Groundwater–Vegetation Interactions in Rangeland Ecosystems: A Review
Abstract
:1. Introduction
2. Groundwater as a Water Source in Rangelands
3. Groundwater Influences on Vegetation Growth Patterns in Rangelands
3.1. Groundwater in Grassland Rangelands
3.2. Groundwater in Forest Rangelands
3.3. Groundwater in Savanna Rangelands
4. Climate Change and Its Impact on Groundwater–Vegetation Interactions
5. Management Practices for Optimizing Groundwater–Vegetation Interactions
5.1. Sustainable Water Management Strategies
5.2. Monitoring and Remote Sensing for Sustainable Groundwater Management
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Job, C.; Ochoa, C.G.; Jarvis, W.T.; Kennedy, R.E. A Spatiotemporal Characterization of Water Resource Conditions and Demands as Influenced by the Hydrogeologic Framework of the Willcox Groundwater Basin, Southeastern Arizona, USA. Geosciences 2023, 13, 176. [Google Scholar] [CrossRef]
- McLendon, T.; Hubbard, P.J.; Martin, D.W. Partitioning the use of precipitation-and groundwater-derived moisture by vegetation in an arid ecosystem in California. J. Arid Environ. 2008, 72, 986–1001. [Google Scholar] [CrossRef]
- Ryel, R.J.; Leffler, A.J.; Peek, M.S.; Ivans, C.Y.; Caldwell, M.M. Water conservation in Artemisia tridentata through redistribution of precipitation. Oecologia 2004, 141, 335–345. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Xiong, K.; Xiao, J. To Achieve a Win–Win Situation: Reorganizing and Enhancing Agroforestry Ecosystem Assets and Productivity to Inform Karst Desertification Control. Forests 2024, 15, 502. [Google Scholar] [CrossRef]
- Glanville, K.; Sheldon, F.; Butler, D.; Capon, S. Effects and significance of groundwater for vegetation: A systematic review. Sci. Total Environ. 2023, 875, 162577. [Google Scholar] [CrossRef]
- Evaristo, J.; McDonnell, J.J. Prevalence and magnitude of groundwater use by vegetation: A global stable isotope meta-analysis. Sci. Rep. 2017, 7, 44110. [Google Scholar] [CrossRef]
- Morelli, T.L.; Daly, C.; Dobrowski, S.Z.; Dulen, D.M.; Ebersole, J.L.; Jackson, S.T.; Lundquist, J.D.; Millar, C.I.; Maher, S.P.; Monahan, W.B.; et al. Managing climate change refugia for climate adaptation. PLoS ONE 2016, 11, e0159909. [Google Scholar] [CrossRef]
- Mammola, S.; Meierhofer, M.B.; Borges, P.A.; Colado, R.; Culver, D.C.; Deharveng, L.; Delić, T.; Di Lorenzo, T.; Dražina, T.; Ferreira, R.L.; et al. Towards evidence-based conservation of subterranean ecosystems. Biol. Rev. 2022, 97, 1476–1510. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, Y.; Zhang, D.; Chen, X. Environmental groundwater depth for groundwater-dependent terrestrial ecosystems in arid/semiarid regions: A review. Int. J. Environ. Res. Public Health 2019, 16, 763. [Google Scholar] [CrossRef]
- Le Maitre, D.C.; Scott, D.F.; Colvin, C. Review of Information on Interactions Between Vegetation and Groundwater. 1999. Available online: http://hdl.handle.net/10204/524 (accessed on 9 January 2025).
- Brauman, K.A.; Daily, G.C.; Duarte, T.K.E.; Mooney, H.A. The nature and value of ecosystem services: An overview highlighting hydrologic services. Annu. Rev. Environ. Resour. 2007, 32, 67–98. [Google Scholar] [CrossRef]
- Wilcox, B.P.; Seyfried, M.S.; Breshears, D.D.; Stewart, B.; Howell, T. The water balance on rangelands. Encycl. Water Sci. 2003, 791, 791–794. [Google Scholar]
- Wilcox, B.P.; Le Maitre, D.; Jobbagy, E. Ecohydrology: Processes and implications for rangelands. In Rangeland Systems; Briske, D., Ed.; Springer Series on Environmental Management; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- George, R.J.; Nulsen, R.A.; Ferdowsian, R.; Raper, G.P. Interactions between trees and groundwaters in recharge and discharge areas–A survey of Western Australian sites. Agric. Water Manag. 1999, 39, 91–113. [Google Scholar] [CrossRef]
- Song, X.; Wang, P.; Yu, J.; Liu, X.; Liu, J.; Yuan, R. Relationships between precipitation, soil water and groundwater at Chongling catchment with the typical vegetation cover in the Taihang mountainous region, China. Environ. Earth Sci. 2011, 62, 787–796. [Google Scholar] [CrossRef]
- Kløve, B.; Ala-Aho, P.; Bertrand, G.; Boukalova, Z.; Ertürk, A.; Goldscheider, N.; Ilmonen, J.; Karakaya, N.; Kupfersberger, H.; Kvœrner, J.; et al. Groundwater dependent ecosystems. Part I: Hydroecological status and trends. Environ. Sci. Policy 2011, 14, 770–781. [Google Scholar] [CrossRef]
- Roselle, L.; Launchbaugh, K.; Jones, T.; Babcock, L.; Ambrosek, R.; Stebleton, A.; Brewer, T.; Sanders, K.; Mink, J.; Haley, J. Rangelands Overview; Rangelands: An Introduction to Idaho’s Wild Open Spaces Rangeland Centre; Idaho Rangeland Resource Commission (IRRC): Emmett, ID, USA, 2011; pp. 114–120. [Google Scholar]
- Zhu, J.; Yu, J.; Wang, P.; Zhang, Y.; Yu, Q. Interpreting the groundwater attributes influencing the distribution patterns of groundwater-dependent vegetation in northwestern China. Ecohydrology 2012, 5, 628–636. [Google Scholar] [CrossRef]
- Loheide, S.P.; Booth, E.G. Effects of changing channel morphology on vegetation, groundwater, and soil moisture regimes in groundwater-dependent ecosystems. Geomorphology 2011, 126, 364–376. [Google Scholar] [CrossRef]
- Yin, Z.; Luo, Q.; Wu, J.; Xu, S.; Wu, J. Identification of the long-term variations of groundwater and their governing factors based on hydrochemical and isotopic data in a river basin. J. Hydrol. 2021, 592, 125604. [Google Scholar] [CrossRef]
- Liang, L.; Wang, Q.; Guan, Q.; Du, Q.; Sun, Y.; Ni, F.; Lv, S.; Shan, Y. Assessing vegetation restoration prospects under different environmental elements in cold and arid mountainous region of China. Catena 2023, 226, 107055. [Google Scholar] [CrossRef]
- Keenan, T.F.; Williams, C.A. The terrestrial carbon sink. Annu. Rev. Environ. Resour. 2018, 43, 219–243. [Google Scholar] [CrossRef]
- Brauer, A.; Heinrich, I.; Schwab, M.J.; Plessen, B.; Brademann, B.; Köppl, M.; Pinkerneil, S.; Balanzategui, D.; Helle, G.; Blume, T. Lakes and trees as climate and environment archives: The TERENO Northeastern German Lowland Observatory. EUQUA Spéc. Publ. 2022, 4, 41–58. [Google Scholar] [CrossRef]
- Zhao, S.; Zhao, X.; Li, Y.; Chen, X.; Li, C.; Fang, H.; Li, W.; Guo, W. Impact of deeper groundwater depth on vegetation and soil in semi-arid region of eastern China. Front. Plant Sci. 2023, 14, 1186406. [Google Scholar] [CrossRef] [PubMed]
- Johansen, O.M.; Andersen, D.K.; Ejrnæs, R.; Pedersen, M.L. Relations between vegetation and water level in groundwater dependent terrestrial ecosystems (GWDTEs). Limnologica 2018, 68, 130–141. [Google Scholar] [CrossRef]
- Peng, L.; Wan, Y.; Shi, H.; Anwaier, A.; Shi, Q. Influence of Climate, Topography, and Hydrology on Vegetation Distribution Patterns—Oasis in the Taklamakan Desert Hinterland. Remote Sens. 2023, 15, 5299. [Google Scholar] [CrossRef]
- Bodhinayake, W.L.; Si, B.C.; Van der Kamp, G. Effects of Different Land Use on Soil Hydraulic Properties. Soils and Crops Workshop. 2002. Available online: https://harvest.usask.ca/server/api/core/bitstreams/75eda9ca-4a77-4c02-bc17-2a5cd3fc989a/content (accessed on 16 January 2025).
- Lv, J.; Wang, X.S.; Zhou, Y.; Qian, K.; Wan, L.; Eamus, D.; Tao, Z. Groundwater-dependent distribution of vegetation in Hailiutu River catchment, a semi-arid region in China. Ecohydrology 2013, 6, 142–149. [Google Scholar] [CrossRef]
- Zhu, Y.H.; Zhang, S.; Sun, B.; Yan, L.; Wang, Y. Relationship of dominant herbaceous plant species and groundwater depth in Tongliao plain, northwestern China. Appl. Ecol. Environ. Res. 2019, 17, 15363–15374. [Google Scholar] [CrossRef]
- Froend, R.; Sommer, B. Phreatophytic vegetation response to climatic and abstraction-induced groundwater drawdown: Examples of long-term spatial and temporal variability in community response. Ecol. Eng. 2010, 36, 1191–1200. [Google Scholar] [CrossRef]
- You, X.; Liu, J. Describing the spatial–temporal dynamics of groundwater-dependent vegetation (GDV): A theoretical methodology. Ecol. Model. 2018, 383, 127–137. [Google Scholar] [CrossRef]
- Deng, W.; Chen, M.; Zhao, Y.; Yan, L.; Wang, Y.; Zhou, F. The role of groundwater depth in semiarid grassland restoration to increase the resilience to drought events: A lesson from Horqin Grassland, China. Ecol. Indic. 2022, 141, 109122. [Google Scholar] [CrossRef]
- Feng, H.; Duan, Y.; Zhou, J.; Su, D.; Li, R.; Xiong, R. Effects of groundwater level decline on soil-vegetation system in semiarid grassland influenced by coal mining. Land Degrad. Dev. 2024, 35, 2297–2312. [Google Scholar] [CrossRef]
- Kim, J.H.; Jackson, R.B. A global analysis of groundwater recharge for vegetation, climate, and soils. Vadose Zone J. 2012, 11. [Google Scholar] [CrossRef]
- Schenk, E.R.; O’donnell, F.; Springer, A.E.; Stevens, L.E. The impacts of tree stand thinning on groundwater recharge in aridland forests. Ecol. Eng. 2020, 145, 105701. [Google Scholar] [CrossRef]
- Brown, A.E.; Zhang, L.; McMahon, T.A.; Western, A.W.; Vertessy, R.A. A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. J. Hydrol. 2005, 310, 28–61. [Google Scholar] [CrossRef]
- Ouyang, Y.; Jin, W.; Grace, J.M.; Obalum, S.E.; Zipperer, W.C.; Huang, X. Estimating impact of forest land on groundwater recharge in a humid subtropical watershed of the Lower Mississippi River Alluvial Valley. J. Hydrol. Reg. Stud. 2019, 26, 100631. [Google Scholar] [CrossRef]
- Keenan, R.J.; Weston, C.J.; Volkova, L. Potential for forest thinning to reduce risk and increase resilience to wildfire in Australian temperate Eucalyptus forests. Curr. Opin. Environ. Sci. Health 2021, 23, 100280. [Google Scholar] [CrossRef]
- Souza-Alonso, P.; Saiz, G.; García, R.A.; Pauchard, A.; Ferreira, A.; Merino, A. Post-fire ecological restoration in Latin American forest ecosystems: Insights and lessons from the last two decades. For. Ecol. Manag. 2022, 509, 120083. [Google Scholar] [CrossRef]
- Elkin, C.; Giuggiola, A.; Rigling, A.; Bugmann, H. Short-and long-term efficacy of forest thinning to mitigate drought impacts in mountain forests in the European Alps. Ecol. Appl. 2015, 25, 1083–1098. [Google Scholar] [CrossRef]
- Law, B.E.; Hudiburg, T.W.; Luyssaert, S. Thinning effects on forest productivity: Consequences of preserving old forests and mitigating impacts of fire and drought. Plant Ecol. Divers. 2013, 6, 73–85. [Google Scholar] [CrossRef]
- Calder, I.R. Forests and water—Ensuring forest benefits outweigh water costs. For. Ecol. Manag. 2007, 251, 110–120. [Google Scholar] [CrossRef]
- Horton, J.L.; Hart, S.C. Hydraulic lift: A potentially important ecosystem process. Trends Ecol. Evol. 1998, 13, 232–235. [Google Scholar] [CrossRef]
- Scholz, F.G.; Bucci, S.J.; Hoffmann, W.A.; Meinzer, F.C.; Goldstein, G. Hydraulic lift in a Neotropical savanna: Experimental manipulation and model simulations. Agric. For. Meteorol. 2010, 150, 629–639. [Google Scholar] [CrossRef]
- Ellison, D.; Morris, C.E.; Locatelli, B.; Sheil, D.; Cohen, J.; Murdiyarso, D.; Gutierrez, V.; Van Noordwijk, M.; Creed, I.F.; Pokorny, J.; et al. Trees, forests and water: Cool insights for a hot world. Glob. Environ. Change 2017, 43, 51–61. [Google Scholar] [CrossRef]
- te-Wierik, S.A.; Cammeraat, E.L.; Gupta, J.; Artzy-Randrup, Y.A. Reviewing the impact of land use and land-use change on moisture recycling and precipitation patterns. Water Resour. Res. 2021, 57, e2020WR029234. [Google Scholar] [CrossRef]
- Jones, J.A.; Wei, X.; Archer, E.; Bishop, K.; Blanco, J.A.; Ellison, D.; Gush, M.B.; McNulty, S.G.; van Noordwijk, M.; Creed, I.F. Forest-water interactions under global change. In Forest-Water Interactions; Springer International Publishing: Cham, Switzerland, 2020; pp. 589–624. [Google Scholar]
- Runyan, C.W.; D’Odorico, P. Ecohydrological feedbacks between salt accumulation and vegetation dynamics: Role of vegetation-groundwater interactions. Water Resour. Res. 2010, 46, W11561. [Google Scholar] [CrossRef]
- Kaushal, S.S.; Likens, G.E.; Pace, M.L.; Reimer, J.E.; Maas, C.M.; Galella, J.G.; Utz, R.M.; Duan, S.; Kryger, J.R.; Yaculak, A.M.; et al. Freshwater salinization syndrome: From emerging global problem to managing risks. Biogeochemistry 2021, 154, 255–292. [Google Scholar] [CrossRef]
- Bui, E.N. Soil salinity: A neglected factor in plant ecology and biogeography. J. Arid Environ. 2013, 92, 14–25. [Google Scholar] [CrossRef]
- Jobbágy, E.G.; Giménez, R.; Marchesini, V.; Diaz, Y.; Jayawickreme, D.H.; Nosetto, M.D. Salt accumulation and redistribution in the dry plains of southern South America: Lessons from land use changes. In Saline and Alkaline Soils in Latin America: Natural Resources, Management and Productive Alternatives; Springer: Cham, Switzerland, 2021; pp. 51–70. [Google Scholar]
- Food and Agriculture Organization (FAO). Forests and water: FAO Forestry Paper 155. 2008. Available online: https://www.fao.org/4/i0410e/i0410e00.htm (accessed on 6 January 2025).
- Adane, Z.A.; Nasta, P.; Zlotnik, V.; Wedin, D. Impact of grassland conversion to forest on groundwater recharge in the Nebraska Sand Hills. J. Hydrol. Reg. Stud. 2018, 15, 171–183. [Google Scholar] [CrossRef]
- Acharya, B.S.; Kharel, G.; Zou, C.B.; Wilcox, B.P.; Halihan, T. Woody plant encroachment impacts on groundwater recharge: A review. Water 2018, 10, 1466. [Google Scholar] [CrossRef]
- Schwaiger, F.; Poschenrieder, W.; Rötzer, T.; Biber, P.; Pretzsch, H. Groundwater recharge algorithm for forest management models. Ecol. Model. 2018, 385, 154–164. [Google Scholar] [CrossRef]
- Owuor, S.O.; Butterbach-Bahl, K.; Guzha, A.C.; Rufino, M.C.; Pelster, D.E.; Díaz-Pinés, E.; Breuer, L. Groundwater recharge rates and surface runoff response to land use and land cover changes in semi-arid environments. Ecol. Process. 2016, 5, 16. [Google Scholar] [CrossRef]
- Ilstedt, U.; Bargués Tobella, A.; Bazié, H.R.; Bayala, J.; Verbeeten, E.; Nyberg, G.; Sanou, J.; Benegas, L.; Murdiyarso, D.; Laudon, H.; et al. Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. Sci. Rep. 2016, 6, 21930. [Google Scholar] [CrossRef]
- Tuswa, N.; Bugan, R.D.; Mapeto, T.; Jovanovic, N.; Gush, M.; Kapangaziwiri, E.; Dzikiti, S.; Kanyerere, T.; Xu, Y. The impacts of commercial plantation forests on groundwater recharge: A case study from George (Western Cape, South Africa). Phys. Chem. Earth Parts A/B/C 2019, 112, 187–199. [Google Scholar] [CrossRef]
- Allen, A.; Chapman, D. Impacts of afforestation on groundwater resources and quality. Hydrogeol. J. 2001, 9, 390–400. [Google Scholar] [CrossRef]
- Huntley, B.J. The Arid Savanna Biome. In Ecology of Angola; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Staver, A.C.; Botha, J.; Hedin, L. Soils and fire jointly determine vegetation structure in an African savanna. New Phytol. 2017, 216, 1151–1160. [Google Scholar] [CrossRef] [PubMed]
- O’connor, T.G.; Puttick, J.R.; Hoffman, M.T. Bush encroachment in southern Africa: Changes and causes. Afr. J. Range Forage Sci. 2014, 31, 67–88. [Google Scholar] [CrossRef]
- Stone, E.L.; Kalisz, P.J. On the maximum extent of tree roots. For. Ecol. Manag. 1991, 46, 59–102. [Google Scholar] [CrossRef]
- Smith, J.M.B. Savanna Ecological Region. Encyclopædia Britannica. 2024. Available online: https://www.britannica.com/science/savanna/Biological-productivity (accessed on 26 January 2025).
- White, J.C.; Smith, W.K. Water source utilization under differing surface flow regimes in the riparian species Liquidambar styraciflua, in the southern Appalachian foothills, USA. Plant Ecol. 2020, 221, 1069–1082. [Google Scholar] [CrossRef]
- Lamontagne, S.; Cook, P.G.; O’Grady, A.; Eamus, D. Groundwater use by vegetation in a tropical savanna riparian zone (Daly River, Australia). J. Hydrol. 2005, 310, 280–293. [Google Scholar] [CrossRef]
- Salazar, A.; Goldstein, G. Effects of fire on seedling diversity and plant reproduction (sexual vs. vegetative) in neotropical savannas differing in tree density. Biotropica 2014, 46, 139–147. [Google Scholar] [CrossRef]
- Alshehri, F.; Mohamed, A. Analysis of groundwater storage fluctuations using GRACE and remote sensing data in Wadi As-Sirhan, Northern Saudi Arabia. Water 2023, 15, 282. [Google Scholar] [CrossRef]
- Szabó, A.; Gribovszki, Z.; Kalicz, P.; Szolgay, J.; Bolla, B. The soil moisture regime and groundwater recharge in aged forests in the Sand Ridge region of Hungary after a decline in the groundwater level: An experimental case study. J. Hydrol. Hydromech. 2022, 70, 308–320. [Google Scholar] [CrossRef]
- Miller, G.R.; Chen, X.; Rubin, Y.; Ma, S.; Baldocchi, D.D. Groundwater uptake by woody vegetation in a semiarid oak savanna. Water Resour. Res. 2010, 46, W10503. [Google Scholar] [CrossRef]
- Donzelli, D.; De Michele, C.; Scholes, R.J. Competition between trees and grasses for both soil water and mineral nitrogen in dry savannas. J. Theor. Biol. 2013, 332, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Krebs, J.R.; Wilson, J.D.; Bradbury, R.B.; Siriwardena, G.M. The second silent spring? Nature 1999, 400, 611–612. [Google Scholar] [CrossRef]
- O’Connor, T.G. Impact of sustained drought on a semi-arid Colophospermum mopane savanna. Afr. J. Range Forage Sci. 1998, 15, 83–91. [Google Scholar] [CrossRef]
- Clegg, B.W.; O’Connor, T.G. Determinants of seasonal changes in availability of food patches for elephants (Loxodonta africana) in a semi-arid African savanna. PeerJ 2017, 5, e3453. [Google Scholar] [CrossRef]
- Panwar, S.; Chakrapani, G.J. Climate change and its influence on groundwater resources. Curr. Sci. 2013, 105, 37–46. [Google Scholar]
- Intergovernmental Panel on Climate Change IPCC. Climate change 2014: Synthesis report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Cook, B.I.; Smerdon, J.E.; Seager, R.; Coats, S. Global warming and 21 st century drying. Clim. Dyn. 2014, 43, 2607–2627. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Change 2013, 3, 816–821. [Google Scholar] [CrossRef]
- IPCC (Intergovernmental Panel on Climate Change). Summary for Policymakers. In Climate Change 2007: The Physical Science Basis Contribution of Working Group Ito the Fourth Assessment Report of the IntergovernmentalPanel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Eds.; Cambridge University Press: Cambridge, UK, 2007; Available online: https://www.ipcc.ch/site/assets/uploads/2018/05/ar4_wg1_full_report-1.pdf (accessed on 27 January 2025).
- Nygren, M.; Giese, M.; Kløve, B.; Haaf, E.; Rossi, P.M.; Barthel, R. Changes in seasonality of groundwater level fluctuations in a temperate-cold climate transition zone. J. Hydrol. X 2020, 8, 100062. [Google Scholar] [CrossRef]
- Meixner, T.; Manning, A.H.; Stonestrom, D.A.; Allen, D.M.; Ajami, H.; Blasch, K.W.; Brookfield, A.E.; Castro, C.L.; Clark, J.F.; Gochis, D.J.; et al. Implications of projected climate change for groundwater recharge in the western United States. J. Hydrol. 2016, 534, 124–138. [Google Scholar] [CrossRef]
- Allen, D.M.; Stahl, K.; Whitfield, P.H.; Moore, R.D. Trends in groundwater levels in British Columbia. Can. Water Resour. J. /Rev. Can. Des Ressour. Hydr. 2014, 39, 15–31. [Google Scholar] [CrossRef]
- Vitola, I.; Vircavs, V.; Abramenko, K.; Lauva, D.; Veinbergs, A. Precipitation and air temperature impact on seasonal variations of groundwater levels. Rigas Teh. Univ. Zinat. Raksti 2013, 10, 25. [Google Scholar] [CrossRef]
- Kløve, B.; Ala-aho, P.; Okkonen, J.; Rossi, P. Possible effects of climate change on hydrogeological systems: Results from research on esker aquifers in Northern Finland. In Climate Change Effects on Groundwater Resources; CRC Press: Boca Raton, FL, USA, 2011; pp. 323–338. [Google Scholar]
- Wu, H.; Gao, X.; Wu, M.; Zhu, Y.; Xiong, R.; Ye, S. The efficiency and risk to groundwater of constructed wetland system for domestic sewage treatment-A case study in Xiantao, China. J. Clean. Prod. 2020, 277, 123384. [Google Scholar] [CrossRef]
- Yeh, P.J.; Famiglietti, J.S. Regional groundwater evapotranspiration in Illinois. J. Hydrometeorol. 2009, 10, 464–478. [Google Scholar] [CrossRef]
- Dubois, E.; Larocque, M.; Gagné, S.; Braun, M. Climate change impacts on groundwater recharge in cold and humid climates: Controlling processes and thresholds. Climate 2022, 10, 6. [Google Scholar] [CrossRef]
- Kumar, C.P. Climate change and its impact on groundwater resources. Int. J. Eng. Sci. 2012, 1, 43–60. [Google Scholar]
- Zhu, L.; Gong, H.; Dai, Z. An integrated assessment of the impact of precipitation and groundwater on vegetation growth in arid and semiarid areas. Env. Earth Sci 2015, 74, 5009–5021. [Google Scholar] [CrossRef]
- Umesha, B. Impact of climate change on ground water. Asian J. Soil Sci. 2011, 6, 247–250. [Google Scholar]
- Nistor, M.M. Climate change effect on groundwater resources in South East Europe during 21st century. Quat. Int. 2019, 504, 171–180. [Google Scholar] [CrossRef]
- Zipper, S.C.; Keune, J.; Kollet, S.J. Land use change impacts on European heat and drought: Remote land-atmosphere feedbacks mitigated locally by shallow groundwater. Environ. Res. Lett. 2019, 14, 044012. [Google Scholar] [CrossRef]
- Geris, J.; Comte, J.C.; Franchi, F.; Petros, A.K.; Tirivarombo, S.; Selepeng, A.T.; Villholth, K.G. Surface water-groundwater interactions and local land use control water quality impacts of extreme rainfall and flooding in a vulnerable semi-arid region of Sub-Saharan Africa. J. Hydrol. 2022, 609, 127834. [Google Scholar] [CrossRef]
- Carter, R.C.; Parker, A. Climate change, population trends and groundwater in Africa. Hydrol. Sci. J. 2009, 54, 676–689. [Google Scholar] [CrossRef]
- Doble, R.; Walker, G.; Crosbie, R.; Guillaume, J.; Doody, T. An overview of groundwater response to a changing climate in the Murray-Darling Basin, Australia: Potential implications for the basin system and opportunities for management. Hydrogeol. J. 2024, 32, 59–80. [Google Scholar] [CrossRef]
- Richardson, C.M.; Davis, K.L.; Ruiz-González, C.; Guimond, J.A.; Michael, H.A.; Paldor, A.; Moosdorf, N.; Paytan, A. The impacts of climate change on coastal groundwater. Nat. Rev. Earth Environ. 2024, 5, 100–119. [Google Scholar] [CrossRef]
- Hirata, R.; Conicelli, B.P. Groundwater resources in Brazil: A review of possible impacts caused by climate change. An. Da Acad. Bras. De Ciências 2012, 84, 297–312. [Google Scholar] [CrossRef]
- Guevara-Ochoa, C.; Medina-Sierra, A.; Vives, L. Spatio-temporal effect of climate change on water balance and interactions between groundwater and surface water in plains. Sci. Total Environ. 2020, 722, 137886. [Google Scholar] [CrossRef]
- Cuthbert, M.O.; Gleeson, T.; Moosdorf, N.; Befus, K.M.; Schneider, A.; Hartmann, J.; Lehner, B. Global patterns and dynamics of climate–groundwater interactions. Nat. Clim. Change 2019, 9, 137–141. [Google Scholar] [CrossRef]
- Green, T.R. Linking climate change and groundwater. In Integrated Groundwater Management; Springer: Cham, Switzerland, 2016; pp. 97–141. [Google Scholar] [CrossRef]
- Wu, W.Y.; Lo, M.H.; Wada, Y.; Famiglietti, J.S.; Reager, J.T.; Yeh, P.J.F.; Ducharne, A.; Yang, Z.L. Divergent effects of climate change on future groundwater availability in key mid-latitude aquifers. Nat. Commun. 2020, 11, 3710. [Google Scholar] [CrossRef]
- Kløve, B.; Ala-Aho, P.; Bertrand, G.; Gurdak, J.J.; Kupfersberger, H.; Kværner, J.; Muotka, T.; Mykrä, H.; Preda, E.; Rossi, P.; et al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 2014, 518, 250–266. [Google Scholar] [CrossRef]
- Barbieri, M.; Barberio, M.D.; Banzato, F.; Billi, A.; Boschetti, T.; Franchini, S.; Gori, F.; Petitta, M. Climate change and its effect on groundwater quality. Environ. Geochem. Health 2023, 45, 1133–1144. [Google Scholar] [CrossRef]
- Norouzi-Khatiri, K.; Nematollahi, B.; Hafeziyeh, S.; Niksokhan, M.H.; Nikoo, M.R.; Al-Rawas, G. Groundwater Management and Allocation Models: A Review. Water 2023, 15, 253. [Google Scholar] [CrossRef]
- Gleeson, T.; Wada, Y.; Bierkens, M.F.; Van Beek, L.P. Water balance of global aquifers revealed by groundwater footprint. Nature 2012, 488, 197–200. [Google Scholar] [CrossRef] [PubMed]
- Glazer, A.N.; Likens, G.E. The water table: The shifting foundation of life on land. Ambio 2012, 41, 657–669. [Google Scholar] [CrossRef] [PubMed]
- Wada, Y.; Van Beek, L.P.; Van Kempen, C.M.; Reckman, J.W.; Vasak, S.; Bierkens, M.F. Global depletion of groundwater resources. Geophys. Res. Lett. 2010, 37, L20402. [Google Scholar] [CrossRef]
- Hayashi, M.; Rosenberry, D.O. Effects of ground water exchange on the hydrology and ecology of surface water. Groundwater 2002, 40, 309–316. [Google Scholar] [CrossRef]
- Rampheri, M.B.; Dube, T.; Dondofema, F.; Dalu, T. Identification and delineation of groundwater-dependent ecosystems (GDEs) in the Khakea–Bray transboundary aquifer region using geospatial techniques. Geocarto Int. 2023, 38, 2172217. [Google Scholar] [CrossRef]
- Jakeman, A.J.; Barreteau, O.; Hunt, R.J.; Rinaudo, J.D.; Ross, A.; Arshad, M.; Hamilton, S. Integrated groundwater management: An overview of concepts and challenges. In Integrated Groundwater Management: Concepts, Approaches and Challenges; Springer Nature: Dordrecht, The Netherlands, 2016; pp. 3–20. [Google Scholar] [CrossRef]
- Chandio, A.S.; Lee, T.S.; Mirjat, M.S. The extent of waterlogging in the lower Indus Basin (Pakistan)–A modeling study of groundwater levels. J. Hydrol. 2012, 426, 103–111. [Google Scholar] [CrossRef]
- Eamus, D.; Fu, B.; Springer, A.E.; Stevens, L.E. Groundwater Dependent Ecosystems: Classification, Identification Techniques and Threats. In Integrated Groundwater Management; Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.D., Ross, A., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Orellana, F.; Verma, P.; Loheide, S.P.; Daly, E. Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems. Rev. Geophys. 2012, 50, RG3003. [Google Scholar] [CrossRef]
- Zhang, Q.; Xu, P.; Qian, H. Groundwater quality assessment using improved water quality index (WQI) and human health risk (HHR) evaluation in a semi-arid region of northwest China. Expo. Health 2020, 12, 487–500. [Google Scholar] [CrossRef]
- Kath, J.; Boulton, A.J.; Harrison, E.T.; Dyer, F.J. A conceptual framework for ecological responses to groundwater regime alteration (FERGRA). Ecohydrology 2018, 11, e2010. [Google Scholar] [CrossRef]
- Xie, M.; Zhang, C.; Zhang, J.; Wang, G.; Jin, J.; Liu, C.; He, R.; Bao, Z. Projection of future water resources carrying capacity in the huang-huai-hai River Basin under the impacts of climate change and human activities. Water 2022, 14, 2006. [Google Scholar] [CrossRef]
- Rahman, M.; Islam, M.M.; Kim, H.J.; Alam, M.; Sadiq, S.; Rahman, M.K.; Hossan, M.S.; Islam, M.T.; Raju, M.R.; Alam, M.S.; et al. Optimizing urban water sustainability: Integrating deep learning, genetic algorithm, and CMIP6 GCM for groundwater potential zone prediction within a social-ecological-technological framework. Adv. Space Res. 2024, 73, 5925–5948. [Google Scholar] [CrossRef]
- Ibrahim, A.; Wayayok, A.; Shafri, H.Z.M.; Toridi, N.M. Remote sensing technologies for unlocking new groundwater insights: A comprehensive review. J. Hydrol. X 2024, 23, 100175. [Google Scholar] [CrossRef]
- Shaikh, M.; Birajdar, F. Advancements in remote sensing and GIS for sustainable groundwater monitoring: Applications, challenges, and future directions. Int. J. Res. Eng. Sci. Manag. 2024, 7, 16–24. [Google Scholar]
- Onwe, M.R.; Abraham, E.M.; Ambrose, N.T.; Osike, O.K. An evaluation of the hydrogeology potential of Nsukka, Southern Nigeria, using geographic information system. Appl. Water Sci. 2022, 12, 54. [Google Scholar] [CrossRef]
- K’Orowe, M.O.; Nyadawa, M.O.; Singh, V.S.; Ratnakar, D. Hydrogeophysical parameter estimation for aquifer characterisation in hard rock environments: A case study from Jangaon sub-watershed, India. J. Ocean. Mar. Sci. 2011, 2, 50–62. [Google Scholar]
- Shaikh, M.; Birajdar, F. Advancing Sustainable Water Management in Solapur through Continuous Groundwater Monitoring with Piezometers and Automatic Water Level Recorders: Insights from the Atal Bhujal Yojana. Int. J. Innov. Sci. Res. Technol. 2024, 9, 230–239. [Google Scholar]
- Wehbe, Y.; Temimi, M. A remote sensing-based assessment of water resources in the Arabian Peninsula. Remote Sens. 2021, 13, 247. [Google Scholar] [CrossRef]
- Bennett, G. Analysis of methods used to validate remote sensing and GIS-based groundwater potential maps in the last two decades: A review. Geosyst. Geoenviron. 2024, 3, 100245. [Google Scholar] [CrossRef]
- Ndou, N.N.; Palamuleni, L.G.; Ramoelo, A. Modelling depth to groundwater level using SEBAL-based dry season potential evapotranspiration in the upper Molopo River Catchment, South Africa. Egypt. J. Remote Sens. Space Sci. 2018, 21, 237–248. [Google Scholar] [CrossRef]
- Naga-Rajesh, A.; Abinaya, S.; Purna Durga, G.; Lakshmi Kumar, T.V. Long-term relationships of MODIS NDVI with rainfall, land surface temperature, surface soil moisture and groundwater storage over monsoon core region of India. Arid Land Res. Manag. 2023, 37, 51–70. [Google Scholar] [CrossRef]
- Burri, N.M.; Moeck, C.; Schirmer, M. Groundwater recharge rate estimation using remotely sensed and ground-based data: A method application in the mesoscale Thur catchment. J. Hydrol. Reg. Stud. 2021, 38, 100972. [Google Scholar] [CrossRef]
- Páscoa, P.; Gouveia, C.M.; Kurz-Besson, C. A simple method to identify potential groundwater-dependent vegetation using NDVI MODIS. Forests 2020, 11, 147. [Google Scholar] [CrossRef]
- Huo, A.; Chen, X.; Li, H.; Hou, M.; Hou, X. Development and testing of a remote sensing-based model for estimating groundwater levels in aeolian desert areas of China. Can. J. Soil Sci. 2011, 91, 29–37. [Google Scholar] [CrossRef]
- Gerlach, M.E.; Rains, K.C.; Guerrón-Orejuela, E.J.; Kleindl, W.J.; Downs, J.; Landry, S.M.; Rains, M.C. Using remote sensing and machine learning to locate groundwater discharge to salmon-bearing streams. Remote Sens. 2021, 14, 63. [Google Scholar] [CrossRef]
- Barbarella, M.; De Giglio, M.; Greggio, N.; Panciroli, L. ASTER and Worldview-2 satellite data comparison for identification of groundwater salinization effects on the Classe pine forest vegetation (Ravenna, Italy). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 307–314. [Google Scholar] [CrossRef]
- Dailey, D.; Sauck, W.; Sultan, M.; Milewski, A.; Ahmed, M.; Laton, W.R.; Elkadiri, R.; Foster, J.; Schmidt, C.; Al Harbi, T. Geophysical, remote sensing, GIS, and isotopic applications for a better understanding of the structural controls on groundwater flow in the Mojave Desert, California. J. Hydrol. Reg. Stud. 2015, 3, 211–232. [Google Scholar] [CrossRef]
- Gautam, P.K.; Chandra, S.; Henry, P.K. Monitoring of the groundwater level using GRACE with GLDAS satellite data in Ganga Plain, India to understand the challenges of groundwater, depletion, problems, and strategies for mitigation. Environ. Chall. 2024, 15, 100874. [Google Scholar] [CrossRef]
- Ramjeawon, M.; Demlie, M.; Toucher, M. Analyses of groundwater storage change using GRACE satellite data in the Usutu-Mhlatuze drainage region, north-eastern South Africa. J. Hydrol. Reg. Stud. 2022, 42, 101118. [Google Scholar] [CrossRef]
- Castellazzi, P.; Martel, R.; Galloway, D.L.; Longuevergne, L.; Rivera, A. Assessing groundwater depletion and dynamics using GRACE and InSAR: Potential and limitations. Groundwater 2016, 54, 768–780. [Google Scholar] [CrossRef]
- Frappart, F.; Ramillien, G. Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment (GRACE) satellite mission: A review. Remote Sens. 2018, 10, 829. [Google Scholar] [CrossRef]
Region | Key Findings | Climate Change Indicators | Source |
---|---|---|---|
America | These studies found that significant increases in groundwater recharge (GWR) occur with precipitation increases above specific thresholds, and GWR decreases if changes are below these thresholds. Temperature changes exceeding +2 °C also significantly affect GWR, with increases limited to +30 mm/year if temperatures rise more than +4.5 °C. As climate change is expected to increase global temperatures, disrupt the hydrological cycle, and cause varying impacts on groundwater storage, larger basins are predicted to experience more storage. | Temperature and rainfall | [87,88] |
Asia | These studies highlight that groundwater is vital for vegetation growth during droughts, with declining groundwater tables threatening plant survival, especially in prolonged droughts. Climate change is expected to reduce recharge capacity, increase contamination, and cause variability in surface water availability, making groundwater unsuitable or insufficient in vulnerable areas, particularly in low-elevation coastal zones. | Floods, drought | [89,90] |
Europe | These studies show that historical land use and land cover changes in Europe, especially after the collapse of the Soviet Union and EU formation, increased cloud cover and reduced shortwave radiation, affecting energy and water balances with varying impacts on drought and heat. Climate change is also causing significant impacts on groundwater resources in Southeast Europe, particularly in the Pannonian Basin, Romania, Bulgaria, Greece, and Turkey, while the Dinaric and Alps Mountains experience lower effects, with half the region facing drought conditions. | Drought and heat | [91,92] |
Africa | These works highlighted that climate change may impact groundwater resources, but the combined effects of population growth, urbanization, and rising food demands on water resources are likely to be more significant. They also emphasized the importance of land use planning, improved monitoring, and integrated management to optimize water resources and mitigate contamination from extreme rainfall events. | Industrialization and rain | [93,94] |
Australia | These studies outlined that climate change is altering groundwater ecosystems by shifting microbial communities, reducing groundwater levels, and impacting river flows and food webs. These changes threaten biodiversity and highlight the need for better data, integrated models, and adaptive policies to protect vulnerable systems. | Floods and high temperatures | [95,96] |
South America | These studies highlighted that climate change will significantly reduce aquifer recharge, increasing reliance on groundwater, and will also alter groundwater–surface water interactions, affecting water balance and the timing of wet and dry periods. | Floods and heatwaves | [97,98] |
Global | These studies highlight the significant impacts of global climate change on groundwater systems, with altered evapotranspiration and reduced snowmelt affecting groundwater storage and surface–groundwater interactions. Over-pumping, combined with climate effects, is depleting groundwater resources, threatening groundwater-dependent ecosystems and essential services like irrigation during droughts. To address these challenges, long-term monitoring, strategic management, and integrated approaches across diverse geochemical environments are crucial for safeguarding water quality, ecosystem health, and human wellbeing. | Drought and heat | [99,100,101,102,103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rapiya, M.; Ramoelo, A. Groundwater–Vegetation Interactions in Rangeland Ecosystems: A Review. Water 2025, 17, 1174. https://doi.org/10.3390/w17081174
Rapiya M, Ramoelo A. Groundwater–Vegetation Interactions in Rangeland Ecosystems: A Review. Water. 2025; 17(8):1174. https://doi.org/10.3390/w17081174
Chicago/Turabian StyleRapiya, Monde, and Abel Ramoelo. 2025. "Groundwater–Vegetation Interactions in Rangeland Ecosystems: A Review" Water 17, no. 8: 1174. https://doi.org/10.3390/w17081174
APA StyleRapiya, M., & Ramoelo, A. (2025). Groundwater–Vegetation Interactions in Rangeland Ecosystems: A Review. Water, 17(8), 1174. https://doi.org/10.3390/w17081174