Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (372)

Search Parameters:
Keywords = scattered surface wave

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9118 KiB  
Article
Scattering Characteristics of a Circularly Polarized Bessel Pincer Light-Sheet Beam Interacting with a Chiral Sphere of Arbitrary Size
by Shu Zhang, Shiguo Chen, Qun Wei, Renxian Li, Bing Wei and Ningning Song
Micromachines 2025, 16(8), 845; https://doi.org/10.3390/mi16080845 (registering DOI) - 24 Jul 2025
Abstract
The scattering interaction between a circularly polarized Bessel pincer light-sheet beam and a chiral particle is investigated within the framework of generalized Lorenz–Mie theory (GLMT). The incident electric field distribution is rigorously derived via the vector angular spectrum decomposition method (VASDM), with subsequent [...] Read more.
The scattering interaction between a circularly polarized Bessel pincer light-sheet beam and a chiral particle is investigated within the framework of generalized Lorenz–Mie theory (GLMT). The incident electric field distribution is rigorously derived via the vector angular spectrum decomposition method (VASDM), with subsequent determination of the beam-shape coefficients (BSCs) pmnu and qmnu through multipole expansion in the basis of vector spherical wave functions (VSWFs). The expansion coefficients for the scattered field (AmnsBmns) and interior field (AmnBmn) are derived by imposing boundary conditions. Simulations highlight notable variations in the scattering field, near-surface field distribution, and far-field intensity, strongly influenced by the dimensionless size parameter ka, chirality κ, and beam parameters (beam order l and beam scaling parameter α0). These findings provide insights into the role of chirality in modulating scattering asymmetry and localization effects. The results are particularly relevant for applications in optical manipulation and super-resolution imaging in single-molecule microbiology. Full article
Show Figures

Figure 1

30 pages, 9107 KiB  
Article
Numerical Far-Field Investigation into Guided Waves Interaction at Weak Interfaces in Hybrid Composites
by Saurabh Gupta, Mahmood Haq, Konstantin Cvetkovic and Oleksii Karpenko
J. Compos. Sci. 2025, 9(8), 387; https://doi.org/10.3390/jcs9080387 - 22 Jul 2025
Abstract
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the [...] Read more.
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the performance of their constituents in demanding applications. Despite these advantages, inspecting such thin, layered structures remains a significant challenge, particularly when they are difficult or impossible to access. As with any new invention, they always come with challenges. This study examines the effectiveness of the fundamental anti-symmetric Lamb wave mode (A0) in detecting weak interfacial defects within Carall laminates, a type of hybrid fiber metal laminate (FML). Delamination detectability is analyzed in terms of strong wave dispersion observed downstream of the delaminated sublayer, within a region characterized by acoustic distortion. A three-dimensional finite element (FE) model is developed to simulate mode trapping and full-wavefield local displacement. The approach is validated by reproducing experimental results reported in prior studies, including the author’s own work. Results demonstrate that the A0 mode is sensitive to delamination; however, its lateral resolution depends on local position, ply orientation, and dispersion characteristics. Accurately resolving the depth and extent of delamination remains challenging due to the redistribution of peak amplitude in the frequency domain, likely caused by interference effects in the acoustically sensitive delaminated zone. Additionally, angular scattering analysis reveals a complex wave behavior, with most of the energy concentrated along the centerline, despite transmission losses at the metal-composite interfaces in the Carall laminate. The wave interaction with the leading and trailing edges of the delaminations is strongly influenced by the complex wave interference phenomenon and acoustic mismatched regions, leading to an increase in dispersion at the sublayers. Analytical dispersion calculations clarify how wave behavior influences the detectability and resolution of delaminations, though this resolution is constrained, being most effective for weak interfaces located closer to the surface. This study offers critical insights into how the fundamental anti-symmetric Lamb wave mode (A0) interacts with delaminations in highly attenuative, multilayered environments. It also highlights the challenges in resolving the spatial extent of damage in the long-wavelength limit. The findings support the practical application of A0 Lamb waves for structural health assessment of hybrid composites, enabling defect detection at inaccessible depths. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

28 pages, 14374 KiB  
Article
Novel Airfoil-Shaped Radar-Absorbing Inlet Grilles on Aircraft Incorporating Metasurfaces: Multidisciplinary Design and Optimization Using EHVI–Bayesian Method
by Xufei Wang, Yongqiang Shi, Qingzhen Yang, Huimin Xiang and Saile Zhang
Sensors 2025, 25(14), 4525; https://doi.org/10.3390/s25144525 - 21 Jul 2025
Viewed by 139
Abstract
Aircraft, as electromagnetically complex targets, have radar cross-sections (RCSs) that are influenced by various factors, with the inlet duct being a critical component that often serves as a primary source of electromagnetic scattering, significantly impacting the scattering characteristics. In light of the conflict [...] Read more.
Aircraft, as electromagnetically complex targets, have radar cross-sections (RCSs) that are influenced by various factors, with the inlet duct being a critical component that often serves as a primary source of electromagnetic scattering, significantly impacting the scattering characteristics. In light of the conflict between aerodynamic performance and electromagnetic characteristics in the design of aircraft engine inlet grilles, this paper proposes a metasurface radar-absorbing inlet grille (RIG) solution based on a NACA symmetric airfoil. The RIG adopts a sandwich structure consisting of a polyethylene terephthalate (PET) dielectric substrate, a copper zigzag metal strip array, and an indium tin oxide (ITO) resistive film. By leveraging the principles of surface plasmon polaritons, electromagnetic wave absorption can be achieved. To enhance the design efficiency, a multi-objective Bayesian optimization framework driven by the expected hypervolume improvement (EHVI) is constructed. The results show that, compared with a conventional rectangular cross-section grille, an airfoil-shaped grille under the same constraints will reduce both aerodynamic losses and the absorption bandwidth. After 100-step EHVI–Bayesian optimization, the optimized balanced model attains a 57.79% reduction in aerodynamic loss relative to the rectangular-shaped grille, while its absorption bandwidth increases by 111.99%. The RCS exhibits a reduction of over 8.77 dBsm in the high-frequency band. These results confirm that the proposed optimization design process can effectively balance the conflict between aerodynamic performance and stealth performance for RIGs, reducing the signal strength of aircraft engine inlets. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

43 pages, 6150 KiB  
Article
The Effect of Surface Roughness on Supersonic Nozzle Flow and Electron Dispersion at Low Pressure Conditions
by Pavla Šabacká, Jiří Maxa, Robert Bayer, Tomáš Binar and Petr Bača
Sensors 2025, 25(13), 4204; https://doi.org/10.3390/s25134204 - 5 Jul 2025
Viewed by 303
Abstract
This study investigates supersonic flow within a nozzle under low-pressure conditions at the continuum mechanics boundary. This phenomenon is commonly encountered in applications such as the differentially pumped chamber of an Environmental Scanning Electron Microscope (ESEM), which employs an aperture to separate two [...] Read more.
This study investigates supersonic flow within a nozzle under low-pressure conditions at the continuum mechanics boundary. This phenomenon is commonly encountered in applications such as the differentially pumped chamber of an Environmental Scanning Electron Microscope (ESEM), which employs an aperture to separate two regions with a great pressure gradient. The nozzle geometry and flow control in this region can significantly influence the scattering and loss of the primary electron beam traversing the differentially pumped chamber and aperture. To this end, an experimental chamber was designed to explore aspects of this low-pressure regime, characterized by a varying ratio of inertial to viscous forces. The initial experimental results obtained using pressure sensors from the fabricated experimental chamber were utilized to refine the Ansys Fluent simulation setup, and in this combined approach, initial analyses of supersonic flow and shock waves in low-pressure environments were conducted. The refined Ansys Fluent system demonstrated a very good correspondence with the experimental findings. Subsequently, an analysis of the influence of surface roughness on the resulting flow behavior in low-pressure conditions was performed on this refined model using the refined CFD model. Based on the obtained results, a comparison of the influence of nozzle roughness on the resulting electron beam scattering was conducted for selected low-pressure variants relevant to the operational conditions of the Environmental Scanning Electron Microscope (ESEM). The influence of roughness at elevated working pressures within the ESEM operating regime on reduced electron beam scattering has been demonstrated. At lower pressure values within the ESEM operating regime, this influence is significantly diminished. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2025)
Show Figures

Figure 1

12 pages, 2939 KiB  
Article
A SERS Sensor Prepared via Electrostatic Self-Assembly of Ta4C3@AgNP Nanocomposites for Detection of Ziram
by Kai Hua, Liang Li and Pei Liang
Biosensors 2025, 15(7), 426; https://doi.org/10.3390/bios15070426 - 3 Jul 2025
Viewed by 287
Abstract
MXenes are a class of two-dimensional materials exhibiting excellent surface-enhanced Raman scattering (SERS) performance. Currently, the SERS studies of MXenes have been primarily focused on those with M2X and M3X2 structural motifs. In order to expand the SERS [...] Read more.
MXenes are a class of two-dimensional materials exhibiting excellent surface-enhanced Raman scattering (SERS) performance. Currently, the SERS studies of MXenes have been primarily focused on those with M2X and M3X2 structural motifs. In order to expand the SERS sensing application based on MXenes, in this paper, a SERS sensor made of Ta4C3@AgNP nanocomposite material was fabricated by electrostatic self-assembly. Tests such as different concentrations of R6G probe molecules showed that the minimum detection limit of this SERS sensor was 10−8 M, demonstrating excellent sensitivity. When different test areas are selected, the relative error of intensity under the same wave number is less than 10.7%, showing good repeatability and consistency. Furthermore, the Ta4C3@AgNP nanocomposite SERS sensor was used to detect the pesticide Ziram, and a quantitative model was established. Application detection indicates that this sensor has good sensitivity for the pesticide Ziram, and the minimum detection limit was 10−6 M, which exceeded national standard requirements. The findings of this study have potential application value in the fields of food safety and environmental protection. Full article
(This article belongs to the Special Issue Surface-Enhanced Raman Scattering in Biosensing Applications)
Show Figures

Figure 1

21 pages, 6919 KiB  
Article
High-Resolution Seismic Detection Techniques of the Pebble Layer of Baodun Site City Wall, Sichuan, China
by Lian Jiang, Quanfeng Wang, Yongfa Wang, Jingxin Wu, Tieyong Bai and Miao Tang
Heritage 2025, 8(6), 215; https://doi.org/10.3390/heritage8060215 - 6 Jun 2025
Viewed by 1260
Abstract
This study aims to overcome the technical bottleneck of non-invasive differentiation between the rammed earth layer and pebble layer in complex shallow subsurface environments, particularly focusing on the challenge of detecting highly heterogeneous pebble layers with complex wavefield characteristics. Using the western city [...] Read more.
This study aims to overcome the technical bottleneck of non-invasive differentiation between the rammed earth layer and pebble layer in complex shallow subsurface environments, particularly focusing on the challenge of detecting highly heterogeneous pebble layers with complex wavefield characteristics. Using the western city wall of the Baodun site (Xinjin, Sichuan, China) as a case study, we introduce a high-resolution seismic detection technique combined with controllable high-frequency seismic source excitation to investigate the response characteristics of high-frequency components and energy variations of seismic waves in different strata, thereby revealing differences in physical properties between the rammed earth layer and pebble layer. Through high-frequency data acquisition, specialized processing, and interpretative analysis of seismic data, we successfully distinguish the two strata and delineate pebble-related anomalous zones. The results also indicate that, due to complex geological conditions, the reflection and refraction patterns of seismic waves in the pebble layer are exceptionally intricate. Moreover, the interplay of abrupt seismic velocity variations, interference waves, and other contributing factors leads to pronounced heterogeneity and strong scattering characteristics in the seismic data across the time, frequency, and phase domains. This research overcomes the limitations of conventional geophysical methods and confirms the applicability of high-frequency seismic techniques to complex near-surface archaeological contexts. It provides robust scientific support for the archaeological study of the Baodun site and offers a methodological reference for subsurface mapping of pebble layer in prehistoric urban landscapes. Full article
Show Figures

Figure 1

15 pages, 4793 KiB  
Article
Design of Broad-Angle Low-RCS Microstrip Antenna for Dual-Polarization Using Characteristic Mode Analysis
by Yakun Liu, Biao Du and Dan Jia
Electronics 2025, 14(11), 2121; https://doi.org/10.3390/electronics14112121 - 23 May 2025
Cited by 1 | Viewed by 289
Abstract
In this paper, a broad-angle low-scattering microstrip antenna for dual-polarization is designed based on characteristic mode analysis (CMA). The modal analysis of the reference antenna under dual-polarization incident plane waves is first carried out to guide radar cross section (RCS) reduction (RCSR) design [...] Read more.
In this paper, a broad-angle low-scattering microstrip antenna for dual-polarization is designed based on characteristic mode analysis (CMA). The modal analysis of the reference antenna under dual-polarization incident plane waves is first carried out to guide radar cross section (RCS) reduction (RCSR) design in broad-angle range. Then, through the modifications on the radiation patch and ground, the modal currents of the important scattering modes in broad-angle range are cut off. Hence, a broad-angle low-RCS aperture-coupled microstrip antenna for dual-polarization is obtained. However, the radiation performance decreases due to the ground modification. A frequency selective surface (FSS) structure is designed and fills in the ground modification areas. With the FSS structure, the proposed antenna shows a good radiation and scattering performance. A low-RCS antenna prototype is fabricated and tested. The antenna works from 2.79 GHz to 2.87 GHz (2.82%), and the gain is 6 dBi at 2.84 GHz. For the co-polarization, it can realize RCSR from 0° to 90°, and the average and peak RCSRs are 9.0 dB and 17 dB, respectively. For the cross-polarization, it can realize RCSR from 0° to 18° and 22° to 90°, and the average and peak RCSRs are 5.0 dB and 20 dB, respectively. In the meantime, its transmission and radiation performance keeps well. The measured and simulated results are in good agreement, which validates the design. Full article
Show Figures

Figure 1

31 pages, 9296 KiB  
Article
An Experimental and Numerical Analysis of the Influence of Surface Roughness on Supersonic Flow in a Nozzle Under Atmospheric and Low-Pressure Conditions
by Pavla Šabacká, Jiří Maxa, Robert Bayer, Tomáš Binar, Petr Bača, Jana Švecová, Jaroslav Talár and Martin Vlkovský
Technologies 2025, 13(4), 160; https://doi.org/10.3390/technologies13040160 - 16 Apr 2025
Cited by 1 | Viewed by 632
Abstract
The ongoing research in Environmental Scanning Electron Microscopy (ESEM) is contributed to in this paper. Specifically, this study investigates supersonic flow in a nozzle aperture under low-pressure conditions at the continuum mechanics boundary. This phenomenon is prevalent in the differentially pumped chamber of [...] Read more.
The ongoing research in Environmental Scanning Electron Microscopy (ESEM) is contributed to in this paper. Specifically, this study investigates supersonic flow in a nozzle aperture under low-pressure conditions at the continuum mechanics boundary. This phenomenon is prevalent in the differentially pumped chamber of an ESEM, which separates two regions with a significant pressure gradient using an aperture with a pressure ratio of approximately 10:1 in the range of 10,000 to 100 Pa. The influence of nozzle wall roughness on the boundary layer characteristics and its subsequent impact on the oblique shock wave behavior, and consequently, on the static pressure distribution along the flow axis, is solved in this paper. It demonstrates the significant effect of varying inertial-to-viscous force ratios at low pressures on the resulting impact of roughness on the oblique shock wave characteristics. The resulting oblique shock wave distribution significantly affects the static pressure profile along the axis, which can substantially influence the scattering and loss of the primary electron beam traversing the differential pumping stage. This, in turn, affects the sharpness of the resulting image. The boundary layer within the nozzle plays a crucial role in determining the overall flow characteristics and indirectly affects beam scattering. This study examines the influence of surface roughness and quality of the manufactured nozzle on the resulting flow behavior. The initial results obtained from experimental measurements using pressure sensors, when compared to CFD simulation results, demonstrate the necessity of accurately setting roughness values in CFD calculations to ensure accurate results. The CFD simulation has been validated against experimental data, enabling further simulations. The research combines physical theory, CFD simulations, advanced experimental sensing techniques, and precision manufacturing technologies for the critical components of the experimental setup. Full article
(This article belongs to the Special Issue New Technologies for Sensors)
Show Figures

Figure 1

14 pages, 3138 KiB  
Article
Optical and Transport Properties of ZnO Thin Films Prepared by Reactive Pulsed Mid-Frequency Sputtering Combined with RF ECWR Plasma
by Zdeněk Remeš, Zdeněk Hubička and Pavel Hubík
Nanomaterials 2025, 15(8), 590; https://doi.org/10.3390/nano15080590 - 11 Apr 2025
Viewed by 466
Abstract
The study explores the optical and transport properties of polycrystalline ZnO thin films prepared using reactive pulsed mid-frequency sputtering with RF electron cyclotron wave resonance (ECWR) plasma. This deposition method increases the ionization degree of sputtered particles, the dissociation of reactive gas and [...] Read more.
The study explores the optical and transport properties of polycrystalline ZnO thin films prepared using reactive pulsed mid-frequency sputtering with RF electron cyclotron wave resonance (ECWR) plasma. This deposition method increases the ionization degree of sputtered particles, the dissociation of reactive gas and the plasma density of pulsed reactive magnetron plasma. Optical absorption spectra reveal a sharp Urbach edge, indicating low valence band disorder. Lattice disorder and deep defect concentration are more likely to occur in samples with higher roughness. PL analysis at low temperature reveals in all samples a relatively slow (μs) red emission band related to deep bulk defects. The fast (sub-ns), surface-related blue PL band was observed in some samples. Blue PL disappeared after annealing in air at 500 °C. Room temperature Hall effect measurements confirm n-type conductivity, though with relatively low mobility, suggesting defect-related scattering. Persistent photoconductivity was observed under UV illumination, indicating deep trap states affecting charge transport. These results highlight the impact of deposition and post-treatment on polycrystalline ZnO thin films, offering insights into optimizing their performance for optoelectronic applications, such as UV detectors and transparent conductive oxides. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

15 pages, 13643 KiB  
Article
Calibration of High-Frequency Reflectivity of Sediments with Different Grain Sizes Using HF-SSBP
by Shuai Xiong, Xinghui Cao, Zhiguo Qu, Dapeng Zou, Huancheng Zhen and Tong Zeng
J. Mar. Sci. Eng. 2025, 13(4), 741; https://doi.org/10.3390/jmse13040741 - 8 Apr 2025
Viewed by 348
Abstract
Accurate and efficient acquisition of the acoustic reflection properties of sediments with different grain sizes is key for sediment substrate classification and the construction of seafloor acoustic scattering models. To accurately measure surface sediments on the seafloor, an in-depth investigation of the acoustic [...] Read more.
Accurate and efficient acquisition of the acoustic reflection properties of sediments with different grain sizes is key for sediment substrate classification and the construction of seafloor acoustic scattering models. To accurately measure surface sediments on the seafloor, an in-depth investigation of the acoustic properties of sediments with different grain sizes at different measurement distances is an indispensable prerequisite. While previous studies have extensively explored the acoustic reflection properties of sediments in mid- and low-frequency bands (e.g., 6–85 kHz), research on high-frequency reflectivity (95–125 kHz) remains limited. Existing equipment often suffers from large beam angles (e.g., >10°), leading to challenges in standardising laboratory measurements. To this end, we developed a technique using a high-frequency submersible sub-bottom profiler (HF-SSBP) to measure the high-frequency reflection intensity of homogeneous sediments screened by grain size. To ensure stable measurements of the high-frequency reflection intensity, we conducted experiments using standard acrylic plates. This demonstrates the dependability of the HF-SSBP and determines the absolute measurement error of the HF-SSBP. Variations in radiofrequency reflection intensity across different sediment types with different grain sizes in a frequency range of 95–125 kHz were investigated. The reflectance amplitude was measured and the reflectance coefficients were calculated for six uniform sediments with different grain sizes ranging from 0.1–0.3 to 2.0–2.5 mm. The scattering intensity of the six sediments with a uniform grain size distribution at the same measurement distance varies to some extent. There is variation in the intensity of acoustic wave reflections for different grain sizes, but some of the differences are not statistically significant. The dispersion coefficients of the acoustic reflection intensities for all sediments, except for those with a grain size of 1.0–1.5 mm, are less than 5% at different measurement distances. These coefficients are almost independent of the detection distance. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

18 pages, 1807 KiB  
Article
Digital Twins for 3D Confocal Microscopy: Near-Field, Far-Field, and Comparison with Experiments
by Poul-Erik Hansen, Tobias Pahl, Liwei Fu, Ida Nielsen, Felix Rosenthal, Stephan Reichelt, Peter Lehmann and Astrid Tranum Rømer
Sensors 2025, 25(7), 2001; https://doi.org/10.3390/s25072001 - 22 Mar 2025
Viewed by 629
Abstract
To push the boundaries of confocal microscopy beyond its current limitations by predicting sensor responses for complex surface geometries, we build digital twins using three rigorous models, the finite element method (FEM), Fourier modal method (FMM), and boundary element method (BEM) to model [...] Read more.
To push the boundaries of confocal microscopy beyond its current limitations by predicting sensor responses for complex surface geometries, we build digital twins using three rigorous models, the finite element method (FEM), Fourier modal method (FMM), and boundary element method (BEM) to model light–surface interactions. Fourier optics are then used to calculate the sensor signals at the back focal plane and at the detector. A 3D illumination model is applied to 2D periodic structures for FEM and FMM modelings and to 3D aperiodic structures for BEM modeling. The lateral and vertical scanning processes of the confocal microscope are achieved through focal-point shifts of the objective, using plane-wave illuminations with varying incident and azimuthal angles. This approach reduces the need for repeated, time-intensive rigorous simulations of the scattering process when a fine scanning is desired. Furthermore, we give an in-depth description of a novel confocal microscopy method using FMM. For rectangular grating surfaces, the three models yield identical, highly accurate results, as validated by measured results. Simulations of the instrument transfer function, tilted gratings, and gratings with edge rounding offer insights into some experimentally observed effects. This research therefore provides a promising approach for correcting systematic errors in confocal microscopy. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

10 pages, 5038 KiB  
Communication
ITO Meta-Absorber-Loaded Conformal UHF Monopole Antenna with Wide-Angel RCS Reduction
by Pan Lu, Jiuhao Gong, Xiaona Liu, Yuanxi Cao, Anxue Zhang and Sen Yan
Materials 2025, 18(6), 1379; https://doi.org/10.3390/ma18061379 - 20 Mar 2025
Viewed by 486
Abstract
In this paper, a conformal UHF antenna with a wide-angle radar cross section (RCS) reduction capability is proposed. The radiator of the design is a planar monopole antenna. Since the large physical size of the antenna in UHF band can generate a scatter [...] Read more.
In this paper, a conformal UHF antenna with a wide-angle radar cross section (RCS) reduction capability is proposed. The radiator of the design is a planar monopole antenna. Since the large physical size of the antenna in UHF band can generate a scatter beam with a large RCS in the high operating frequency of radars and other sensing applications, i.e., the X band, two types of ITO (Indium Tin Oxide) meta-absorber are proposed and loaded onto the monopole antenna to suppress the scatter. For the incident beam around the direction orthogonal to the radiator plane, the periodical meta-absorber can realize around a 20 dB RCS reduction in the X band. The incident wave around the parallel direction of the radiator is absorbed by the taper meta-absorber, which can greatly suppress the surface and then reduce the RCS in the horizontal plane. The combined effect means the antenna can achieve a wide-angle RCS reduction. It should be noted that the antenna can still produce a high-efficiency omnidirectional beam after the lossy meta-absorber is loaded. In our opinion, the advantages of the proposed antenna design, including good radiation performance in UHF band and high RCS reduction in X band, make it a suitable candidate for airborne and drone applications. Full article
(This article belongs to the Special Issue Advancements in Optical Materials and Photonic Device Technologies)
Show Figures

Figure 1

19 pages, 1656 KiB  
Article
Ultrasonic Time-of-Flight Diffraction Imaging Enhancement for Pipeline Girth Weld Testing via Time-Domain Sparse Deconvolution and Frequency-Domain Synthetic Aperture Focusing
by Eryong Wu, Ye Han, Bei Yu, Wei Zhou and Shaohua Tian
Sensors 2025, 25(6), 1932; https://doi.org/10.3390/s25061932 - 20 Mar 2025
Cited by 1 | Viewed by 432
Abstract
Ultrasonic TOFD imaging, as an important non-destructive testing method, has a wide range of applications in pipeline girth weld inspection and testing. Due to the limited bandwidth of ultrasonic transducers, near-surface defects in the weld are masked and cannot be recognized, resulting in [...] Read more.
Ultrasonic TOFD imaging, as an important non-destructive testing method, has a wide range of applications in pipeline girth weld inspection and testing. Due to the limited bandwidth of ultrasonic transducers, near-surface defects in the weld are masked and cannot be recognized, resulting in poor longitudinal resolution. Affected by the inherent diffraction effect of scattered acoustic waves, defect images have noticeable trailing, resulting in poor transverse resolution of TOFD imaging and making quantitative defect detection difficult. In this paper, based on the assumption of the sparseness of ultrasonic defect distribution, by constructing a convolutional model of the ultrasonic TOFD signal, the Orthogonal Matching Pursuit (OMP) sparse deconvolution algorithm is utilized to enhance the longitudinal resolution. Based on the synthetic aperture acoustic imaging model, in the wavenumber domain, backpropagation inference is implemented through phase transfer technology to eliminate the influence of diffraction effects and enhance transverse resolution. On this basis, the time-domain sparse deconvolution and frequency-domain synthetic aperture focusing methods mentioned above are combined to enhance the resolution of ultrasonic TOFD imaging. The simulation and experimental results indicate that this technique can outline the shape of defects with fine detail and improve image resolution by about 35%. Full article
(This article belongs to the Special Issue Ultrasound Imaging and Sensing for Nondestructive Testing)
Show Figures

Figure 1

31 pages, 14095 KiB  
Article
Range and Wave Height Corrections to Account for Ocean Wave Effects in SAR Altimeter Measurements Using Neural Network
by Jiaxue Wang, Maofei Jiang and Ke Xu
Remote Sens. 2025, 17(6), 1031; https://doi.org/10.3390/rs17061031 - 15 Mar 2025
Viewed by 644
Abstract
Compared to conventional pulse-limited altimeters (i.e., low-resolution mode, LRM), the synthetic aperture radar (SAR, i.e., high-resolution mode, HRM) altimeter offers superior precision and along-track resolution abilities. However, because the SAR altimeter relies on Doppler shifts caused by the relative movement between radar scattering [...] Read more.
Compared to conventional pulse-limited altimeters (i.e., low-resolution mode, LRM), the synthetic aperture radar (SAR, i.e., high-resolution mode, HRM) altimeter offers superior precision and along-track resolution abilities. However, because the SAR altimeter relies on Doppler shifts caused by the relative movement between radar scattering points and the altimeter antenna, the geophysical parameters obtained by the SAR altimeter are sensitive to the direction of ocean wave movements driven by the wind and waves. Both practice and theory have shown that the wind and wave effects have a greater impact on HRM data than LRM. LRM values of range and significant wave height (SWH) from modern retracking are the best representations there are of these quantities, and this study aims to bring HRM data into line with them. In this study, wind and wave effects in SAR altimeter measurements were analyzed and corrected. The radar altimeter onboard the Sentinel-6 satellite is the first SAR altimeter to operate in an interleaved open burst mode. It has the capability of simultaneous generation of both LRM and HRM data. This study utilizes Sentinel-6 altimetry data and ERA5 re-analysis data to identify the influence of ocean waves. The analysis is based on the altimeter range and SWH differences between the HRM and LRM measurements with respect to different geophysical parameters derived from model data. Results show that both HRM range and SWH measurements are impacted by SWH and wind speed, and the HRM SWH measurements are also significantly impacted by vertical velocity. An upwave/downwave bias between HRM and LRM range is observed. To reduce wave impact on the SAR altimeter measurements, a back-propagation neural network (BPNN) method is proposed to correct the HRM range and SWH measurements. Based on Sentinel-6 measurements and ERA5 re-analysis data, our corrections significantly reduce biases between LRM and HRM range and SWH values. Finally, the accuracies of the sea surface height (SSH) and SWH measurements after correction are assessed using crossover analysis and compared against NDBC buoy data. The standard deviation (STD) of the HRM SSH differences at crossovers has no significant changes before (3.97 cm) and after (3.94 cm) correction. In comparison to the NDBC data, the root mean square error (RMSE) of the corrected HRM SWH data is 0.187 m, which is significantly better than that with no correction (0.265 m). Full article
Show Figures

Graphical abstract

18 pages, 4102 KiB  
Review
Research Progress on FSS Stealth Radome
by Yong-Xing Che, Shi-Ji Wu, Ming Li and Yong-Ling Ban
Electronics 2025, 14(6), 1132; https://doi.org/10.3390/electronics14061132 - 13 Mar 2025
Cited by 3 | Viewed by 1534
Abstract
Radome stealth technology is a key research area in aircraft stealth design. Traditional aircraft stealth methods primarily focus on optimizing the shape to scatter radar waves and using absorbing materials to absorb radar waves. However, when these methods are applied to radomes, they [...] Read more.
Radome stealth technology is a key research area in aircraft stealth design. Traditional aircraft stealth methods primarily focus on optimizing the shape to scatter radar waves and using absorbing materials to absorb radar waves. However, when these methods are applied to radomes, they can negatively impact antenna performance. By combining Frequency-Selective Surface (FSS) technology with radome design, it is possible to ensure good transmission performance for the antenna within its operating frequency range while simultaneously reducing the radar cross-section outside the operating frequency range, achieving an integrated design for both transmission and stealth. This paper outlines the technical approaches for radome stealth, reviews the research status of scattering stealth radomes and absorbing stealth radomes based on FSS both domestically and internationally, and provides an outlook on the future development of FSS radomes from the perspectives of omnidirectional broadband, conformal design, and intelligent control. Full article
Show Figures

Figure 1

Back to TopTop