Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (417)

Search Parameters:
Keywords = scalable reactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9028 KiB  
Article
Mechanochemical Activation of Basic Oxygen Furnace Slag: Insights into Particle Modification, Hydration Behavior, and Microstructural Development
by Maochun Xu, Liuchao Guo, Junshan Wen, Xiaodong Hu, Lei Wang and Liwu Mo
Materials 2025, 18(15), 3687; https://doi.org/10.3390/ma18153687 - 6 Aug 2025
Abstract
This study proposed a mechanochemical activation strategy using ethanol-diisopropanolamine (EDIPA) to improve the grindability and hydration reactivity of basic oxygen furnace slag (BOFS), aiming for its large-scale industrial utilization. The incorporation of EDIPA significantly refined the particle size distribution and reduced the repose [...] Read more.
This study proposed a mechanochemical activation strategy using ethanol-diisopropanolamine (EDIPA) to improve the grindability and hydration reactivity of basic oxygen furnace slag (BOFS), aiming for its large-scale industrial utilization. The incorporation of EDIPA significantly refined the particle size distribution and reduced the repose angle. As a result, the compressive strength of BOFS paste increased by 25.4 MPa at 28 d with only 0.08 wt.% EDIPA. Conductivity tests demonstrated that EDIPA strongly complexes with Ca2+, Al3+, and Fe3+, facilitating the dissolution of active mineral phases, such as C12A7 and C2F, and accelerating hydration reactions. XRD and TG analyses confirmed that the incorporation of EDIPA facilitated the formation of Mc (C4(A,F)ČH11) and increased the content of C-S-H, both of which contributed to microstructural densification. Microstructural observations further revealed that EDIPA refined Ca(OH)2 crystals, increasing their specific surface area from 4.7 m2/g to 35.2 m2/g. The combined effect of crystal refinement and enhanced hydration product formation resulted in reduced porosity and improved mechanical properties. Overall, the results demonstrated that EDIPA provided an economical, effective, and scalable means of activating BOFS, thereby promoting its high-value utilization in low-carbon construction materials. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials, Third Edition)
Show Figures

Figure 1

38 pages, 2180 KiB  
Review
Ternary Choline Chloride-Based Deep Eutectic Solvents: A Review
by Abdulalim Ibrahim, Marc Mulamba Tshibangu, Christophe Coquelet and Fabienne Espitalier
ChemEngineering 2025, 9(4), 84; https://doi.org/10.3390/chemengineering9040084 (registering DOI) - 6 Aug 2025
Abstract
Ternary choline chloride-based deep eutectic solvents (TDESs) exhibit unique physicochemical properties, including lower viscosities, lower melting points, higher thermal stabilities, and enhanced solvations compared to binary deep eutectic solvents (BDESs). Although BDESs have been widely studied, the addition of a third component in [...] Read more.
Ternary choline chloride-based deep eutectic solvents (TDESs) exhibit unique physicochemical properties, including lower viscosities, lower melting points, higher thermal stabilities, and enhanced solvations compared to binary deep eutectic solvents (BDESs). Although BDESs have been widely studied, the addition of a third component in TDESs offers opportunities to further optimize their performance. This review aims to evaluate the physicochemical properties of TDESs and highlight their potential applications in sustainable industrial processes compared to BDESs. A comprehensive analysis of the existing literature was conducted, focusing on TDES properties, such as phase behavior, density, viscosity, pH, conductivity, and the effect of water, along with their applications in various fields. TDESs demonstrated superior physicochemical characteristics compared to BDESs, including improved solvation and thermal stability. Their applications in biomass conversion, CO2 capture, heavy oil upgrading, refrigeration gases, and as solvents/catalysts in organic reactions show significant promise for enhancing process efficiency and sustainability. Despite their advantages, TDESs face challenges including limited predictive models, potential instability under certain conditions, and scalability hurdles. Overall, TDESs offer significant potential for advancing sustainable and efficient chemical processes for industrial applications. Full article
Show Figures

Figure 1

12 pages, 671 KiB  
Proceeding Paper
The Role of Industrial Catalysts in Accelerating the Renewable Energy Transition
by Partha Protim Borthakur and Barbie Borthakur
Chem. Proc. 2025, 17(1), 6; https://doi.org/10.3390/chemproc2025017006 - 4 Aug 2025
Abstract
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting [...] Read more.
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting their transformative impact on renewable energy systems. Precious-metal-based electrocatalysts such as ruthenium (Ru), iridium (Ir), and platinum (Pt) demonstrate high efficiency but face challenges due to their cost and stability. Alternatives like nickel-cobalt oxide (NiCo2O4) and Ti3C2 MXene materials show promise in addressing these limitations, enabling cost-effective and scalable hydrogen production. Additionally, nickel-based catalysts supported on alumina optimize SMR, reducing coke formation and improving efficiency. In biofuel production, heterogeneous catalysts play a crucial role in converting biomass into valuable fuels. Co-based bimetallic catalysts enhance hydrodeoxygenation (HDO) processes, improving the yield of biofuels like dimethylfuran (DMF) and γ-valerolactone (GVL). Innovative materials such as biochar, red mud, and metal–organic frameworks (MOFs) facilitate sustainable waste-to-fuel conversion and biodiesel production, offering environmental and economic benefits. Power-to-X technologies, which convert renewable electricity into chemical energy carriers like hydrogen and synthetic fuels, rely on advanced catalysts to improve reaction rates, selectivity, and energy efficiency. Innovations in non-precious metal catalysts, nanostructured materials, and defect-engineered catalysts provide solutions for sustainable energy systems. These advancements promise to enhance efficiency, reduce environmental footprints, and ensure the viability of renewable energy technologies. Full article
Show Figures

Figure 1

25 pages, 17212 KiB  
Article
Three-Dimensional Printing of Personalized Carbamazepine Tablets Using Hydrophilic Polymers: An Investigation of Correlation Between Dissolution Kinetics and Printing Parameters
by Lianghao Huang, Xingyue Zhang, Qichen Huang, Minqing Zhu, Tiantian Yang and Jiaxiang Zhang
Polymers 2025, 17(15), 2126; https://doi.org/10.3390/polym17152126 - 1 Aug 2025
Viewed by 304
Abstract
Background: Precision medicine refers to the formulation of personalized drug regimens according to the individual characteristics of patients to achieve optimal efficacy and minimize adverse reactions. Additive manufacturing (AM), also known as three-dimensional (3D) printing, has emerged as an optimal solution for precision [...] Read more.
Background: Precision medicine refers to the formulation of personalized drug regimens according to the individual characteristics of patients to achieve optimal efficacy and minimize adverse reactions. Additive manufacturing (AM), also known as three-dimensional (3D) printing, has emerged as an optimal solution for precision drug delivery, enabling customizable and the fabrication of multifunctional structures with precise control over morphology and release behavior in pharmaceutics. However, the influence of 3D printing parameters on the printed tablets, especially regarding in vitro and in vivo performance, remains poorly understood, limiting the optimization of manufacturing processes for controlled-release profiles. Objective: To establish the fabrication process of 3D-printed controlled-release tablets via comprehensively understanding the printing parameters using fused deposition modeling (FDM) combined with hot-melt extrusion (HME) technologies. HPMC-AS/HPC-EF was used as the drug delivery matrix and carbamazepine (CBZ) was used as a model drug to investigate the in vitro drug delivery performance of the printed tablets. Methodology: Thermogravimetric analysis (TGA) was employed to assess the thermal compatibility of CBZ with HPMC-AS/HPC-EF excipients up to 230 °C, surpassing typical processing temperatures (160–200 °C). The formation of stable amorphous solid dispersions (ASDs) was validated using differential scanning calorimetry (DSC), hot-stage polarized light microscopy (PLM), and powder X-ray diffraction (PXRD). A 15-group full factorial design was then used to evaluate the effects of the fan speed (20–100%), platform temperature (40–80 °C), and printing speed (20–100 mm/s) on the tablet properties. Response surface modeling (RSM) with inverse square-root transformation was applied to analyze the dissolution kinetics, specifically t50% (time for 50% drug release) and Q4h (drug released at 4 h). Results: TGA confirmed the thermal compatibility of CBZ with HPMC-AS/HPC-EF, enabling stable ASD formation validated by DSC, PLM, and PXRD. The full factorial design revealed that printing speed was the dominant parameter governing dissolution behavior, with high speeds accelerating release and low speeds prolonging release through porosity-modulated diffusion control. RSM quadratic models showed optimal fits for t50% (R2 = 0.9936) and Q4h (R2 = 0.9019), highlighting the predictability of release kinetics via process parameter tuning. This work demonstrates the adaptability of polymer composite AM for tailoring drug release profiles, balancing mechanical integrity, release kinetics, and manufacturing scalability to advance multifunctional 3D-printed drug delivery devices in pharmaceutics. Full article
Show Figures

Graphical abstract

14 pages, 4080 KiB  
Article
High-Compressive-Strength Silicon Carbide Ceramics with Enhanced Mechanical Performance
by Zijun Qian, Kang Li, Yabin Zhou, Hao Xu, Haiyan Qian and Yihua Huang
Materials 2025, 18(15), 3598; https://doi.org/10.3390/ma18153598 - 31 Jul 2025
Viewed by 200
Abstract
This study demonstrates the successful fabrication of high-performance reaction-bonded silicon carbide (RBSC) ceramics through an optimized liquid silicon infiltration (LSI) process employing multi-modal SiC particle gradation and nano-carbon black (0.6 µm) additives. By engineering porous preforms with hierarchical SiC distributions and tailored carbon [...] Read more.
This study demonstrates the successful fabrication of high-performance reaction-bonded silicon carbide (RBSC) ceramics through an optimized liquid silicon infiltration (LSI) process employing multi-modal SiC particle gradation and nano-carbon black (0.6 µm) additives. By engineering porous preforms with hierarchical SiC distributions and tailored carbon sources, the resulting ceramics achieved a compressive strength of 2393 MPa and a flexural strength of 380 MPa, surpassing conventional RBSC systems. Microstructural analyses revealed homogeneous β-SiC formation and crack deflection mechanisms as key contributors to mechanical enhancement. Ultrafine SiC particles (0.5–2 µm) refined pore architectures and mediated capillary dynamics during infiltration, enabling nanoscale dispersion of residual silicon phases and minimizing interfacial defects. Compared to coarse-grained counterparts, the ultrafine SiC system exhibited a 23% increase in compressive strength, attributed to reduced sintering defects and enhanced load transfer efficiency. This work establishes a scalable strategy for designing RBSC ceramics for extreme mechanical environments, bridging material innovation with applications in high-stress structural components. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

17 pages, 4072 KiB  
Article
Experimental Investigation of Mechanical Properties and Microstructure in Cement–Soil Modified with Waste Brick Powder and Polyvinyl Alcohol Fibers
by Xiaosan Yin, Md. Mashiur Rahman, Hongke Pan, Yongchun Ma, Yuzhou Sun and Jian Wang
Materials 2025, 18(15), 3586; https://doi.org/10.3390/ma18153586 - 30 Jul 2025
Viewed by 325
Abstract
This study investigates the synergistic modification of cement–soil using waste brick powder (WBP) and polyvinyl alcohol (PVA) fibers to address the growing demand for sustainable construction materials and recycling of demolition waste. An orthogonal experimental design was employed with 5% WBP (by mass) [...] Read more.
This study investigates the synergistic modification of cement–soil using waste brick powder (WBP) and polyvinyl alcohol (PVA) fibers to address the growing demand for sustainable construction materials and recycling of demolition waste. An orthogonal experimental design was employed with 5% WBP (by mass) and PVA fiber content (0–1%), evaluating mechanical properties based on unconfined compressive strength (UCS) and splitting tensile strength (STS) and microstructure via scanning electron microscopy (SEM) across 3–28 days of curing. The results demonstrate that 0.75% PVA optimizes performance, enhancing UCS by 28.3% (6.87 MPa) and STS by 34.6% (0.93 MPa) at 28 days compared to unmodified cement–soil. SEM analysis revealed that PVA fibers bridged microcracks, suppressing propagation, while WBP triggered pozzolanic reactions to densify the matrix. This dual mechanism concurrently improves mechanical durability and valorizes construction waste, offering a pathway to reduce reliance on virgin materials. This study establishes empirically validated mix ratios for eco-efficient cement–soil composites, advancing scalable solutions for low-carbon geotechnical applications. By aligning material innovation with circular economy principles, this work directly supports global de-carbonization targets in the construction sector. Full article
Show Figures

Graphical abstract

14 pages, 3346 KiB  
Article
DES-Mediated Mild Synthesis of Synergistically Engineered 3D FeOOH-Co2(OH)3Cl/NF for Enhanced Oxygen Evolution Reaction
by Bingxian Zhu, Yachao Liu, Yue Yan, Hui Wang, Yu Zhang, Ying Xin, Weijuan Xu and Qingshan Zhao
Catalysts 2025, 15(8), 725; https://doi.org/10.3390/catal15080725 - 30 Jul 2025
Viewed by 207
Abstract
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of [...] Read more.
Hydrogen energy is a pivotal carrier for achieving carbon neutrality, requiring green and efficient production via water electrolysis. However, the anodic oxygen evolution reaction (OER) involves a sluggish four-electron transfer process, resulting in high overpotentials, while the prohibitive cost and complex preparation of precious metal catalysts impede large-scale commercialization. In this study, we develop a FeCo-based bimetallic deep eutectic solvent (FeCo-DES) as a multifunctional reaction medium for engineering a three-dimensional (3D) coral-like FeOOH-Co2(OH)3Cl/NF composite via a mild one-step impregnation approach (70 °C, ambient pressure). The FeCo-DES simultaneously serves as the solvent, metal source, and redox agent, driving the controlled in situ assembly of FeOOH-Co2(OH)3Cl hybrids on Ni(OH)2/NiOOH-coated nickel foam (NF). This hierarchical architecture induces synergistic enhancement through geometric structural effects combined with multi-component electronic interactions. Consequently, the FeOOH-Co2(OH)3Cl/NF catalyst achieves a remarkably low overpotential of 197 mV at 100 mA cm−2 and a Tafel slope of 65.9 mV dec−1, along with 98% current retention over 24 h chronopotentiometry. This study pioneers a DES-mediated strategy for designing robust composite catalysts, establishing a scalable blueprint for high-performance and low-cost OER systems. Full article
Show Figures

Graphical abstract

16 pages, 2171 KiB  
Review
Polystyrene Upcycling via Photocatalytic and Non-Photocatalytic Degradation
by Terry Yang and Yalan Xing
Molecules 2025, 30(15), 3165; https://doi.org/10.3390/molecules30153165 - 29 Jul 2025
Viewed by 239
Abstract
The rapid increase in polystyrene (PS) production has led to substantial growth in plastic waste, posing serious environmental and waste management challenges. Current disposal techniques are unsustainable, relying heavily on harsh conditions, high energy input, and generating environmentally harmful byproducts. This review critically [...] Read more.
The rapid increase in polystyrene (PS) production has led to substantial growth in plastic waste, posing serious environmental and waste management challenges. Current disposal techniques are unsustainable, relying heavily on harsh conditions, high energy input, and generating environmentally harmful byproducts. This review critically discusses alternative green approaches for PS treatment through photocatalytic and non-photocatalytic upcycling methods. Photocatalytic methods utilize light energy (UV, visible, or broad-spectrum irradiation) to initiate radical reactions that cleave the inert carbon backbone of PS. In contrast, non-photocatalytic strategies achieve backbone degradation without direct light activation, often employing catalysts and thermal energy. Both approaches effectively transform PS waste into higher-value compounds, such as benzoic acid and acetophenone, though yields remain moderate for most reported methods. Current limitations, including catalyst performance, low yields, and impurities in real-world PS waste, are highlighted. Future directions toward enhancing the efficiency, selectivity, and scalability of PS upcycling processes are proposed to address the growing plastic waste crisis sustainably. Full article
(This article belongs to the Special Issue Green Catalysis Technology for Sustainable Energy Conversion)
Show Figures

Graphical abstract

14 pages, 1882 KiB  
Article
Carbon-Negative Construction Material Based on Rice Production Residues
by Jüri Liiv, Catherine Rwamba Githuku, Marclus Mwai, Hugo Mändar, Peeter Ritslaid, Merrit Shanskiy and Ergo Rikmann
Materials 2025, 18(15), 3534; https://doi.org/10.3390/ma18153534 - 28 Jul 2025
Viewed by 247
Abstract
This study presents a cost-effective, carbon-negative construction material for affordable housing, developed entirely from locally available agricultural wastes: rice husk ash, wood ash, and rice straw—materials often problematic to dispose of in many African regions. Rice husk ash provides high amorphous silica, acting [...] Read more.
This study presents a cost-effective, carbon-negative construction material for affordable housing, developed entirely from locally available agricultural wastes: rice husk ash, wood ash, and rice straw—materials often problematic to dispose of in many African regions. Rice husk ash provides high amorphous silica, acting as a strong pozzolanic agent. Wood ash contributes calcium oxide and alkalis to serve as a reactive binder, while rice straw functions as a lightweight organic filler, enhancing thermal insulation and indoor climate comfort. These materials undergo natural pozzolanic reactions with water, eliminating the need for Portland cement—a major global source of anthropogenic CO2 emissions (~900 kg CO2/ton cement). This process is inherently carbon-negative, not only avoiding emissions from cement production but also capturing atmospheric CO2 during lime carbonation in the hardening phase. Field trials in Kenya confirmed the composite’s sufficient structural strength for low-cost housing, with added benefits including termite resistance and suitability for unskilled laborers. In a collaboration between the University of Tartu and Kenyatta University, a semi-automatic mixing and casting system was developed, enabling fast, low-labor construction of full-scale houses. This innovation aligns with Kenya’s Big Four development agenda and supports sustainable rural development, post-disaster reconstruction, and climate mitigation through scalable, eco-friendly building solutions. Full article
Show Figures

Figure 1

15 pages, 2921 KiB  
Article
Enhanced Photoelectrochemical Performance of BiVO4 Photoanodes Co-Modified with Borate and NiFeOx
by Siqiang Cheng, Yun Cheng, Taoyun Zhou, Shilin Li, Dong Xie and Xinyu Li
Micromachines 2025, 16(8), 866; https://doi.org/10.3390/mi16080866 - 27 Jul 2025
Viewed by 253
Abstract
Despite significant progress in photoelectrochemical (PEC) water splitting, high fabrication costs and limited efficiency of photoanodes hinder practical applications. Bismuth vanadate (BiVO4), with its low cost, non-toxicity, and suitable band structure, is a promising photoanode material but suffers from poor charge [...] Read more.
Despite significant progress in photoelectrochemical (PEC) water splitting, high fabrication costs and limited efficiency of photoanodes hinder practical applications. Bismuth vanadate (BiVO4), with its low cost, non-toxicity, and suitable band structure, is a promising photoanode material but suffers from poor charge transport, sluggish surface kinetics, and photocorrosion. In this study, porous monoclinic BiVO4 films are fabricated via a simplified successive ionic layer adsorption and reaction (SILAR) method, followed by borate treatment and PEC deposition of NiFeOx. The resulting B/BiVO4/NiFeOx photoanode exhibits a significantly enhanced photocurrent density of 2.45 mA cm−2 at 1.23 V vs. RHE—5.3 times higher than pristine BiVO4. It also achieves an ABPE of 0.77% and a charge transfer efficiency of 79.5%. These results demonstrate that dual surface modification via borate and NiFeOx is a cost-effective strategy to improve BiVO4-based PEC water splitting performance. This work provides a promising pathway for the scalable development of efficient and economically viable photoanodes for solar hydrogen production. Full article
(This article belongs to the Special Issue Advancing Energy Storage Techniques: Chemistry, Materials and Devices)
Show Figures

Figure 1

15 pages, 1846 KiB  
Article
Synthesis of Monothiacalix[4]arene Using the Fragment Condensation Approach
by Daniel Kortus, Oliver Moravec, Hynek Varga, Michal Churý, Kamil Mamleev, Jan Čejka, Hana Dvořáková and Pavel Lhoták
Molecules 2025, 30(15), 3145; https://doi.org/10.3390/molecules30153145 - 27 Jul 2025
Viewed by 246
Abstract
The article describes a simple and scalable preparation of 2-monothiacalix[4]arene 7, the simplest representative of the mixed-bridged (CH2 and S) calix[4]arenes. The synthesis is based on the condensation of linear building blocks (bisphenols), which are relatively readily available, and allows, depending [...] Read more.
The article describes a simple and scalable preparation of 2-monothiacalix[4]arene 7, the simplest representative of the mixed-bridged (CH2 and S) calix[4]arenes. The synthesis is based on the condensation of linear building blocks (bisphenols), which are relatively readily available, and allows, depending on the conditions, the use of two alternative reaction routes that provide macrocycle 7 in high yield. The dynamic behavior of the basic macrocyclic skeleton was investigated using NMR spectroscopy at variable temperatures. High-temperature measurements showed that compound 7 undergoes a conecone equilibrium with activation free energy ΔG# of the inversion process of 63 kJ·mol−1. Interestingly, the same barrier for the oxidized sulfone derivative 14 shows a value of 60 kJ·mol−1, indicating weakened hydrogen bonds at the lower rim of the calixarene. The same was also confirmed at low temperatures, when barriers to changing the direction of the cyclic hydrogen bond arrays (flip-flop mechanism) were determined (compare ΔG# = 44 kJ·mol−1 for 7 vs. ΔG# = 40 kJ·mol−1 for 14). Full article
(This article belongs to the Special Issue Organosulfur and Organoselenium Chemistry II)
Show Figures

Graphical abstract

43 pages, 1282 KiB  
Review
Process Intensification Strategies for Esterification: Kinetic Modeling, Reactor Design, and Sustainable Applications
by Kim Leonie Hoff and Matthias Eisenacher
Int. J. Mol. Sci. 2025, 26(15), 7214; https://doi.org/10.3390/ijms26157214 - 25 Jul 2025
Viewed by 680
Abstract
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, [...] Read more.
Esterification is a key transformation in the production of lubricants, pharmaceuticals, and fine chemicals. Conventional processes employing homogeneous acid catalysts suffer from limitations such as corrosive byproducts, energy-intensive separation, and poor catalyst reusability. This review provides a comprehensive overview of heterogeneous catalytic systems, including ion exchange resins, zeolites, metal oxides, mesoporous materials, and others, for improved ester synthesis. Recent advances in membrane-integrated reactors, such as pervaporation and nanofiltration, which enable continuous water removal, shifting equilibrium and increasing conversion under milder conditions, are reviewed. Dual-functional membranes that combine catalytic activity with selective separation further enhance process efficiency and reduce energy consumption. Enzymatic systems using immobilized lipases present additional opportunities for mild and selective reactions. Future directions emphasize the integration of pervaporation membranes, hybrid catalyst systems combining biocatalysts and metals, and real-time optimization through artificial intelligence. Modular plug-and-play reactor designs are identified as a promising approach to flexible, scalable, and sustainable esterification. Overall, the interaction of catalyst development, membrane technology, and digital process control offers a transformative platform for next-generation ester synthesis aligned with green chemistry and industrial scalability. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

12 pages, 2555 KiB  
Article
Genogroup-Specific Multiplex Reverse Transcriptase Loop-Mediated Isothermal Amplification Assay for Point-of-Care Detection of Norovirus
by Wahedul Karim Ansari, Mi-Ran Seo and Yeun-Jun Chung
Diagnostics 2025, 15(15), 1868; https://doi.org/10.3390/diagnostics15151868 - 25 Jul 2025
Viewed by 251
Abstract
Background/Objectives: Norovirus is a major cause of acute gastroenteritis worldwide. Considering its highly infectious and transmissible nature, rapid and accurate diagnostic tools are of utmost importance for the effective control of outbreaks in the context of point-of-care testing (POCT). In this study, we [...] Read more.
Background/Objectives: Norovirus is a major cause of acute gastroenteritis worldwide. Considering its highly infectious and transmissible nature, rapid and accurate diagnostic tools are of utmost importance for the effective control of outbreaks in the context of point-of-care testing (POCT). In this study, we developed a genogroup-specific multiplex reverse transcriptase loop-mediated isothermal amplification assay to detect the human norovirus genogroups I and II (GI and GII, respectively). Methods: For the comprehensive detection of clinically relevant genotypes, two sets of primers were incorporated into the assays targeting the RdRp-VP1 junction: one against GI.1 and GI.3, and the other for GII.2 and GII.4. Following optimization of the reaction variables, we standardized the reaction conditions at 65 °C with 6 mM MgSO4, 1.4 mM dNTPs, 7.5 U WarmStart RTx Reverse Transcriptase, and Bst DNA polymerase at 8 U and 10 U for GI and GII, respectively. Amplification was monitored in real-time using a thermocycler platform to ensure precise quantification and detection. Finally, the assay was evaluated through portable isothermal detection device to test its feasibility in on-site settings. Results: Both assays detected the template down to 102–103 copies per reaction and showed high target selectivity, yielding no non-specific amplification across 39 enteric pathogens. These assays enabled prompt detection of GI within 10–12 min and of GII within 12–17 min after the reaction was initiated. Onsite validation reveals all template detection below 15 min, demonstrating its potential feasibility in point-of-care applications. Including the sample preparation time, test results were obtained in less than 1 h. Conclusions: This method is a rapid, reliable, and scalable solution for detecting human norovirus in POCT settings for both clinical diagnosis and public health surveillance. Full article
Show Figures

Graphical abstract

14 pages, 1765 KiB  
Article
Microfluidic System Based on Flexible Structures for Point-of-Care Device Diagnostics with Electrochemical Detection
by Kasper Marchlewicz, Robert Ziółkowski, Kamil Żukowski, Jakub Krzemiński and Elżbieta Malinowska
Biosensors 2025, 15(8), 483; https://doi.org/10.3390/bios15080483 - 24 Jul 2025
Viewed by 390
Abstract
Infectious diseases poses a growing public health challenge. The COVID-19 pandemic has further emphasized the urgent need for rapid, accessible diagnostics. This study presents the development of an integrated, flexible point-of-care (POC) diagnostic system for the rapid detection of Corynebacterium diphtheriae, the [...] Read more.
Infectious diseases poses a growing public health challenge. The COVID-19 pandemic has further emphasized the urgent need for rapid, accessible diagnostics. This study presents the development of an integrated, flexible point-of-care (POC) diagnostic system for the rapid detection of Corynebacterium diphtheriae, the pathogen responsible for diphtheria. The system comprises a microfluidic polymerase chain reaction (micro-PCR) device and an electrochemical DNA biosensor, both fabricated on flexible substrates. The micro-PCR platform offers rapid DNA amplification overcoming the time limitations of conventional thermocyclers. The biosensor utilizes specific molecular recognition and an electrochemical transducer to detect the amplified DNA fragment, providing a clear and direct indication of the pathogen’s presence. The combined system demonstrates the effective amplification and detection of a gene fragment from a toxic strain of C. diphtheriae, chosen due to its increasing incidence. The design leverages lab-on-a-chip (LOC) and microfluidic technologies to minimize reagent use, reduce cost, and support portability. Key challenges in microsystem design—such as flow control, material selection, and reagent compatibility—were addressed through optimized fabrication techniques and system integration. This work highlights the feasibility of using flexible, integrated microfluidic and biosensor platforms for the rapid, on-site detection of infectious agents. The modular and scalable nature of the system suggests potential for adaptation to a wide range of pathogens, supporting broader applications in global health diagnostics. The approach provides a promising foundation for next-generation POC diagnostic tools. Full article
(This article belongs to the Special Issue Microfluidics for Sample Pretreatment)
Show Figures

Figure 1

33 pages, 2018 KiB  
Review
Biogenic Synthesis of Silver Nanoparticles and Their Diverse Biomedical Applications
by Xiaokun Jiang, Shamma Khan, Adam Dykes, Eugen Stulz and Xunli Zhang
Molecules 2025, 30(15), 3104; https://doi.org/10.3390/molecules30153104 - 24 Jul 2025
Viewed by 529
Abstract
Nanoparticles (NPs) synthesised through biogenic routes have emerged as a sustainable and innovative platform for biomedical applications such as antibacterial, anticancer, antiviral, anti-inflammatory, drug delivery, wound healing, and imaging diagnostics. Among these, silver nanoparticles (AgNPs) have attracted significant attention due to their unique [...] Read more.
Nanoparticles (NPs) synthesised through biogenic routes have emerged as a sustainable and innovative platform for biomedical applications such as antibacterial, anticancer, antiviral, anti-inflammatory, drug delivery, wound healing, and imaging diagnostics. Among these, silver nanoparticles (AgNPs) have attracted significant attention due to their unique physicochemical properties and therapeutic potential. This review examines the biogenic synthesis of AgNPs, focusing on microbial, plant-based, and biomolecule-assisted approaches. It highlights how reaction conditions, such as pH, temperature, and media composition, influence nanoparticle size, shape, and functionality. Particular emphasis is placed on microbial synthesis for its eco-friendly and scalable nature. The mechanisms of AgNP formation and their structural impact on biomedical performance are discussed. Key applications are examined including antimicrobial therapies, cancer treatment, drug delivery, and theranostics. Finally, the review addresses current challenges, such as reproducibility, scalability, morphological control, and biosafety, and outlines future directions for engineering AgNPs with tailored properties, paving the way for sustainable and effective next-generation biomedical solutions. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Biomedical Applications, 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop