chronic kidney disease (CKD), diabetes, or prior CVD. Genetic studies indicate that SOST gene variants may also influence cardiovascular outcomes. Conclusions: While romosozumab is an effective treatment for osteoporosis, careful cardiovascular risk assessment is crucial before initiating therapy, especially for high-risk populations. Long-term studies are needed to evaluate chronic safety. Future therapeutic strategies should aim to maintain bone health while minimizing cardiovascular risks, ensuring a balance between efficacy and safety in osteoporosis treatment. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

11 pages, 6142 KiB  
Article
Sclerostin and Wnt Signaling in Idiopathic Juvenile Osteoporosis Using High-Resolution Confocal Microscopy for Three-Dimensional Analyses
by Renata C. Pereira, Kathleen J. Noche, Barbara Gales, Zhangying Chen, Isidro B. Salusky and Lauren V. Albrecht
Children 2024, 11(7), 820; https://doi.org/10.3390/children11070820 - 4 Jul 2024
Cited by 2 | Viewed by 1887
Abstract
Background: Idiopathic juvenile osteoporosis (IJO) is a rare condition characterized by low bone mass that can increase the risk of fractures in children. Treatment options for these patients are limited as the molecular mechanisms of disease initiation and progression are incompletely understood. Sclerostin [...] Read more.
Background: Idiopathic juvenile osteoporosis (IJO) is a rare condition characterized by low bone mass that can increase the risk of fractures in children. Treatment options for these patients are limited as the molecular mechanisms of disease initiation and progression are incompletely understood. Sclerostin inhibits canonical Wnt signaling, which is important for the bone formation activity of osteoblasts, and elevated sclerostin has been implicated in adult osteoporosis. Objective: To evaluate the role of sclerostin in IJO, high-resolution confocal microscopy analyses were performed on bone biopsies collected from 13 pediatric patients. Methods: Bone biopsies were stained with sclerostin, and β-catenin antibodies showed elevated expression across osteocytes and increased sclerostin-positive osteocytes in 8 of the 13 total IJO patients (62%). Results: Skeletal sclerostin was associated with static and dynamic histomorphometric parameters. Further, colocalization analyses showed that bone sclerostin colocalized with phosphorylated β-catenin, a hallmark of Wnt signaling that indicates Wnt inhibition. In contrast, sclerostin-positive osteocytes were not colocalized with an “active” unphosphorylated form of β-catenin. Conclusions: These results support a model that altered levels of sclerostin and Wnt signaling activity occur in IJO patients. Full article
(This article belongs to the Special Issue Pediatric Growth and Skeletal Disorders)
Show Figures

Figure 1

17 pages, 9458 KiB  
Article
Eldecalcitol Induces Minimodeling-Based Bone Formation and Inhibits Sclerostin Synthesis Preferentially in the Epiphyses Rather than the Metaphyses of the Long Bones in Rats
by Tomoka Hasegawa, Tomomaya Yamamoto, Hiromi Hongo, Tsuneyuki Yamamoto, Mai Haraguchi-Kitakamae, Hotaka Ishizu, Tomohiro Shimizu, Hitoshi Saito, Sadaoki Sakai, Kenji Yogo, Yoshihiro Matsumoto and Norio Amizuka
Int. J. Mol. Sci. 2024, 25(8), 4257; https://doi.org/10.3390/ijms25084257 - 11 Apr 2024
Cited by 3 | Viewed by 1467
Abstract
This study aimed to examine minimodeling-based bone formation between the epiphyses and metaphyses of the long bones of eldecalcitol (ELD)-administered ovariectomized rats. Sixteen-week-old female rats were divided into four groups: sham-operated rats receiving vehicle (Sham group), ovariectomized (OVX) rats receiving vehicle (Vehicle group), [...] Read more.
This study aimed to examine minimodeling-based bone formation between the epiphyses and metaphyses of the long bones of eldecalcitol (ELD)-administered ovariectomized rats. Sixteen-week-old female rats were divided into four groups: sham-operated rats receiving vehicle (Sham group), ovariectomized (OVX) rats receiving vehicle (Vehicle group), or ELDs (30 or 90 ng/kg BW, respectively; ELD30 and ELD90 groups). ELD administration increased bone volume and trabecular thickness, reducing the number of osteoclasts in both the epiphyses and metaphyses of OVX rats. The Sham and Vehicle groups exhibited mainly remodeling-based bone formation in both regions. The epiphyses of the ELD groups showed a significantly higher frequency of minimodeling-based bone formation than remodeling-based bone formation. In contrast, the metaphyses exhibited significantly more minimodeling-based bone formation in the ELD90 group compared with the ELD30 group. However, there was no significant difference between minimodeling-based bone formation and remodeling-based bone formation in the ELD90 group. While the minimodeling-induced new bone contained few sclerostin-immunoreactive osteocytes, the underlying pre-existing bone harbored many. The percentage of sclerostin-positive osteocytes was significantly reduced in the minimodeling-induced bone in the epiphyses but not in the metaphyses of the ELD groups. Thus, it seems likely that ELD could induce minimodeling-based bone formation in the epiphyses rather than in the metaphyses, and that ELD-driven minimodeling may be associated with the inhibition of sclerostin synthesis. Full article
(This article belongs to the Special Issue Research on Bone Cells in Health and Disease)
Show Figures

Figure 1

21 pages, 704 KiB  
Review
New Perspectives of Therapies in Osteogenesis Imperfecta—A Literature Review
by Alexandru Dinulescu, Alexandru-Sorin Păsărică, Mădălina Carp, Andrei Dușcă, Irina Dijmărescu, Mirela Luminița Pavelescu, Daniela Păcurar and Alexandru Ulici
J. Clin. Med. 2024, 13(4), 1065; https://doi.org/10.3390/jcm13041065 - 13 Feb 2024
Cited by 9 | Viewed by 7804
Abstract
(1) Background: Osteogenesis imperfecta (OI) is a rare skeletal dysplasia characterized as a heterogeneous disorder group with well-defined phenotypic and genetic features that share uncommon bone fragility. The current treatment options, medical and orthopedic, are limited and not efficient enough to improve the [...] Read more.
(1) Background: Osteogenesis imperfecta (OI) is a rare skeletal dysplasia characterized as a heterogeneous disorder group with well-defined phenotypic and genetic features that share uncommon bone fragility. The current treatment options, medical and orthopedic, are limited and not efficient enough to improve the low bone density, bone fragility, growth, and mobility of the affected individuals, creating the need for alternative therapeutic agents. (2) Methods: We searched the medical database to find papers regarding treatments for OI other than conventional ones. We included 45 publications. (3) Results: In reviewing the literature, eight new potential therapies for OI were identified, proving promising results in cells and animal models or in human practice, but further research is still needed. Bone marrow transplantation is a promising therapy in mice, adults, and children, decreasing the fracture rate with a beneficial effect on structural bone proprieties. Anti-RANKL antibodies generated controversial results related to the therapy schedule, from no change in the fracture rate to improvement in the bone mineral density resorption markers and bone formation, but with adverse effects related to hypercalcemia. Sclerostin inhibitors in murine models demonstrated an increase in the bone formation rate and trabecular cortical bone mass, and a few human studies showed an increase in biomarkers and BMD and the downregulation of resorption markers. Recombinant human parathormone and TGF-β generated good results in human studies by increasing BMD, depending on the type of OI. Gene therapy, 4-phenylbutiric acid, and inhibition of eIF2α phosphatase enzymes have only been studied in cell cultures and animal models, with promising results. (4) Conclusions: This paper focuses on eight potential therapies for OI, but there is not yet enough data for a new, generally accepted treatment. Most of them showed promising results, but further research is needed, especially in the pediatric field. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

20 pages, 65001 KiB  
Article
Novel Glycomimetics Protect against Glycated Low-Density Lipoprotein-Induced Vascular Calcification In Vitro via Attenuation of the RAGE/ERK/CREB Pathway
by Gary P. Sidgwick, Ria Weston, Ayman M. Mahmoud, Andrew Schiro, Ferdinand Serracino-Inglott, Shikha M. Tandel, Sarah Skeoch, Ian N. Bruce, Alan M. Jones, M. Yvonne Alexander and Fiona L. Wilkinson
Cells 2024, 13(4), 312; https://doi.org/10.3390/cells13040312 - 8 Feb 2024
Cited by 5 | Viewed by 2193
Abstract
Heparan sulphate (HS) can act as a co-receptor on the cell surface and alterations in this process underpin many pathological conditions. We have previously described the usefulness of mimics of HS (glycomimetics) in protection against β-glycerophosphate-induced vascular calcification and in the restoration of [...] Read more.
Heparan sulphate (HS) can act as a co-receptor on the cell surface and alterations in this process underpin many pathological conditions. We have previously described the usefulness of mimics of HS (glycomimetics) in protection against β-glycerophosphate-induced vascular calcification and in the restoration of the functional capacity of diabetic endothelial colony-forming cells in vitro. This study aims to investigate whether our novel glycomimetic compounds can attenuate glycated low-density lipoprotein (g-LDL)-induced calcification by inhibiting RAGE signalling within the context of critical limb ischemia (CLI). We used an established osteogenic in vitro vascular smooth muscle cell (VSMC) model. Osteoprotegerin (OPG), sclerostin and glycation levels were all significantly increased in CLI serum compared to healthy controls, while the vascular calcification marker osteocalcin (OCN) was down-regulated in CLI patients vs. controls. Incubation with both CLI serum and g-LDL (10 µg/mL) significantly increased VSMC calcification vs. controls after 21 days, with CLI serum-induced calcification apparent after only 10 days. Glycomimetics (C2 and C3) significantly inhibited g-LDL and CLI serum-induced mineralisation, as shown by a reduction in alizarin red (AR) staining and alkaline phosphatase (ALP) activity. Furthermore, secretion of the osteogenic marker OCN was significantly reduced in VSMCs incubated with CLI serum in the presence of glycomimetics. Phosphorylation of cyclic AMP response element-binding protein (CREB) was significantly increased in g-LDL-treated cells vs. untreated controls, which was attenuated with glycomimetics. Blocking CREB activation with a pharmacological inhibitor 666-15 replicated the protective effects of glycomimetics, evidenced by elevated AR staining. In silico molecular docking simulations revealed the binding affinity of the glycomimetics C2 and C3 with the V domain of RAGE. In conclusion, these findings demonstrate that novel glycomimetics, C2 and C3 have potent anti-calcification properties in vitro, inhibiting both g-LDL and CLI serum-induced VSMC mineralisation via the inhibition of LDLR, RAGE, CREB and subsequent expression of the downstream osteogenic markers, ALP and OCN. Full article
Show Figures

Figure 1

15 pages, 2371 KiB  
Article
Sclerostin, Osteocytes, and Wnt Signaling in Pediatric Renal Osteodystrophy
by Marciana Laster, Renata C. Pereira, Kathleen Noche, Barbara Gales, Isidro B. Salusky and Lauren V. Albrecht
Nutrients 2023, 15(19), 4127; https://doi.org/10.3390/nu15194127 - 25 Sep 2023
Cited by 3 | Viewed by 2130
Abstract
The pathophysiology of chronic kidney disease-mineral and bone disorder (CKD-MBD) is not well understood. Specific factors secreted by osteocytes are elevated in the serum of adults and pediatric patients with CKD-MBD, including FGF-23 and sclerostin, a known inhibitor of the Wnt signaling pathway. [...] Read more.
The pathophysiology of chronic kidney disease-mineral and bone disorder (CKD-MBD) is not well understood. Specific factors secreted by osteocytes are elevated in the serum of adults and pediatric patients with CKD-MBD, including FGF-23 and sclerostin, a known inhibitor of the Wnt signaling pathway. The molecular mechanisms that promote bone disease during the progression of CKD are incompletely understood. In this study, we performed a cross-sectional analysis of 87 pediatric patients with pre-dialysis CKD and post-dialysis (CKD 5D). We assessed the associations between serum and bone sclerostin levels and biomarkers of bone turnover and bone histomorphometry. We report that serum sclerostin levels were elevated in both early and late CKD. Higher circulating and bone sclerostin levels were associated with histomorphometric parameters of bone turnover and mineralization. Immunofluorescence analyses of bone biopsies evaluated osteocyte staining of antibodies towards the canonical Wnt target, β-catenin, in the phosphorylated (inhibited) or unphosphorylated (active) forms. Bone sclerostin was found to be colocalized with phosphorylated β-catenin, which suggests that Wnt signaling was inhibited. In patients with low serum sclerostin levels, increased unphosphorylated “active” β-catenin staining was observed in osteocytes. These data provide new mechanistic insight into the pathogenesis of CKD-MBD and suggest that sclerostin may offer a potential biomarker or therapeutic target in pediatric renal osteodystrophy. Full article
(This article belongs to the Section Pediatric Nutrition)
Show Figures

Figure 1

15 pages, 2000 KiB  
Article
Sirtuin 6 Overexpression Improves Rotator Cuff Tendon-to-Bone Healing in the Aged
by Young Jae Moon, Baoning Cui, Se-Young Cho, Jae Won Hwang, Hee-Chung Chung, Joseph Kwon, Duwoon Kim, Kyu Yun Jang, Jung Ryul Kim and Sung Il Wang
Cells 2023, 12(16), 2035; https://doi.org/10.3390/cells12162035 - 10 Aug 2023
Cited by 2 | Viewed by 2543
Abstract
Aging is an independent risk factor for recurrent tearing after surgical repair of rotator cuff ruptures around the tendon-to-bone area. However, aging signature factors and related mechanisms involved in the healing of the rotator cuff are still unknown. We hypothesized that differences in [...] Read more.
Aging is an independent risk factor for recurrent tearing after surgical repair of rotator cuff ruptures around the tendon-to-bone area. However, aging signature factors and related mechanisms involved in the healing of the rotator cuff are still unknown. We hypothesized that differences in proteins involved in the rotator cuff according to age may affect tendon-to-bone healing. The proteome analysis performed to identify the signature aging proteins of the rotator cuff confirmed the sirtuin signal as an age-specific protein. In particular, the expression of SIRT6 was markedly down-regulated with age. Ingenuity pathway analysis of omics data from age-dependent rat rotator cuffs and linear regression from human rotator cuffs showed SIRT6 to be closely related to the Wnt/β-catenin signal. We confirmed that overexpression of SIRT6 in the rotator cuff and primary tenocyte regulated canonical Wnt signaling by inhibiting the transcriptional expression of sclerostin, a Wnt antagonist. Finally, SIRT6 overexpression promoted tendon-to-bone healing after tenotomy with reconstruction in elderly rats. This approach is considered an effective treatment method for recovery from recurrent rotator cuff tears, which frequently occur in the elderly. Full article
(This article belongs to the Section Cellular Aging)
Show Figures

Figure 1

27 pages, 9856 KiB  
Article
Radiation Induces Bone Microenvironment Disruption by Activating the STING-TBK1 Pathway
by Yuyang Wang, Li Ren, Linshan Xu, Jianping Wang, Jianglong Zhai and Guoying Zhu
Medicina 2023, 59(7), 1316; https://doi.org/10.3390/medicina59071316 - 16 Jul 2023
Cited by 4 | Viewed by 2499
Abstract
Background and Objectives: Damage to normal bone tissue following therapeutic irradiation (IR) represents a significant concern, as IR-induced bone microenvironment disruption can cause bone loss and create a more favorable environment for tumor metastases. The aim of the present study was to [...] Read more.
Background and Objectives: Damage to normal bone tissue following therapeutic irradiation (IR) represents a significant concern, as IR-induced bone microenvironment disruption can cause bone loss and create a more favorable environment for tumor metastases. The aim of the present study was to explore the cellular regulatory mechanism of IR-induced bone microenvironment disruption to effectively prevent radiotherapy-associated adverse effects in the future. Materials and Methods: In this study, a mouse model of local IR was established via local irradiation of the left hind limb of BALB/c mice with 12 Gy X-rays, and an in vitro osteocyte (OCY) model was established by exposing osteocyte-like MLO-Y4 cells to 2, 4, and 8 Gy irradiation to analyze multicellular biological injuries and cellular senescence. Small interfering RNA (siRNA) transfection at the cellular level and a selective antagonist intervention C-176 at the animal level were used to explore the potential role of the stimulator of interferon genes (STING) on IR-induced bone microenvironment disruption. Results: The results showed that 12 Gy local IR induces multicellular dysfunction, manifested as ascension of OCYs exfoliation, activation of osteoclastogenesis, degeneration of osteogenesis and fate conversion of adipogenesis, as well as cellular senescence and altered senescence-associated secretory phenotype (SASP) secretion. Furthermore, the expression of STING was significantly elevated, both in the primary OCYs harvested from locally irradiated mice and in vitro irradiated MLO-Y4 cells, accompanied by the markedly upregulated levels of phosphorylated TANK-binding kinase 1 (P-TBK1), RANKL and sclerostin (SOST). STING-siRNA transfection in vitro restored IR-induced upregulated protein expression of P-TBK1 and RANKL, as well as the mRNA expression levels of inflammatory cytokines, such as IL-1α, IL-6 and NF-κB, accompanied by the alleviation of excessive osteoclastogenesis. Finally, administration of the STING inhibitor C-176 mitigated IR-induced activation of osteoclastogenesis and restraint of osteogenesis, ameliorating the IR-induced biological damage of OCYs, consistent with the inhibition of P-TBK1, RANKL and SOST. Conclusions: The STING-P-TBK1 signaling pathway plays a crucial role in the regulation of the secretion of inflammatory cytokines and osteoclastogenesis potential in IR-induced bone microenvironment disruption. The selective STING antagonist can be used to intervene to block the STING pathway and, thereby, repair IR-induced multicellular biological damage and mitigate the imbalance between osteoclastogenesis and osteoblastgenesis. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

10 pages, 270 KiB  
Article
Relationships between Sclerostin, Leptin and Metabolic Parameters in Non-Dialysis Chronic Kidney Disease Males
by Katarzyna Romejko, Aleksandra Rymarz, Katarzyna Szamotulska, Zbigniew Bartoszewicz and Stanisław Niemczyk
J. Pers. Med. 2023, 13(1), 31; https://doi.org/10.3390/jpm13010031 - 23 Dec 2022
Cited by 3 | Viewed by 1827
Abstract
Sclerostin is an inhibitor of the Wnt-beta-catenin pathway. The relationship between sclerostin and adipose tissue or between sclerostin and nutritional status has been the subject of research interest in the last decade. Sclerostin concentrations are elevated in patients with chronic kidney disease (CKD). [...] Read more.
Sclerostin is an inhibitor of the Wnt-beta-catenin pathway. The relationship between sclerostin and adipose tissue or between sclerostin and nutritional status has been the subject of research interest in the last decade. Sclerostin concentrations are elevated in patients with chronic kidney disease (CKD). Leptin is an adipocytokine which inhibits food intake by stimulating the satiety center in the hypothalamus. Leptin concentrations rise with the reduction of eGFR (glomerular filtration rate). The aim of this study was to investigate the possible association between sclerostin and leptin, between sclerostin and selected poor prognostic factors of CKD progression, and between sclerostin and nutritional parameters in non-dialysis CKD male patients. 101 men with non-dialysis CKD stage 3–5 were included in the study. Bioimpedance spectroscopy (BIS) was used to measure body composition. Blood samples were drawn to measure the serum concentrations of sclerostin, leptin, creatinine, hemoglobin (Hgb), parathormone (PTH), inflammatory markers, and markers of nutritional status. We also measured homeostatic model assessment of insulin resistance (HOMA-IR) as well as blood pressure. We observed a significant, positive relationship between sclerostin and age, leptin, and glycated hemoglobin (HgbA1c) concentrations. A significant, negative association was observed between sclerostin and eGFR. Sclerostin is associated with leptin in non-dialysis CKD male patients. Sclerostin is also related to metabolic disturbances such as hyperglycemia in this population. Full article
14 pages, 1290 KiB  
Review
The Role of the Innate Immune System in Wear Debris-Induced Inflammatory Peri-Implant Osteolysis in Total Joint Arthroplasty
by John Patrick Connors, John W. Stelzer, Patrick M. Garvin, Ian J. Wellington and Olga Solovyova
Bioengineering 2022, 9(12), 764; https://doi.org/10.3390/bioengineering9120764 - 4 Dec 2022
Cited by 18 | Viewed by 3379
Abstract
Periprosthetic osteolysis remains a leading complication of total hip and knee arthroplasty, often resulting in aseptic loosening of the implant and necessitating revision surgery. Wear-induced particulate debris is the main cause initiating this destructive process. The purpose of this article is to review [...] Read more.
Periprosthetic osteolysis remains a leading complication of total hip and knee arthroplasty, often resulting in aseptic loosening of the implant and necessitating revision surgery. Wear-induced particulate debris is the main cause initiating this destructive process. The purpose of this article is to review recent advances in understanding of how wear debris causes osteolysis, and emergent strategies for the avoidance and treatment of this disease. A strong activator of the peri-implant innate immune this debris-induced inflammatory cascade is dictated by macrophage secretion of TNF-α, IL-1, IL-6, and IL-8, and PGE2, leading to peri-implant bone resorption through activation of osteoclasts and inhibition of osteoblasts through several mechanisms, including the RANK/RANKL/OPG pathway. Therapeutic agents against proinflammatory mediators, such as those targeting tumor necrosis factor (TNF), osteoclasts, and sclerostin, have shown promise in reducing peri-implant osteolysis in vitro and in vivo; however, radiographic changes and clinical diagnosis often lag considerably behind the initiation of osteolysis, making timely treatment difficult. Considerable efforts are underway to develop such diagnostic tools, therapies, and identify novel targets for therapeutic intervention. Full article
Show Figures

Figure 1

15 pages, 705 KiB  
Review
Positive and Negative Regulators of Sclerostin Expression
by Rina Iwamoto, Masanori Koide, Nobuyuki Udagawa and Yasuhiro Kobayashi
Int. J. Mol. Sci. 2022, 23(9), 4895; https://doi.org/10.3390/ijms23094895 - 28 Apr 2022
Cited by 13 | Viewed by 4351
Abstract
Sclerostin is secreted from osteocytes, binds to the Wnt co-receptor Lrp5/6, and affects the interaction between Wnt ligands and Lrp5/6, which inhibits Wnt/β-catenin signals and suppresses bone formation. Sclerostin plays an important role in the preservation of bone mass by functioning as a [...] Read more.
Sclerostin is secreted from osteocytes, binds to the Wnt co-receptor Lrp5/6, and affects the interaction between Wnt ligands and Lrp5/6, which inhibits Wnt/β-catenin signals and suppresses bone formation. Sclerostin plays an important role in the preservation of bone mass by functioning as a negative regulator of bone formation. A sclerostin deficiency causes sclerosteosis, which is characterized by an excess bone mass with enhanced bone formation in humans and mice. The expression of sclerostin is positively and negatively regulated by many factors, which also govern bone metabolism. Positive and negative regulators of sclerostin expression and their effects are introduced and discussed herein based on recent and previous findings, including our research. Full article
(This article belongs to the Special Issue Bone and Cartilage Biology)
Show Figures

Figure 1

15 pages, 13420 KiB  
Article
Effect of Oxidative Stress-Induced Apoptosis on Active FGF23 Levels in MLO-Y4 Cells: The Protective Role of 17-β-Estradiol
by Vladana Domazetovic, Irene Falsetti, Simone Ciuffi, Teresa Iantomasi, Gemma Marcucci, Maria Teresa Vincenzini and Maria Luisa Brandi
Int. J. Mol. Sci. 2022, 23(4), 2103; https://doi.org/10.3390/ijms23042103 - 14 Feb 2022
Cited by 13 | Viewed by 2526
Abstract
The discovery that osteocytes secrete phosphaturic fibroblast growth factor 23 (FGF23) has defined bone as an endocrine organ. However, the autocrine and paracrine functions of FGF23 are still unknown. The present study focuses on the cellular and molecular mechanisms involved in the complex [...] Read more.
The discovery that osteocytes secrete phosphaturic fibroblast growth factor 23 (FGF23) has defined bone as an endocrine organ. However, the autocrine and paracrine functions of FGF23 are still unknown. The present study focuses on the cellular and molecular mechanisms involved in the complex control of FGF23 production and local bone remodeling functions. FGF23 was assayed using ELISA kit in the presence or absence of 17β–estradiol in starved MLO-Y4 osteocytes. In these cells, a relationship between oxidative stress-induced apoptosis and up-regulation of active FGF23 levels due to MAP Kinases activation with involvement of the transcriptional factor (NF-kB) has been demonstrated. The active FGF23 increase can be due to up-regulation of its expression and post-transcriptional modifications. 17β–estradiol prevents the increase of FGF23 by inhibiting JNK and NF-kB activation, osteocyte apoptosis and by the down-regulation of osteoclastogenic factors, such as sclerostin. No alteration in the levels of dentin matrix protein 1, a FGF23 negative regulator, has been determined. The results of this study identify biological targets on which drugs and estrogen may act to control active FGF23 levels in oxidative stress-related bone and non-bone inflammatory diseases. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

Back to TopTop