Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (209)

Search Parameters:
Keywords = savanna ecosystem

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 8029 KiB  
Article
Fire-Induced Floristic and Structural Degradation Across a Vegetation Gradient in the Southern Amazon
by Loriene Gomes da Rocha, Ben Hur Marimon Junior, Amauri de Castro Barradas, Marco Antônio Camillo de Carvalho, Célia Regina Araújo Soares, Beatriz Schwantes Marimon, Gabriel H. P. de Mello Ribeiro, Edmar A. de Oliveira, Fernando Elias, Carmino Emidio Júnior, Dennis Rodrigues da Silva, Marcos Leandro Garcia, Jesulino Alves da Rocha Filho, Marcelo Zortea, Edmar Santos Moreira, Samiele Camargo de Oliveira Domingues, Eraldo A. T. Matricardi, David Galbraith, Ted R. Feldpausch, Imma Oliveras and Oliver L. Phillipsadd Show full author list remove Hide full author list
Forests 2025, 16(8), 1218; https://doi.org/10.3390/f16081218 - 24 Jul 2025
Viewed by 352
Abstract
Climate change and landscape fragmentation have made fires the primary drivers of forest degradation in Southern Amazonia. Understanding their impacts is crucial for informing public conservation policies. In this study, we assessed the effects of repeated fires on trees with a diameter ≥10 [...] Read more.
Climate change and landscape fragmentation have made fires the primary drivers of forest degradation in Southern Amazonia. Understanding their impacts is crucial for informing public conservation policies. In this study, we assessed the effects of repeated fires on trees with a diameter ≥10 cm across three distinct vegetation types in this threatened region: Amazonian successional forest (SF), transitional forest (TF), and ombrophilous forest (OF). Two anthropogenic fires affected all three vegetation types in consecutive years. We hypothesized that SF would be the least impacted due to its more open structure and the presence of fire-adapted savanna (Cerrado) species. As expected, SF experienced the lowest tree mortality rate (9.1%). However, both TF and OF were heavily affected, with mortality rates of 28.0% and 29.7%, respectively. Despite SF’s apparent fire resilience, all vegetation types experienced a significant net loss of species and individuals. These results indicate a fire-induced degradation stage in both TF and OF, characterized by reduced species diversity and structural integrity. Our findings suggest that recurrent fires may trigger irreversible vegetation shifts and broader ecosystem tipping points across the Amazonian frontier. Full article
Show Figures

Figure 1

27 pages, 3973 KiB  
Article
Modeling the Distribution and Richness of Mammalian Species in the Nyerere National Park, Tanzania
by Goodluck Massawe, Enrique Casas, Wilfred Marealle, Richard Lyamuya, Tiwonge I. Mzumara, Willard Mbewe and Manuel Arbelo
Remote Sens. 2025, 17(14), 2504; https://doi.org/10.3390/rs17142504 - 18 Jul 2025
Viewed by 1052
Abstract
Understanding the geographic distribution of mammal species is essential for informed conservation planning, maintaining local ecosystem stability, and addressing research gaps, particularly in data-deficient regions. This study investigated the distribution and richness of 20 mammal species within Nyerere National Park (NNP), a large [...] Read more.
Understanding the geographic distribution of mammal species is essential for informed conservation planning, maintaining local ecosystem stability, and addressing research gaps, particularly in data-deficient regions. This study investigated the distribution and richness of 20 mammal species within Nyerere National Park (NNP), a large and understudied protected area in Southern Tanzania. We applied species distribution models (SDMs) using presence data collected through ground surveys between 2022 and 2024, combined with environmental variables derived from remote sensing, including land surface temperature, vegetation indices, soil moisture, elevation, and proximity to water sources and human infrastructure. Models were constructed using the Maximum Entropy (MaxEnt) algorithm, and performance was evaluated using the Area Under the Curve (AUC) metric, yielding high accuracy ranging from 0.81 to 0.97. Temperature (32.3%) and vegetation indices (23.4%) emerged as the most influential predictors of species distributions, followed by elevation (21.7%) and proximity to water (14.5%). Species richness, estimated using a stacked SDM approach, was highest in the northern and riparian zones of the park, identifying potential biodiversity hotspots. This study presents the first fine-scale SDMs for mammal species in Nyerere National Park, offering a valuable ecological baseline to support conservation planning and promote sustainable ecotourism development in Tanzania’s southern protected areas. Full article
Show Figures

Graphical abstract

21 pages, 5333 KiB  
Article
Climate Extremes, Vegetation, and Lightning: Regional Fire Drivers Across Eurasia and North America
by Flavio Justino, David H. Bromwich, Jackson Rodrigues, Carlos Gurjão and Sheng-Hung Wang
Fire 2025, 8(7), 282; https://doi.org/10.3390/fire8070282 - 16 Jul 2025
Viewed by 709
Abstract
This study examines the complex interactions among soil moisture, evaporation, extreme weather events, and lightning, and their influence on fire activity across the extratropical and Pan-Arctic regions. Leveraging reanalysis and remote-sensing datasets from 2000 to 2020, we applied cross-correlation analysis, a modified Mann–Kendall [...] Read more.
This study examines the complex interactions among soil moisture, evaporation, extreme weather events, and lightning, and their influence on fire activity across the extratropical and Pan-Arctic regions. Leveraging reanalysis and remote-sensing datasets from 2000 to 2020, we applied cross-correlation analysis, a modified Mann–Kendall trend test, and assessments of interannual variability to key variables including soil moisture, fire frequency and risk, evaporation, and lightning. Results indicate a significant increase in dry days (up to 40%) and heatwave events across Central Eurasia and Siberia (up to 50%) and Alaska (25%), when compared to the 1980–2000 baseline. Upward trends have been detected in evaporation across most of North America, consistent with soil moisture trends, while much of Eurasia exhibits declining soil moisture. Fire danger shows a strong positive correlation with evaporation north of 60° N (r ≈ 0.7, p ≤ 0.005), but a negative correlation in regions south of this latitude. These findings suggest that in mid-latitude ecosystems, fire activity is not solely driven by water stress or atmospheric dryness, highlighting the importance of region-specific surface–atmosphere interactions in shaping fire regimes. In North America, most fires occur in temperate grasslands, savannas, and shrublands (47%), whereas in Eurasia, approximately 55% of fires are concentrated in forests/taiga and temperate open biomes. The analysis also highlights that lightning-related fires are more prevalent in Eastern Europe and Southeastern Asia. In contrast, Western North America exhibits high fire incidence in temperate conifer forests despite relatively low lightning activity, indicating a dominant role of anthropogenic ignition. These findings underscore the importance of understanding land–atmosphere interactions in assessing fire risk. Integrating surface conditions, climate extremes, and ignition sources into fire prediction models is crucial for developing more effective wildfire prevention and management strategies. Full article
(This article belongs to the Section Fire Science Models, Remote Sensing, and Data)
Show Figures

Graphical abstract

12 pages, 2204 KiB  
Article
Amblyomma mixtum (Acari: Ixodidae) Infestation in Humans in the Flooded Savanna Region of Colombia
by Arlex Rodríguez-Durán, Diana Peña-Navarro, Vinícius Andrade-Silva, Luís Fernando Parizi, Itabajara da Silva Vaz Junior and Jesús Alfredo Cortés-Vecino
Wild 2025, 2(3), 27; https://doi.org/10.3390/wild2030027 - 14 Jul 2025
Viewed by 332
Abstract
Ticks are arthropods responsible for transmitting microorganisms important to wild, domestic, and human animals. In ecosystems where they are distributed, interactions between hosts are a constant risk. This study analyzed voluntary case reports of tick infestations in humans and tick collections from wild [...] Read more.
Ticks are arthropods responsible for transmitting microorganisms important to wild, domestic, and human animals. In ecosystems where they are distributed, interactions between hosts are a constant risk. This study analyzed voluntary case reports of tick infestations in humans and tick collections from wild and domestic animals in six different locations in the flooded savanna region of the Colombian Orinoquia. Classical and molecular taxonomy were used to identify tick species. Individuals infested with ticks were monitored for clinical manifestations related to tick bites. A total of 22 ticks were found infesting five men and one woman, aged between 9 and 60 years. Both classical and molecular taxonomy confirmed that 100% of the ticks infesting humans and animals were Amblyomma mixtum. Two of the six individuals reported primary and secondary skin reactions during and after the tick bite, including mild-to-severe inflammatory reactions, pruritus, and erythematous papules that persisted up to 72 h. This study provides, for the first time, compiled information on clinical skin manifestations caused by A. mixtum in humans in the flooded savanna region and in Colombia as a whole. These findings serve as a theoretical basis for developing surveillance programs targeting infestations caused by this arthropod. Full article
Show Figures

Graphical abstract

14 pages, 1089 KiB  
Article
Modeling Plant Diversity Responses to Fire Recurrence in Disjunct Amazonian Savannas
by Mariana Martins Medeiros de Santana, Rodrigo Nogueira de Vasconcelos, Salustiano Vilar da Costa Neto, Eduardo Mariano Neto and Washington de Jesus Sant’Anna da Franca Rocha
Land 2025, 14(7), 1455; https://doi.org/10.3390/land14071455 - 13 Jul 2025
Viewed by 397
Abstract
Fire is a key ecological driver in tropical savannas, yet its effects on plant biodiversity remain understudied in Amazonian savannas. This study investigates how fire recurrence influences taxonomic and functional diversity in savanna ecosystems in northeastern Amazonia. We conducted vegetation surveys across five [...] Read more.
Fire is a key ecological driver in tropical savannas, yet its effects on plant biodiversity remain understudied in Amazonian savannas. This study investigates how fire recurrence influences taxonomic and functional diversity in savanna ecosystems in northeastern Amazonia. We conducted vegetation surveys across five phytophysiognomies in Amapá State, Brazil, and compiled trait data for 226 plant species. Generalized Additive Mixed Models (GAMMs) were used to evaluate the relationships between fire frequency and diversity metrics across five landscape scales. The results showed that taxonomic diversity—particularly Shannon diversity—exhibited a unimodal response to fire recurrence, with peak diversity occurring at intermediate fire frequencies. Abundance increased with fire frequency, indicating potential dominance by fire-tolerant species. Functional diversity responded more subtly: functional richness and dispersion showed weak, non-linear associations with fire, while functional evenness remained stable. These findings suggest that recurrent fire can reduce taxonomic diversity without strongly altering functional structure, possibly due to functional redundancy among species. The use of multiscale models revealed that biodiversity–fire relationships vary with spatial context. In conclusion, this study highlights the moderate resilience of Amazonian savannas to fire recurrence and emphasizes the need to incorporate these ecosystems into fire management plans in climate change scenarios. Full article
Show Figures

Figure 1

26 pages, 3615 KiB  
Article
Soil Organic Carbon Mapping Through Remote Sensing and In Situ Data with Random Forest by Using Google Earth Engine: A Case Study in Southern Africa
by Javier Bravo-García, Juan Mariano Camarillo-Naranjo, Francisco José Blanco-Velázquez and María Anaya-Romero
Land 2025, 14(7), 1436; https://doi.org/10.3390/land14071436 - 9 Jul 2025
Viewed by 391
Abstract
This study, conducted within the SteamBioAfrica project, assessed the potential of Digital Soil Mapping (DSM) to estimate Soil Organic Carbon (SOC) across key regions of southern Africa: Otjozondjupa and Omusati (Namibia), Chobe (Botswana), and KwaZulu-Natal (South Africa). Random Forest (RF) models were implemented [...] Read more.
This study, conducted within the SteamBioAfrica project, assessed the potential of Digital Soil Mapping (DSM) to estimate Soil Organic Carbon (SOC) across key regions of southern Africa: Otjozondjupa and Omusati (Namibia), Chobe (Botswana), and KwaZulu-Natal (South Africa). Random Forest (RF) models were implemented in the Google Earth Engine (GEE) environment, integrating multi-source datasets including real-time Sentinel-2 imagery, topographic variables, climatic data, and regional soil samples. Three model configurations were evaluated: (A) climatic, topographic, and spectral data; (B) topographic and spectral data; and (C) spectral data only. Model A achieved the highest overall accuracy (R2 up to 0.78), particularly in Otjozondjupa, whereas Model B resulted in the lowest RMSE and MAE. Model C exhibited poorer performance, underscoring the importance of multi-source data integration. SOC variability was primarily influenced by elevation, precipitation, temperature, and Sentinel-2 bands B11 and B8. However, data scarcity and inconsistent sampling, especially in Chobe, reduced model reliability (R2: 0.62). The originality of this study lay in the scalable integration of real-time Sentinel-2 data with regional datasets in an open-access framework. The resulting SOC maps provided actionable insights for land-use planning and climate adaptation in savanna ecosystems. Full article
(This article belongs to the Special Issue Digital Earth and Remote Sensing for Land Management)
Show Figures

Figure 1

14 pages, 2339 KiB  
Article
The Effects of Frost and Fire on the Traits, Resources, and Floral Visitors of a Cerrado Plant, and Their Impact on the Plant–Visitor Interaction Network and Fruit Formation
by Gabriela Fraga Porto, José Henrique Pezzonia, Ludimila Juliele Carvalho Leite, Jordanny Luiza Sousa Santos and Kleber Del-Claro
Plants 2025, 14(13), 1977; https://doi.org/10.3390/plants14131977 - 28 Jun 2025
Viewed by 1107
Abstract
The Cerrado, the world’s most diverse savanna, has several adaptations to fire. However, intense and frequent fires, especially after frosts, can severely impact this ecosystem. Despite this, few studies have evaluated the combined effects of frost followed by fire. We investigated how these [...] Read more.
The Cerrado, the world’s most diverse savanna, has several adaptations to fire. However, intense and frequent fires, especially after frosts, can severely impact this ecosystem. Despite this, few studies have evaluated the combined effects of frost followed by fire. We investigated how these disturbances affect plant traits, floral resources, floral visitor richness, and the structures of plant–pollinator interaction networks by using Byrsonima intermedia, a common Malpighiaceae shrub, as a model. We compared areas affected by frost alone and frost followed by fire and the same fire-affected area two years later. We examined pollen, oil volume, buds, and racemes and recorded floral visitors. Our main hypothesis was that fire-affected areas would exhibit higher floral visitor richness, more conspicuous plant traits, and greater fruit production than areas affected by frost only, which would show higher interaction generalization due to stronger negative impacts. The results confirmed that frost drastically reduced floral traits, visitor richness, and reproductive success. In contrast, fire facilitated faster recovery, triggering increased floral resource quantities, richer pollinator communities, more specialized interactions, and greater fruit production. Our findings highlight that fire, despite its impact, promotes faster ecosystem recovery compared to frost, reinforcing its ecological role in the Cerrado’s resilience. Full article
Show Figures

Figure 1

20 pages, 3731 KiB  
Article
Can Fire Season Type Serve as a Critical Factor in Fire Regime Classification System in China?
by Huijuan Li, Sumei Zhang, Xugang Lian, Yuan Zhang and Fengfeng Zhao
Fire 2025, 8(7), 254; https://doi.org/10.3390/fire8070254 - 28 Jun 2025
Viewed by 285
Abstract
Fire regime (FR) is a key element in the study of ecosystem dynamics, supporting natural resource management planning by identifying gaps in fire patterns in time and space and planning to assess ecological conditions. Due to the insufficient consideration of integrated characterization factors, [...] Read more.
Fire regime (FR) is a key element in the study of ecosystem dynamics, supporting natural resource management planning by identifying gaps in fire patterns in time and space and planning to assess ecological conditions. Due to the insufficient consideration of integrated characterization factors, especially the insufficient research on fire season types (FST), the current understanding of the spatial heterogeneity of fire patterns in China is still limited, and it is necessary to use FST as a key dimension to classify FR zones more accurately. This study extracted 13 fire characteristic variables based on Moderate Resolution Imaging Spectroradiometer (MODIS) burned area data (MCD64A1), active fire data (MODIS Collection 6), and land cover data (MCD12Q1) from 2001 to 2023. The study systematically analyzed the frequency, intensity, spatial distribution and seasonal characteristics of fires across China. By using data normalization and the k-means clustering algorithm, the study area was divided into five types of FR zones (FR 1–5) with significant differences. The burned areas of the five FR zones account for 67.76%, 13.88%, 4.87%, 12.94%, and 0.55% of the total burned area across the country over the 23-year study period, respectively. Among them, fires in the Northeast China Plain and North China Plain cropland areas (FR 1) exhibit a bimodal distribution, with the peak period concentrated in April and June, respectively; the southern forest and savanna region (FR 2) is dominated by high-frequency, small-scale, unimodal fires, peaking in February; the central grassland region (FR 3) experiences high-intensity, low-frequency fires, with a peak in April; the east central forest region (FR 4) is characterized by low-frequency, high-intensity fires; and the western grassland region (FR 5) experiences low-frequency fires with significant inter-annual fluctuations. Among the five zones, FST consistently ranks within the top five contributors, with contribution rates of 0.39, 0.31, 0.44, 0.27, and 0.55, respectively, confirming that the inclusion of FST is a reasonable and necessary choice when constructing FR zones. By integrating multi-source remote sensing data, this study has established a novel FR classification system that encompasses fire frequency, intensity, and particularly FST. This approach transcends the traditional single-factor classification, demonstrating that seasonal characteristics are indispensable for accurately delineating fire conditions. The resultant zoning system effectively overcomes the limitations of traditional methods, providing a scientific basis for localized fire risk warning and differentiated prevention and control strategies. Full article
(This article belongs to the Special Issue Advances in Remote Sensing for Burned Area Mapping)
Show Figures

Figure 1

7 pages, 3442 KiB  
Proceeding Paper
Monitoring Ecosystem Dynamics Using Machine Learning: Random Forest-Based LULC Analysis in Dinder Biosphere Reserve, Sudan
by Ahmed M. M. Hasoba, Emad H. E. Yasin, Mohamed B. O. Osman and Kornel Czimber
Eng. Proc. 2025, 94(1), 2; https://doi.org/10.3390/engproc2025094002 - 16 Jun 2025
Viewed by 340
Abstract
Dinder Biosphere Reserve (DBR), a UNESCO-recognized biodiversity hotspot in Sudan, faces escalating land-use pressure. We analyzed land cover changes from 2019 to 2024 using Sentinel-2 imagery processed in Google Earth Engine. A Random Forest classifier identified five land cover classes: water, built-up areas, [...] Read more.
Dinder Biosphere Reserve (DBR), a UNESCO-recognized biodiversity hotspot in Sudan, faces escalating land-use pressure. We analyzed land cover changes from 2019 to 2024 using Sentinel-2 imagery processed in Google Earth Engine. A Random Forest classifier identified five land cover classes: water, built-up areas, vegetation, bare land, and crops. The transition matrix revealed significant changes over this period. About 1501 km2 of vegetation and 1648 km2 of cropland were converted to bare land. Built-up areas lost 95 km2 to bare land. Bare land remained largely unchanged (4749 km2), while water bodies were the most stable (13,473 km2 unchanged). Only minor transitions involved water (27.6 km2 to vegetation, 15.2 km2 to bare land). Notably, 411 km2 of cropland and 1773 km2 of bare land transitioned to vegetation, indicating some regrowth. These land cover changes reflect a dynamic interplay between degradation and recovery processes; however, the results should be interpreted with caution due to potential classification inaccuracies, seasonal variation in imagery, and absence of field validation. Continued satellite monitoring is essential to guide adaptive land management and safeguard ecosystem function in DBR. Full article
Show Figures

Figure 1

15 pages, 2684 KiB  
Article
Seasonal Variation in Transpiration and Stomatal Conductance of Three Savanna Tree Species in Ruma National Park, Kenya
by John Maina Nyongesa, Wycliff Oronyi, Oyoo Lawrence, Ernest Kiplangat Ronoh, Lindsay Sikuku Mwalati, Vincent Suba, Leopody Gayo, Jacques Nkengurutse, Denis Ochuodho Otieno and Yuelin Li
Forests 2025, 16(6), 999; https://doi.org/10.3390/f16060999 - 13 Jun 2025
Cited by 1 | Viewed by 597
Abstract
Understanding the seasonal regulation of transpiration and stomatal conductance is critical for evaluating plant water-use strategies in response to environmental variability. This study assessed these physiological traits in three dominant savanna tree species (Piliostigma thonningii (Schumach.) Milne-Redh., Combretum molle R.Br. ex G.Don, [...] Read more.
Understanding the seasonal regulation of transpiration and stomatal conductance is critical for evaluating plant water-use strategies in response to environmental variability. This study assessed these physiological traits in three dominant savanna tree species (Piliostigma thonningii (Schumach.) Milne-Redh., Combretum molle R.Br. ex G.Don, and Balanites aegyptiaca (L.) Delile) in Ruma National Park, Kenya. Measurements were taken during wet and dry seasons under varying canopy light conditions (light-exposed vs. shaded leaves) and soil moisture regimes. A randomized design with four treatments and three replicates was employed. Results showed significantly higher transpiration and stomatal conductance during wet seasons, especially in sunlit leaves (p < 0.05). P. thonningii exhibited the highest rates of transpiration (9 mmol m−2 s−1) and stomatal conductance (~2.2 mmol m−2 s−1) in light conditions, while B. aegyptiaca maintained consistently low values, reflecting a drought-tolerant strategy. C. molle demonstrated intermediate responses, suggesting a balance between water conservation and resource use. Despite seasonal trends, low R2 values indicated that internal physiological regulation outweighed the influence of external climatic drivers. These findings reveal species-specific water-use strategies and highlight the ecological significance of leaf-level responses to light and moisture availability in tropical savannas. The study provides valuable insights for forest management and climate-resilient restoration planning in water-limited ecosystems. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

19 pages, 3695 KiB  
Article
Contextualizing Estimated Tree Densities and Expert-Classified Ecosystems in the Historical Midwestern United States, a Region with Exposure to Frequent Fires
by Brice B. Hanberry, Charles M. Ruffner and Robert Tatina
Forests 2025, 16(5), 748; https://doi.org/10.3390/f16050748 - 27 Apr 2025
Viewed by 333
Abstract
Many ecosystems have been altered since European colonization, resulting in the loss of historical ecosystems along with information about historical ecosystems. Tree density estimation from historical land surveys with alignment to expert classifications of historical vegetation strengthen reconstructions of vegetation history through research [...] Read more.
Many ecosystems have been altered since European colonization, resulting in the loss of historical ecosystems along with information about historical ecosystems. Tree density estimation from historical land surveys with alignment to expert classifications of historical vegetation strengthen reconstructions of vegetation history through research triangulation. For the midwestern United States, we extended historical tree density estimates (≥12.7 cm in diameter) to contextualize expert classifications of vegetation types in Illinois and Minnesota, part of the historical Great Plains grasslands with very frequent fire exposure, and Indiana and southern Michigan, which were more protected from fire. We also identified a tree density threshold between grasslands and savannas and contrasted density estimates with two alternate density estimates. After refining expert-classified vegetation types, out of 14 major historical ecosystems in this region, 11 were grasslands, savannas, or woodlands. The three additional ecosystems were American beech (Fagus grandifolia) closed woodlands and forests in Indiana and American beech-oak (Quercus) closed woodlands and forests and tamarack (Larix laricina) and ash (Fraxinus) swamp forests in southern Michigan. Because tree densities in the grasslands of Illinois and Minnesota did not exceed 4 trees/ha and tree densities in the savannas of Indiana, Michigan, and Minnesota ranged from 23 trees/ha to 78 trees/ha, around 15 trees/ha may be a reasonable threshold between grasslands and savannas. Density estimates generally matched with two other sources of density estimates, despite using different approaches, supporting the reliability of density estimation. Anchoring density estimates from land surveys to other sources of historical vegetation establishes the validity of density estimation, while supplementing expert-classified ecosystems. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

18 pages, 1136 KiB  
Review
The Impact of Vegetation Changes in Savanna Ecosystems on Tick Populations in Wildlife: Implications for Ecosystem Management
by Tsireledzo Goodwill Makwarela, Nimmi Seoraj-Pillai and Tshifhiwa Constance Nangammbi
Diversity 2025, 17(5), 314; https://doi.org/10.3390/d17050314 - 26 Apr 2025
Viewed by 864
Abstract
Vegetation changes in savanna ecosystems are playing an increasingly important role in shaping tick populations and the spread of tick-borne diseases, with consequences for both wildlife and livestock health. This study examines how factors such as climate variability, land use, vegetation structures, and [...] Read more.
Vegetation changes in savanna ecosystems are playing an increasingly important role in shaping tick populations and the spread of tick-borne diseases, with consequences for both wildlife and livestock health. This study examines how factors such as climate variability, land use, vegetation structures, and host availability influence tick survival, distribution, and behavior. As grasslands degrade and woody plants become more dominant, ticks are finding more suitable habitats, often supported by microclimatic conditions that favor their development. At the same time, increased contact between domestic and wild animals is facilitating the transmission of pathogens. This review highlights how seasonal patterns, fire regimes, grazing pressure, and climate change are driving shifts in tick activity and expanding their geographical range. These changes increase the risk of disease for animals and humans alike. Addressing these challenges calls for integrated management strategies that include vegetation control, host population monitoring, and sustainable vector control methods. A holistic approach that connects ecological, animal, and human health perspectives is essential for effective disease prevention and long-term ecosystem management. Full article
Show Figures

Graphical abstract

21 pages, 3640 KiB  
Article
Postfire Scenarios Shape Dung Beetle Communities in the Orinoquía Riparian Forest–Savannah Transition
by Carlos Julián Moreno-Fonseca, Jorge Ari Noriega, Walter Garcia-Suabita and Dolors Armenteras-Pascual
Biology 2025, 14(4), 423; https://doi.org/10.3390/biology14040423 - 15 Apr 2025
Cited by 1 | Viewed by 825 | Correction
Abstract
The Orinoquía region of Colombia includes diverse ecosystems such as riparian forests and seasonal savannas, which play vital roles as biodiversity reservoirs. However, increased fire activity, driven by both natural and anthropogenic pressures, poses mounting threats to these ecosystems. Despite their importance, the [...] Read more.
The Orinoquía region of Colombia includes diverse ecosystems such as riparian forests and seasonal savannas, which play vital roles as biodiversity reservoirs. However, increased fire activity, driven by both natural and anthropogenic pressures, poses mounting threats to these ecosystems. Despite their importance, the effects of fire on faunal communities, especially in transitional habitats, are not well understood. Understanding biodiversity responses to fire across different recovery stages is essential for conservation planning. This study aimed to assess the effects of fire occurrence and recovery time on dung beetle communities as an indicator of ecosystem resilience. We analyzed taxonomic responses—including species richness, abundance, and Hill diversity indices (D0, D1, D2)—as well as functional traits such as guild richness, biomass, and food relocation behavior, across riparian forest–savanna ecotones under varying fire histories. Our results indicate that recent fires (≤1 year) and high fire frequencies (4–5 events) negatively affect species diversity and abundance. Dominance by a few disturbance-tolerant species, such as Digitonthophagus gazella, was observed in burned savannas, while forest habitats supported both rare and dominant taxa. Despite taxonomic declines, functional redundancy was maintained, largely due to the prevalence of small-bodied species. However, we observed a general resilience effect in which core species contributed to postfire community reassembly. Functional redundancy was maintained, with small dung beetles dominating the biomass and guild composition. The conservation status of transitional habitats, particularly the forest–savanna ecotone, played a critical role in postfire dung beetle community restructuring. The presence of resilient assemblages highlights the importance of dung beetles in sustaining key ecosystem functions following fire events. These findings underscore the potential of dung beetles as bioindicators for postfire monitoring and emphasize the need for improved fire management strategies in sensitive ecosystems. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Graphical abstract

20 pages, 1230 KiB  
Review
Groundwater–Vegetation Interactions in Rangeland Ecosystems: A Review
by Monde Rapiya and Abel Ramoelo
Water 2025, 17(8), 1174; https://doi.org/10.3390/w17081174 - 14 Apr 2025
Cited by 1 | Viewed by 1009
Abstract
Water scarcity is a growing global issue, especially in arid and semi-arid rangelands, primarily due to climate change and population growth. Groundwater is a crucial resource for vegetation in these ecosystems, yet its role in supporting plant life is often not fully understood. [...] Read more.
Water scarcity is a growing global issue, especially in arid and semi-arid rangelands, primarily due to climate change and population growth. Groundwater is a crucial resource for vegetation in these ecosystems, yet its role in supporting plant life is often not fully understood. This review explores the interactions between groundwater and vegetation dynamics in various rangeland types. Groundwater serves as a critical water source that helps sustain plants, but changes in its availability, depth, and quality can significantly impact plant health, biodiversity, and ecosystem stability. Research indicates that groundwater depth affects vegetation types and their distribution, with specific plants thriving at certain groundwater levels. For instance, in grasslands, shallow groundwater can support diverse herbaceous species, while deeper conditions may favor drought-tolerant shrubs and trees. Similarly, in forest ecosystems, extensive root systems access both groundwater and soil moisture, playing a vital role in water regulation. Savanna environments showcase complex interactions, where trees and grasses compete for water, with groundwater potentially benefiting trees during dry seasons. Climate change poses additional challenges by altering rainfall patterns and temperatures, affecting groundwater recharge and availability. As a result, it is crucial to develop effective management strategies that integrate groundwater conservation with vegetation health. Innovative monitoring techniques, including remote sensing, can provide valuable information about groundwater levels and their impact on vegetation, enhancing water resource management. This review emphasizes the importance of understanding groundwater–vegetation interactions to guide sustainable land and water management practices. By enhancing our knowledge of these connections and utilizing advanced technologies, we can promote ecosystem resilience, secure water resources, and support biodiversity in rangeland systems. Collaborative efforts among local communities, scientists, and policymakers are essential to address the pressing issues of water scarcity and to ensure the sustainability of vital ecosystems for future generations. Full article
(This article belongs to the Section Ecohydrology)
Show Figures

Figure 1

15 pages, 8576 KiB  
Article
How Do Emission Factors Contribute to the Uncertainty in Biomass Burning Emissions in the Amazon and Cerrado?
by Guilherme Mataveli, Matthew W. Jones, Gabriel Pereira, Saulo R. Freitas, Valter Oliveira, Bruno Silva Oliveira and Luiz E. O. C. Aragão
Atmosphere 2025, 16(4), 423; https://doi.org/10.3390/atmos16040423 - 4 Apr 2025
Viewed by 834
Abstract
Fires drive global ecosystem change, impacting carbon dynamics, atmospheric composition, biodiversity, and human well-being. Biomass burning, a major outcome of fires, significantly contributes to greenhouse gas and aerosol emissions. Among these, fine particulate matter (PM2.5) is particularly concerning due to its [...] Read more.
Fires drive global ecosystem change, impacting carbon dynamics, atmospheric composition, biodiversity, and human well-being. Biomass burning, a major outcome of fires, significantly contributes to greenhouse gas and aerosol emissions. Among these, fine particulate matter (PM2.5) is particularly concerning due to its adverse effects on air quality and health, and its substantial yet uncertain role in Earth’s energy balance. Variability in emission factors (EFs) remains a key source of uncertainty in emission estimates. This study evaluates PM2.5 emission sensitivity to EFs variability in Brazil’s Amazon and Cerrado biomes over 2002–2023 using the 3BEM_FRP model implemented in the PREP-CHEM-SRC tool. We updated the EFs with values and uncertainty ranges from Andreae (2019), which reflect a more comprehensive literature review than earlier datasets. The results reveal that the annual average PM2.5 emissions varied by up to 162% in the Amazon (1213 Gg yr−1 to 3172 Gg yr−1) and 184% in the Cerrado (601 Gg yr−1 to 1709 Gg yr−1). The Average peak emissions at the grid-cell level reached 5688 Mg yr−1 in the “Arc of Deforestation” region under the High-end EF scenario. Notably, the PM2.5 emissions from Amazon forest areas increased over time despite shrinking forest cover, indicating that Amazonian forests are becoming more vulnerable to fire. In the Cerrado, savannas are the primary land cover contributing to the total PM2.5 emissions, accounting for 64% to 80%. These findings underscore the importance of accurate, region-specific EFs for improving emission models and reducing uncertainties. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

Back to TopTop