Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,693)

Search Parameters:
Keywords = scan technique

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3149 KB  
Article
Screening, Identification, and Degradation Mechanism of Polyester Fiber-Degrading Bacteria
by Zixuan Chen, Jing Tang, Shengjuan Peng, Qin Chen, Jianfeng Bai and Weihua Gu
Microorganisms 2026, 14(1), 207; https://doi.org/10.3390/microorganisms14010207 - 16 Jan 2026
Abstract
Polyester fibers are extensively used in textiles, packaging, and industrial applications due to their durability and excellent mechanical properties. However, high-crystallinity polyester fibers represent a major challenge in plastic waste management due to their resistance to biodegradation. This study evaluated the biodegradation potential [...] Read more.
Polyester fibers are extensively used in textiles, packaging, and industrial applications due to their durability and excellent mechanical properties. However, high-crystallinity polyester fibers represent a major challenge in plastic waste management due to their resistance to biodegradation. This study evaluated the biodegradation potential of environmental Bacillus isolates, obtained from mold-contaminated black bean plastic bags, toward polyethylene terephthalate (PET) and industrial-grade polyester fibers under mesophilic conditions. Among thirteen isolates, five (Bacillus altitudinis N5, Bacillus subtilis N6, and others) exhibited measurable degradation within 30 days, with mass losses up to 5–6% and corresponding rate constants of 0.04–0.05 day−1. A combination of complementary characterization techniques, including mass loss analysis, scanning electron microscopy (SEM), gel permeation chromatography (GPC), and gas chromatography/mass spectrometry (GC/MS), together with Fourier-transform infrared spectroscopy (FTIR), thermogravimetric/differential scanning calorimetry (TGA/DSC), and water contact angle (WCA) analysis, was employed to evaluate the biodegradation behavior of polyester fibers. Cross-analysis of mass loss, surface morphology, molecular weight reduction, and degradation products suggests a surface erosion-dominated degradation process, accompanied by ester-bond hydrolysis and preferential degradation of amorphous regions. FTIR, TGA/DSC, and WCA analyses further reflected chemical, thermal, and surface property changes induced by biodegradation rather than directly defining the degradation mechanism. The findings highlight the capacity of mesophilic Bacillus species to partially depolymerize polyester fibers under mild environmental conditions, providing strain resources and mechanistic insight for developing low-energy bioprocesses for polyester fiber waste management. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

19 pages, 2956 KB  
Article
Mechanisms and Efficacy of Thermally Modified Dolomite-Rich Phosphate Tailings as a Novel Adsorbent for Phosphorus Removal
by Yongjie Guo, Caixia Guo, Jiangli Li, Yuanchong Huang, Shuai Xu, Xing Zhao and Kunzhi Li
Water 2026, 18(2), 235; https://doi.org/10.3390/w18020235 - 16 Jan 2026
Abstract
The global environmental challenges of solid waste accumulation and aquatic eutrophication demand innovative and sustainable strategies. This study introduces a circular “waste-treats-waste” approach by converting dolomite-rich phosphate tailings (PT), a widespread industrial by-product, into a high-value adsorbent for phosphorus (P) removal. Thermal modification [...] Read more.
The global environmental challenges of solid waste accumulation and aquatic eutrophication demand innovative and sustainable strategies. This study introduces a circular “waste-treats-waste” approach by converting dolomite-rich phosphate tailings (PT), a widespread industrial by-product, into a high-value adsorbent for phosphorus (P) removal. Thermal modification at 950 °C for 1 h dramatically enhanced the adsorption capacity by approximately 45 times, from 2.52 mg/g (raw PT) to 112.41 mg/g. This performance is highly competitive with, and often superior to, many engineered adsorbents. The calcination process was pivotal, decomposing carbonates into highly active CaO and MgO while developing a porous structure. Using a multi-technique characterization approach (X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), TESCAN VEGA3 tungsten filament scanning electron microscope (SEM), the Brunauer–Emmett–Teller method (BET)), the key immobilization mechanism was identified as hydroxyapatite formation, driven by Ca2+/Mg2+-phosphate precipitation and surface complexation. Nonlinear regression analysis revealed that the adsorption kinetics obeyed the pseudo-second-order model, and the equilibrium data were best described by the Freundlich isotherm. This indicates a chemisorption process occurring on a heterogeneous surface, consistent with the complex structure created by thermal modification. Notably, post-adsorption pore structure expansion suggested synergistic pore-filling and surface reorganization. This work not only demonstrates a circular economy paradigm for repurposing industrial solid waste on a global scale but also offers a cost-effective and high-performance pathway for controlling phosphorus pollution in aquatic systems, contributing directly to resource efficiency and sustainable environmental remediation. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

20 pages, 5426 KB  
Review
Morphological Diversity and Interparticle Interactions of Lubricating Grease Thickeners: Current Insights and Research Approaches
by Maciej Paszkowski, Ewa Kadela and Agnieszka Skibińska
Lubricants 2026, 14(1), 41; https://doi.org/10.3390/lubricants14010041 - 15 Jan 2026
Abstract
The study systematizes the current state of knowledge on the morphological diversity of dispersed-phase particles in the most widely used lubricating greases, encompassing their shape, size, surface structure, and overall geometry. The extensive discussion of the diversity of grease thickener particles is supplemented [...] Read more.
The study systematizes the current state of knowledge on the morphological diversity of dispersed-phase particles in the most widely used lubricating greases, encompassing their shape, size, surface structure, and overall geometry. The extensive discussion of the diversity of grease thickener particles is supplemented with their microscopic images. Particular emphasis is placed on the influence of thickener particle morphology, the degree of their aggregation, and interparticle interactions on the rheological, mechanical, and tribological properties of grease formulations. The paper reviews recent advances in investigations of grease microstructure, with special emphasis on imaging techniques—ranging from dark-field imaging, through scanning electron microscopy, to atomic force microscopy—together with a discussion of their advantages and limitations in the assessment of particle morphology. A significant part of the work is devoted to rheological studies, which enable an indirect evaluation of the structural state of grease by analyzing its response to shear and deformation, thereby allowing inferences to be drawn about the micro- and mesostructure of lubricating greases. The historical development of rheological research on lubricating greases is also presented—from simple flow models, through the introduction of the concepts of viscoelasticity and structural rheology, to modern experimental and modeling approaches—highlighting the close relationships between rheological properties and thickener structure, manufacturing processes, composition, and in-service behavior of lubricating greases, particularly in tribological applications. It is indicated that contemporary studies confirm the feasibility of tailoring the microstructure of grease thickeners to specific lubrication conditions, as their characteristics fundamentally determine the rheological and tribological properties of the entire system. Full article
(This article belongs to the Special Issue Rheology of Lubricants in Lubrication Engineering)
Show Figures

Figure 1

19 pages, 5989 KB  
Article
Multi-Analytical Approach to Investigate the Polychrome Paintings on Flower Peking Opera Theatre in Bozhou, China
by Wei Liu, Fang Jia, Ting Zhao, Jianhua Huang, Weisha Du and Li Li
Coatings 2026, 16(1), 115; https://doi.org/10.3390/coatings16010115 - 15 Jan 2026
Abstract
This article presents a comprehensive analysis of the polychrome paintings on the Flower Peking Opera Theatre in Bozhou, Anhui Province, China. A multi-technique approach was employed, including polarized light microscopy (PLM), X-ray fluorescence (XRF), micro-Raman spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy [...] Read more.
This article presents a comprehensive analysis of the polychrome paintings on the Flower Peking Opera Theatre in Bozhou, Anhui Province, China. A multi-technique approach was employed, including polarized light microscopy (PLM), X-ray fluorescence (XRF), micro-Raman spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy with energy-dispersive spectrometry (SEM-EDS), and Herzberg staining to determine the composition and methodologies involved in the formation of the pigment layer, the white primer, and the ground layer. The analysis identified cinnabar (red), both artificial ultramarine and Prussian blue (blue), a mixture of barite and gypsum (white), a mixture of chromite and Prussian blue (green), and carbon black (black) in the pigment layer. The ground layer was found to consist of clay and plant fibers (cotton and hemp), while the white prime layer was primarily composed of barite and gypsum. This research provides insights for future conservation and restoration efforts. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

9 pages, 3351 KB  
Proceeding Paper
Optical and Mechanical Characterization of Lignocaine-Impregnated Maltose-Based Dissolvable Microneedles
by Arifah Syahirah Rahman, Fook-Choe Cheah, Mohd Eusoff Azizol Nashriby, Mae-Lynn Catherine Bastion, Chang Fu Dee, Muhamad Ramdzan Buyong, Mohd Ambri Mohamed, Xin Yun Chua, Poh Choon Ooi, Muhammad Irfan Abdul Jalal, Chenshen Lam, Yin Yen Mun, Chee Seong Goh, Ahmad Ghadafi Ismail and Azrul Azlan Hamzah
Eng. Proc. 2025, 110(1), 7; https://doi.org/10.3390/engproc2025110007 - 14 Jan 2026
Abstract
Dissolvable microneedles (DMNs) represent an innovative approach to patient-friendly drug delivery, eliminating the need for conventional hypodermic injections. This study reports on the fabrication, Confocal Laser Scanning Microscopy (CLSM)-based optical visualization of drug distribution, and mechanical characterization of maltose-based DMNs impregnated with lignocaine, [...] Read more.
Dissolvable microneedles (DMNs) represent an innovative approach to patient-friendly drug delivery, eliminating the need for conventional hypodermic injections. This study reports on the fabrication, Confocal Laser Scanning Microscopy (CLSM)-based optical visualization of drug distribution, and mechanical characterization of maltose-based DMNs impregnated with lignocaine, a local anesthetic. Microneedles were fabricated using a micro-molding technique and dried for nine hours. Structural integrity was evaluated using Field Emission Scanning Electron Microscopy (FESEM); drug distribution was examined via CLSM; and mechanical strength was assessed using nanoindentation. The FESEM results showed uniform microneedle formation with sharp tips and smooth surfaces, averaging 435 µm in height and 116 µm in width, with no significant dimensional variability (p > 0.5). CLSM analysis indicated even distribution of lignocaine throughout the matrix. Mechanical testing showed that each microneedle withstood 0.6 N, surpassing the 0.1 N threshold required for skin insertion. These results support the viability of maltose-based DMNs for local anesthetic delivery, with implications for outpatient, pediatric, and self-administered care settings. Future investigations will include Franz diffusion and in vitro dissolution studies to examine release kinetics. Full article
(This article belongs to the Proceedings of The 2nd International Conference on AI Sensors and Transducers)
Show Figures

Figure 1

13 pages, 4845 KB  
Article
Efficient Solid-State Far-Field Macroscopic Fourier Ptychographic Imaging via Programmable Illumination and Camera Array
by Di You, Ge Ren and Haotong Ma
Photonics 2026, 13(1), 73; https://doi.org/10.3390/photonics13010073 - 14 Jan 2026
Viewed by 64
Abstract
The macroscopic Fourier ptychography (FP) is regarded as a highly promising approach of creating a synthetic aperture for macro visible imaging to achieve sub-diffraction-limited resolution. However most existing macro FP techniques rely on the high-precision translation stage to drive laser or camera scanning, [...] Read more.
The macroscopic Fourier ptychography (FP) is regarded as a highly promising approach of creating a synthetic aperture for macro visible imaging to achieve sub-diffraction-limited resolution. However most existing macro FP techniques rely on the high-precision translation stage to drive laser or camera scanning, thereby increasing system complexity and bulk. Meanwhile, the scanning process is slow and time-consuming, hindering the ability to achieve rapid imaging. In this paper, we introduce an innovative illumination scheme that employs a spatial light modulator to achieve precise programmable variable-angle illumination at a relatively long distance, and it can also freely adjust the illumination spot size through phase coding to avoid the issues of limited field of view and excessive dispersion of illumination energy. Coupled with a camera array, this could significantly reduce the number of shots taken by the imaging system and enable a lightweight and highly efficient solid-state macro FP imaging system with a large equivalent aperture. The effectiveness of the method is experimentally validated using various optically rough diffuse objects and a USAF target at laboratory-scale distances. Full article
Show Figures

Figure 1

18 pages, 1527 KB  
Article
Optimization of Biodiesel Production from Waste Cooking Oil Using a Construction Industry Waste Cement as a Heterogeneous and Reusable Catalyst
by Jing Sun, Hongwei Chen, Hongjian Shen, Xiang Luo, Zezhou Lin and Honglei Zhang
Nanomaterials 2026, 16(2), 108; https://doi.org/10.3390/nano16020108 - 14 Jan 2026
Viewed by 52
Abstract
Biodiesel, which is a blend of fatty acid methyl esters (FAME), has garnered significant attention as a promising alternative to petroleum-based diesel fuel. Nevertheless, the commercial production of biodiesel faces challenges due to the high costs associated with feedstock and the non-recyclable homogeneous [...] Read more.
Biodiesel, which is a blend of fatty acid methyl esters (FAME), has garnered significant attention as a promising alternative to petroleum-based diesel fuel. Nevertheless, the commercial production of biodiesel faces challenges due to the high costs associated with feedstock and the non-recyclable homogeneous catalyst system. To address these issues, a solid catalyst derived from construction industry waste cement was synthesized and utilized for biodiesel production from waste cooking oil (WCO). The catalyst’s surface and physical characteristics were analyzed through various techniques, including Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and Fourier Transform Infrared Spectroscopy (FTIR). The waste-cement catalyst demonstrated remarkable catalytic performance and reusability in the transesterification of WCO with methanol for biodiesel synthesis. A maximum biodiesel yield of 98.1% was obtained under the optimal reaction conditions of reaction temperature 65 °C; methanol/WCO molar ratio 16:1; calcined cement dosage 3 g; and reaction time 8 h. The apparent activation energy (Ea) from the reaction kinetic study is 35.78 KJ·mol−1, suggesting that the transesterification reaction is governed by kinetic control rather than diffusion. The biodiesel produced exhibited high-quality properties and can be utilized in existing diesel engines without any modifications. This research presents a scalable, environmentally benign pathway for WCO transesterification, thereby contributing significantly to the economic viability and long-term sustainability of the global biodiesel industry. Full article
Show Figures

Figure 1

28 pages, 13960 KB  
Article
Deep Learning Approaches for Brain Tumor Classification in MRI Scans: An Analysis of Model Interpretability
by Emanuela F. Gomes and Ramiro S. Barbosa
Appl. Sci. 2026, 16(2), 831; https://doi.org/10.3390/app16020831 - 14 Jan 2026
Viewed by 189
Abstract
This work presents the development and evaluation of Artificial Intelligence (AI) models for the automatic classification of brain tumors in Magnetic Resonance Imaging (MRI) scans. Several deep learning architectures were implemented and compared, including VGG-19, ResNet50, EfficientNetB3, Xception, MobileNetV2, DenseNet201, InceptionV3, Vision Transformer [...] Read more.
This work presents the development and evaluation of Artificial Intelligence (AI) models for the automatic classification of brain tumors in Magnetic Resonance Imaging (MRI) scans. Several deep learning architectures were implemented and compared, including VGG-19, ResNet50, EfficientNetB3, Xception, MobileNetV2, DenseNet201, InceptionV3, Vision Transformer (ViT), and an Ensemble model. The models were developed in Python (version 3.12.4) using the Keras and TensorFlow frameworks and trained on a public Brain Tumor MRI dataset containing 7023 images. Data augmentation and hyperparameter optimization techniques were applied to improve model generalization. The results showed high classification performance, with accuracies ranging from 89.47% to 98.17%. The Vision Transformer achieved the best performance, reaching 98.17% accuracy, outperforming traditional Convolutional Neural Network (CNN) architectures. Explainable AI (XAI) methods Grad-CAM, LIME, and Occlusion Sensitivity were employed to assess model interpretability, showing that the models predominantly focused on tumor regions. The proposed approach demonstrated the effectiveness of AI-based systems in supporting early diagnosis of brain tumors, reducing analysis time and assisting healthcare professionals. Full article
(This article belongs to the Special Issue Advanced Intelligent Technologies in Bioinformatics and Biomedicine)
Show Figures

Figure 1

20 pages, 3808 KB  
Article
Rheological, Thermal and Mechanical Properties of Blown Film Based on Starch and Clay Nanocomposites
by Heidy Tatiana Criollo Guevara, Lis Vanesa Ocoró Caicedo, Jhon Jairo Rios Acevedo, Marcelo Alexander Guancha Chalapud and Carolina Caicedo
Processes 2026, 14(2), 276; https://doi.org/10.3390/pr14020276 - 13 Jan 2026
Viewed by 88
Abstract
Growing concern over the environmental impact of conventional plastics has driven the development of biodegradable alternatives. In this context, natural polymers such as starch have emerged as sustainable options. Commercial montmorillonite, implemented as a reference nanomaterial, allows for the enhancement of the properties [...] Read more.
Growing concern over the environmental impact of conventional plastics has driven the development of biodegradable alternatives. In this context, natural polymers such as starch have emerged as sustainable options. Commercial montmorillonite, implemented as a reference nanomaterial, allows for the enhancement of the properties of biodegradable materials. In this study, commercial cassava starch powder plasticized with water and 35% glycerol, along with commercial nanoclay at concentrations of 0%, 2%, and 4%, was used as film reinforcement. The manufacturing process employed extrusion to evaluate the effectiveness of the nanomaterial in improving the mechanical and functional characteristics of the films. Films with varying concentrations of glycerol and nanoclay were produced to determine the optimal formulation by assessing their rheological, thermal, and mechanical properties. These films were subjected to comprehensive analysis using internationally standardised techniques, including Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), and morphological characterisation via Scanning Electron Microscopy (SEM). Among the properties evaluated, water vapour permeability (WVTR) was of particular interest. Results showed that higher nanoclay content improved moisture retention, thus enhancing the films’ water barrier properties. Mechanical testing indicated that the film with the highest nanoclay concentration, F-g35-NC4, displayed tensile strength values of 0.23 ± 0.02 MPa and elongation of 66.90% ± 4.85, whereas F-g35-NC0 and F-g35-NC2 exhibited lower values. Conversely, the highest tear resistance was also recorded for F-g35-NC4, reaching 0.740 ± 0.009 kg. Contact angle measurements revealed a hydrophilic tendency, with values of 89.93° ± 8.78°. Finally, WVTR analysis confirmed that increased nanoclay content enhanced moisture retention and improved the water barrier performance, with a value of 0.030 ± 0.011 g/m2·day, supporting potential applications in the packaging sector. Full article
Show Figures

Graphical abstract

14 pages, 5788 KB  
Article
Trisferrocenyltrithiophosphite-Copper(I) Bromide Composites for Electrochemical CO2 Reduction
by Mikhail Khrizanforov, Ilya Bezkishko, Anastasiia Samorodnova, Ruslan Shekurov, Radis Gainullin, Kirill Kholin, Igor Yanilkin, Aidar Gubaidullin, Alexey Galushko and Vasili Miluykov
Int. J. Mol. Sci. 2026, 27(2), 789; https://doi.org/10.3390/ijms27020789 - 13 Jan 2026
Viewed by 74
Abstract
Copper-based catalysts have emerged as promising materials for electrochemical carbon dioxide reduction reactions, owing to copper’s unique ability to facilitate multi-electron transfer processes and produce valuable products such as methanol and ethanol. In this study, novel trisferrocenyltrithiophosphite–copper(I) bromide composites with Cu-to-ligand molar ratios [...] Read more.
Copper-based catalysts have emerged as promising materials for electrochemical carbon dioxide reduction reactions, owing to copper’s unique ability to facilitate multi-electron transfer processes and produce valuable products such as methanol and ethanol. In this study, novel trisferrocenyltrithiophosphite–copper(I) bromide composites with Cu-to-ligand molar ratios of 1:1 and 2:1 were synthesized and evaluated for their catalytic performance. The composites were characterized by a combination of techniques, including powder X-ray diffraction (PXRD), linear sweep voltammetry (LSV), potentiostatic testing, chromatographic analysis, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Electrochemical measurements demonstrated significant current enhancements in the presence of CO2, highlighting the composites’ catalytic activity. Potentiostatic tests revealed excellent stability, with only a 9% decline in current density over 5 h of electrolysis. Product analysis via gas chromatography indicated the formation of methanol for the 1:1 composite and ethanol for the 2:1 composite with Faradaic efficiencies of 5.79% and 9.26%, respectively. While absolute efficiencies remain modest due to competitive hydrogen evolution, these results demonstrate a tunable catalytic performance based on the Cu-to-ligand ratio. SEM and XPS studies further supported the formation of active catalytic centers and changes in the oxidation states of copper during CO2 reduction. PXRD analysis confirmed the retention of structural integrity for both composites before and after catalytic testing. Full article
(This article belongs to the Special Issue Recent Advances in Electrochemical-Related Materials)
Show Figures

Figure 1

26 pages, 11478 KB  
Article
Controls on Microscopic Distribution and Flow Characteristics of Remaining Oil in Tight Sandstone Reservoirs: Chang 7 Reservoirs, Yanchang Formation, Ordos Basin
by Yawen He, Tao Yi, Linjun Yu, Yulongzhuo Chen, Jing Yang, Buhuan Zhang, Pengbo He, Zhiyu Wu and Wei Dang
Minerals 2026, 16(1), 72; https://doi.org/10.3390/min16010072 - 13 Jan 2026
Viewed by 69
Abstract
The Chang 7 shale oil reservoirs of the Yanchang Formation in the Heishui Area of the Ordos Basin display typical tight sandstone characteristics, marked by complex microscopic pore structures and limited flow capacity, which severely constrain efficient development. Using a suite of laboratory [...] Read more.
The Chang 7 shale oil reservoirs of the Yanchang Formation in the Heishui Area of the Ordos Basin display typical tight sandstone characteristics, marked by complex microscopic pore structures and limited flow capacity, which severely constrain efficient development. Using a suite of laboratory techniques—including nuclear magnetic resonance, mercury intrusion porosimetry, oil–water relative permeability, spontaneous imbibition experiments, scanning electron microscopy, and thin section analysis—this study systematically characterizes representative tight sandstone samples and examines the microscopic distribution of remaining oil, flow behavior, and their controlling factors. Results indicate that residual oil is mainly stored in nanoscale micropores, whereas movable fluids are predominantly concentrated in medium to large pores. The bimodal or trimodal T2 spectra reflect the presence of multiscale pore–fracture systems. Spontaneous imbibition and relative permeability experiments reveal low displacement efficiency (average 41.07%), with flow behavior controlled by capillary forces and imbibition rates exhibiting a three-stage pattern. The primary factors influencing movable fluid distribution include mineral composition (quartz, feldspar, lithic fragments), pore–throat structure (pore size, sorting, displacement pressure), physical properties (porosity, permeability), and heterogeneity (fractal dimension). High quartz and illite contents enhance effective flow pathways, whereas lithic fragments and swelling clay minerals significantly impede fluid migration. Overall, this study clarifies the coupled “lithology–pore–flow” control mechanism, providing a theoretical foundation and practical guidance for the fine characterization and efficient development of tight oil reservoirs. The findings can directly guide the optimization of hydraulic fracturing and enhanced oil recovery strategies by identifying high-mobility zones and key mineralogical constraints, enabling targeted stimulation and improved recovery in the Chang 7 and analogous tight reservoirs. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

21 pages, 2605 KB  
Article
In Vitro Accuracy Analysis of Intraoral Scanning Strategies: A Comparison of Two Contemporary IOS Systems
by Sabina-Ana Răuță, Vlad Gabriel Vasilescu, Lucian Toma Ciocan, Alexandra Popa, Ana-Maria Cristina Țâncu, Florin Octavian Froimovici, Bogdan Dimitriu, Silviu-Mirel Pițuru and Marina Imre
Dent. J. 2026, 14(1), 52; https://doi.org/10.3390/dj14010052 - 13 Jan 2026
Viewed by 78
Abstract
Background: Digital intraoral scanning has become an essential component of modern restorative dentistry, offering enhanced accuracy, workflow efficiency, and patient comfort compared to conventional impression techniques. Despite these advantages, the accuracy of intraoral scanners (IOS) can be affected by multiple parameters, among [...] Read more.
Background: Digital intraoral scanning has become an essential component of modern restorative dentistry, offering enhanced accuracy, workflow efficiency, and patient comfort compared to conventional impression techniques. Despite these advantages, the accuracy of intraoral scanners (IOS) can be affected by multiple parameters, among which scanning strategy and device design are particularly influential. Purpose: This study aimed to investigate the effect of different scanning strategies on scan accuracy and precision, focusing on two widely used intraoral scanners (Medit i700 and Trios 5) in a controlled in vitro environment. Materials and Methods: A standardized digital test object was created according to ISO 20896-1 specifications to ensure uniformity and comparability. The object was printed using a high-precision 3D printer and scanned multiple times with both IOS systems, employing distinct scanning strategies under identical environmental conditions. Data analysis was performed using descriptive and comparative statistics, including Mean, Median, Mean Absolute Deviation (MAD), Root Mean Square Error (RMSE), Standard Deviation (SD), and Variance, to evaluate trueness and precision. Results: The Medit i700 consistently exhibited lower deviation values and greater precision compared with the Trios 5, reflecting higher trueness and precision. Scanning strategy influenced scan outcomes; structured, systematic scanning paths produced more stable and accurate datasets. The Trios 5 demonstrated higher variability, suggesting increased sensitivity to operator motion and scanning trajectory. Conclusions: Both the scanner type and scanning strategy substantially affect intraoral scan accuracy. The superior performance of the Medit i700 indicates greater robustness and operator-independent stability. Clinically, these results underscore the importance of standardized scanning protocols, as operator consistency may be a key determinant of digital impression accuracy and, consequently, of clinical outcomes. Full article
(This article belongs to the Special Issue Feature Papers in Digital Dentistry)
Show Figures

Graphical abstract

21 pages, 5797 KB  
Article
Dental Preparation Guides—From CAD to PRINT and CAM
by Florina Titihazan, Tareq Hajaj, Andreea Codruța Novac, Daniela Maria Pop, Cosmin Sinescu, Meda Lavinia Negruțiu, Mihai Romînu and Cristian Zaharia
Oral 2026, 6(1), 12; https://doi.org/10.3390/oral6010012 - 12 Jan 2026
Viewed by 194
Abstract
Objectives: The aim of this study was to present and describe a digital workflow integrating Digital Smile Design (DSD) with computer-aided design/computer-aided manufacturing (CAD/CAM) and additive manufacturing technologies for the fabrication of dental preparation guides, focusing on workflow feasibility, design reproducibility, and [...] Read more.
Objectives: The aim of this study was to present and describe a digital workflow integrating Digital Smile Design (DSD) with computer-aided design/computer-aided manufacturing (CAD/CAM) and additive manufacturing technologies for the fabrication of dental preparation guides, focusing on workflow feasibility, design reproducibility, and clinical handling. Materials and Methods: A digital workflow was implemented using intraoral scanning and Exocad DentalCAD 3.1 Elefsina software to design dental preparation guides based on digitally planned restorations. Preparation margins, insertion paths, and minimal material thickness were defined virtually. The guides were fabricated using both subtractive (PMMA milling) and additive (stereolithographic-based 3D printing) manufacturing techniques. Post-processing included chemical cleaning, support removal, additional light curing, and manual finishing. The evaluation was qualitative and descriptive, based on visual inspection, workflow performance, and guide adaptation to printed models. Results: The proposed digital workflow was associated with consistent fabrication of preparation guides and predictable transfer of the virtual design to the manufactured guides. Digital planning facilitated clear visualization of preparation margins and insertion axes, supporting controlled and minimally invasive tooth preparation. The workflow demonstrated good reproducibility and efficient communication between clinician and dental technician. No quantitative measurements or statistical analyses were performed. Conclusions: Within the limitations of this qualitative feasibility study, the integration of DSD with CAD/CAM and 3D printing technologies represents a viable digital approach for designing and fabricating dental preparation guides. The workflow shows potential for improving predictability and communication in restorative dentistry. Full article
Show Figures

Figure 1

14 pages, 2145 KB  
Article
Complementary Techniques of Thermal Analysis as a Tool for Studying the Properties and Effectiveness of Intumescent Coatings Deposited on Wood
by Nataša Čelan Korošin and Romana Cerc Korošec
Polymers 2026, 18(2), 202; https://doi.org/10.3390/polym18020202 - 12 Jan 2026
Viewed by 187
Abstract
Fire-retardant intumescent coatings offer an effective means of enhancing the fire resistance of combustible substrates such as wood. These coatings have a complex chemical composition and, when exposed to temperatures above 200 °C, undergo an intumescent reaction accompanied by the release of non-flammable [...] Read more.
Fire-retardant intumescent coatings offer an effective means of enhancing the fire resistance of combustible substrates such as wood. These coatings have a complex chemical composition and, when exposed to temperatures above 200 °C, undergo an intumescent reaction accompanied by the release of non-flammable gases, forming an expanded, charred layer with low thermal conductivity. This provides thermal insulation and acts as a physical barrier against heat, oxygen, and flammable volatiles. In this study, the applicability of several thermoanalytical techniques for evaluating the performance of three different intumescent coatings applied to spruce wood was investigated. Simultaneous thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) showed that coating No. 3 was the most efficient, initiating substrate protection at the lowest temperature and reducing the combustion enthalpy by approximately 50% compared to uncoated wood. DSC-microscopy visualization enabled direct observation of the intumescent expansion, degradation of the carbonized protective layer, and delayed thermal decomposition of coated wood. Furthermore, a comparison between TGA-MS and TGA-IST16-GC-MS demonstrated the superiority of chromatographic separation for identifying evolved gaseous products. While TGA-MS is effective for detecting small gaseous species (e.g., H2O, CO2, formaldehyde), TGA-IST16-GC-MS enables the deconvolution of many degradation products evolving simultaneously, allowing for distinction between flame-retardant-related species, polymer backbone fragments, nitrogen-rich heterocycles, and small oxygenated molecules in the most effective coating. Full article
Show Figures

Graphical abstract

15 pages, 3479 KB  
Article
HDA Coating on AISI 1045 Steel with Enhanced Corrosion and Wear Performance
by Jiajie Wang, Siyu Gu, Heyi Ma, Hongfei Yu, Chuang Yang, Jiaxiang Zhao and Xiaochen Zhang
Coatings 2026, 16(1), 95; https://doi.org/10.3390/coatings16010095 - 12 Jan 2026
Viewed by 88
Abstract
AISI 1045 steel often undergoes premature failure under combined corrosive-wear conditions due to its insufficient surface durability. To address this, a hot-dip aluminum (HDA) coating was deposited on the steel substrate. The microstructure, corrosion behavior, and tribological properties of the coating were systematically [...] Read more.
AISI 1045 steel often undergoes premature failure under combined corrosive-wear conditions due to its insufficient surface durability. To address this, a hot-dip aluminum (HDA) coating was deposited on the steel substrate. The microstructure, corrosion behavior, and tribological properties of the coating were systematically characterized using scanning electron microscopy (SEM), electrochemical techniques, and tribometry. The results reveal that the coating exhibits a continuous triple-layer structure, consisting of the steel substrate, an intermediate Fe-Al intermetallic compound layer, and an outer aluminum-rich layer. In a 3.5 wt.% NaCl solution, the coating formed a protective Al2O3 film, demonstrating clear passivation behavior. It significantly enhanced the substrate’s performance, achieving an approximately 90% reduction in wear rate and a substantial increase in charge transfer resistance. The coated sample showed a lower friction coefficient (0.24) compared to the bare substrate (0.34). Herein, this work demonstrates that a straightforward and industrially viable hot-dip aluminizing process can effectively improve the corrosion and wear resistance of medium-carbon steel. The findings provide a practical surface-hardening strategy for such steels operating in aggressive environments. Full article
Show Figures

Figure 1

Back to TopTop