How Do Emission Factors Contribute to the Uncertainty in Biomass Burning Emissions in the Amazon and Cerrado?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomass Burning Emissions in the Study Area
2.2. PREP-CHEM-SRC Emission Pre-Processor Tool
2.3. PREP-CHEM-SRC Runs
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bowman, D.M.J.S.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; van der Werf, G.R.; Flannigan, M. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- Driscoll, D.A.; Armenteras, D.; Bennett, A.F.; Brotons, L.; Clarke, M.F.; Doherty, T.S.; Haslem, A.; Kelly, L.T.; Sato, C.F.; Sitters, H.; et al. How fire interacts with habitat loss and fragmentation. Biol. Rev. Camb. Philos. Soc. 2021, 96, 976–998. [Google Scholar] [CrossRef] [PubMed]
- Grau-Andrés, R.; Moreira, B.; Pausas, J.G. Global plant responses to intensified fire regimes. Glob. Ecol. Biogeogr. 2024, 33, e13858. [Google Scholar] [CrossRef]
- Kelly, L.T.; Giljohann, K.M.; Duane, A.; Aquilue, N.; Archibald, S.; Batllori, E.; Bennett, A.F.; Buckland, S.T.; Canelles, Q.; Clarke, M.F.; et al. Fire and biodiversity in the Anthropocene. Science 2020, 370, eabb0355. [Google Scholar] [CrossRef]
- Gatti, L.V.; Basso, L.S.; Miller, J.B.; Gloor, M.; Gatti Domingues, L.; Cassol, H.L.G.; Tejada, G.; Aragao, L.; Nobre, C.; Peters, W.; et al. Amazonia as a carbon source linked to deforestation and climate change. Nature 2021, 595, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Brown, H.; Liu, X.; Pokhrel, R.; Murphy, S.; Lu, Z.; Saleh, R.; Mielonen, T.; Kokkola, H.; Bergman, T.; Myhre, G.; et al. Biomass burning aerosols in most climate models are too absorbing. Nat. Commun. 2021, 12, 277. [Google Scholar] [CrossRef]
- de Moura, F.R.; Machado, P.D.W.; Ramires, P.F.; Tavella, R.A.; Carvalho, H.; da Silva Júnior, F.M.R. In the line of fire: Analyzing burning impacts on air pollution and air quality in an Amazonian city, Brazil. Atmos. Pollut. Res. 2024, 15, 102033. [Google Scholar] [CrossRef]
- Johnston, F.H.; Williamson, G.; Borchers-Arriagada, N.; Henderson, S.B.; Bowman, D. Climate Change, Landscape Fires, and Human Health: A Global Perspective. Annu. Rev. Public Health 2024, 45, 295–314. [Google Scholar] [CrossRef]
- Zauli-Sajani, S.; Thunis, P.; Pisoni, E.; Bessagnet, B.; Monforti-Ferrario, F.; De Meij, A.; Pekar, F.; Vignati, E. Reducing biomass burning is key to decrease PM(2.5) exposure in European cities. Sci. Rep. 2024, 14, 10210. [Google Scholar] [CrossRef]
- Campanharo, W.A.; Lopes, A.P.; Anderson, L.O.; da Silva, T.F.M.R.; Aragão, L.E.O.C. Translating Fire Impacts in Southwestern Amazonia into Economic Costs. Remote Sens. 2019, 11, 764. [Google Scholar] [CrossRef]
- Meier, S.; Strobl, E.; Elliott, R.J.R. The impact of wildfire smoke exposure on excess mortality and later-life socioeconomic outcomes: The Great Fire of 1910. Cliometrica 2024. [Google Scholar] [CrossRef]
- Carmenta, R.; Cammelli, F.; Dressler, W.; Verbicaro, C.; Zaehringer, J.G. Between a rock and a hard place: The burdens of uncontrolled fire for smallholders across the tropics. World Dev. 2021, 145, 105521. [Google Scholar] [CrossRef]
- McConnell, K.; Fussell, E.; DeWaard, J.; Whitaker, S.; Curtis, K.J.; St Denis, L.; Balch, J.; Price, K. Rare and highly destructive wildfires drive human migration in the U.S. Nat. Commun. 2024, 15, 6631. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, C.A.; Zirondi, H.L.; Fidelis, A. Fire frequency affects fire behavior in open savannas of the Cerrado. For. Ecol. Manag. 2021, 482, 118850. [Google Scholar] [CrossRef]
- Gincheva, A.; Pausas, J.G.; Torres-Vázquez, M.Á.; Bedia, J.; Vicente-Serrano, S.M.; Abatzoglou, J.T.; Sánchez-Espigares, J.A.; Chuvieco, E.; Jerez, S.; Provenzale, A.; et al. The Interannual Variability of Global Burned Area Is Mostly Explained by Climatic Drivers. Earth’s Future 2024, 12, e2023EF004334. [Google Scholar] [CrossRef]
- Peace, M.; McCaw, L. Future fire events are likely to be worse than climate projections indicate—These are some of the reasons why. Int. J. Wildland Fire 2024, 33, WF23138. [Google Scholar] [CrossRef]
- Jones, M.W.; Abatzoglou, J.T.; Veraverbeke, S.; Andela, N.; Lasslop, G.; Forkel, M.; Smith, A.J.P.; Burton, C.; Betts, R.A.; van der Werf, G.R.; et al. Global and Regional Trends and Drivers of Fire Under Climate Change. Rev. Geophys. 2022, 60, e2020RG000726. [Google Scholar] [CrossRef]
- Jones, M.W.; Kelley, D.I.; Burton, C.A.; Di Giuseppe, F.; Barbosa, M.L.F.; Brambleby, E.; Hartley, A.J.; Lombardi, A.; Mataveli, G.; McNorton, J.R.; et al. State of Wildfires 2023–2024. Earth Syst. Sci. Data 2024, 16, 3601–3685. [Google Scholar] [CrossRef]
- Cunningham, C.X.; Williamson, G.J.; Bowman, D. Increasing frequency and intensity of the most extreme wildfires on Earth. Nat. Ecol. Evol. 2024, 8, 1420–1425. [Google Scholar] [CrossRef]
- Chuvieco, E. Satellite Observation of Biomass Burning. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Schill, G.P.; Froyd, K.D.; Bian, H.; Kupc, A.; Williamson, C.; Brock, C.A.; Ray, E.; Hornbrook, R.S.; Hills, A.J.; Apel, E.C.; et al. Widespread biomass burning smoke throughout the remote troposphere. Nat. Geosci. 2020, 13, 422–427. [Google Scholar] [CrossRef]
- Yue, X.; Unger, N. Fire air pollution reduces global terrestrial productivity. Nat. Commun. 2018, 9, 5413. [Google Scholar] [CrossRef]
- Bourgeois, Q.; Ekman, A.M.L.; Krejci, R. Aerosol transport over the Andes from the Amazon Basin to the remote Pacific Ocean: A multiyear CALIOP assessment. J. Geophys. Res. Atmos. 2015, 120, 8411–8425. [Google Scholar] [CrossRef]
- Andela, N.; van der Werf, G.R.; Kaiser, J.W.; van Leeuwen, T.T.; Wooster, M.J.; Lehmann, C.E.R. Biomass burning fuel consumption dynamics in the tropics and subtropics assessed from satellite. Biogeosciences 2016, 13, 3717–3734. [Google Scholar] [CrossRef]
- van Wees, D.; van der Werf, G.R.; Randerson, J.T.; Rogers, B.M.; Chen, Y.; Veraverbeke, S.; Giglio, L.; Morton, D.C. Global biomass burning fuel consumption and emissions at 500 m spatial resolution based on the Global Fire Emissions Database (GFED). Geosci. Model Dev. 2022, 15, 8411–8437. [Google Scholar] [CrossRef]
- Zhong, Q.; Schutgens, N.; van der Werf, G.R.; van Noije, T.; Bauer, S.E.; Tsigaridis, K.; Mielonen, T.; Checa-Garcia, R.; Neubauer, D.; Kipling, Z.; et al. Using modelled relationships and satellite observations to attribute modelled aerosol biases over biomass burning regions. Nat. Commun. 2022, 13, 5914. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hall, J.; van Wees, D.; Andela, N.; Hantson, S.; Giglio, L.; van der Werf, G.R.; Morton, D.C.; Randerson, J.T. Multi-decadal trends and variability in burned area from the fifth version of the Global Fire Emissions Database (GFED5). Earth Syst. Sci. Data 2023, 15, 5227–5259. [Google Scholar] [CrossRef]
- Su, M.; Shi, Y.; Yang, Y.; Guo, W. Impacts of different biomass burning emission inventories: Simulations of atmospheric CO(2) concentrations based on GEOS-Chem. Sci. Total Environ. 2023, 876, 162825. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Shi, Y.; Zheng, W.; Shan, T.; Wang, G. Global Emissions Inventory from Open Biomass Burning (GEIOBB): Utilizing Fengyun-3D global fire spot monitoring data. Earth Syst. Sci. Data 2024, 16, 3495–3515. [Google Scholar] [CrossRef]
- Forkel, M.; Wessollek, C.; Huijnen, V.; Andela, N.; de Laat, A.; Kinalczyk, D.; Marrs, C.; van Wees, D.; Bastos, A.; Ciais, P.; et al. Burning of woody debris dominates fire emissions in the Amazon and Cerrado. Nat. Geosci. 2025, 18, 140–147. [Google Scholar] [CrossRef]
- Kaiser, J.W.; Heil, A.; Andreae, M.O.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.J.; Razinger, M.; Schultz, M.G.; Suttie, M.; et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 2012, 9, 527–554. [Google Scholar] [CrossRef]
- Ichoku, C.; Ellison, L. Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements. Atmos. Chem. Phys. 2014, 14, 6643–6667. [Google Scholar] [CrossRef]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef]
- Ferrada, G.A.; Zhou, M.; Wang, J.; Lyapustin, A.; Wang, Y.; Freitas, S.R.; Carmichael, G.R. Introducing the VIIRS-based Fire Emission Inventory version 0 (VFEIv0). Geosci. Model Dev. 2022, 15, 8085–8109. [Google Scholar] [CrossRef]
- Freitas, S.R.; Longo, K.M.; Alonso, M.F.; Pirre, M.; Marecal, V.; Grell, G.; Stockler, R.; Mello, R.F.; Sánchez Gácita, M. PREP-CHEM-SRC–1.0: A preprocessor of trace gas and aerosol emission fields for regional and global atmospheric chemistry models. Geosci. Model Dev. 2011, 4, 419–433. [Google Scholar] [CrossRef]
- Pereira, G.; Longo, K.M.; Freitas, S.R.; Mataveli, G.; Oliveira, V.J.; Santos, P.R.; Rodrigues, L.F.; Cardozo, F.S. Improving the south America wildfires smoke estimates: Integration of polar-orbiting and geostationary satellite fire products in the Brazilian biomass burning emission model (3BEM). Atmos. Environ. 2022, 273, 118954. [Google Scholar] [CrossRef]
- Li, F.; Zhang, X.; Kondragunta, S.; Lu, X.; Csiszar, I.; Schmidt, C.C. Hourly biomass burning emissions product from blended geostationary and polar-orbiting satellites for air quality forecasting applications. Remote Sens. Environ. 2022, 281, 113237. [Google Scholar] [CrossRef]
- Mataveli, G.; Pereira, G.; Sanchez, A.; de Oliveira, G.; Jones, M.W.; Freitas, S.R.; Aragão, L.E.O.C. Updated Land Use and Land Cover Information Improves Biomass Burning Emission Estimates. Fire 2023, 6, 426. [Google Scholar] [CrossRef]
- Saito, M.; Shiraishi, T.; Hirata, R.; Niwa, Y.; Saito, K.; Steinbacher, M.; Worthy, D.; Matsunaga, T. Sensitivity of biomass burning emissions estimates to land surface information. Biogeosciences 2022, 19, 2059–2078. [Google Scholar] [CrossRef]
- Pereira, G.; Siqueira, R.; Rosário, N.E.; Longo, K.L.; Freitas, S.R.; Cardozo, F.S.; Kaiser, J.W.; Wooster, M.J. Assessment of fire emission inventories during the South American Biomass Burning Analysis (SAMBBA) experiment. Atmos. Chem. Phys. 2016, 16, 6961–6975. [Google Scholar] [CrossRef]
- Pan, X.; Ichoku, C.; Chin, M.; Bian, H.; Darmenov, A.; Colarco, P.; Ellison, L.; Kucsera, T.; da Silva, A.; Wang, J.; et al. Six global biomass burning emission datasets: Intercomparison and application in one global aerosol model. Atmos. Chem. Phys. 2020, 20, 969–994. [Google Scholar] [CrossRef]
- Liu, T.; Mickley, L.J.; Marlier, M.E.; DeFries, R.S.; Khan, M.F.; Latif, M.T.; Karambelas, A. Diagnosing spatial biases and uncertainties in global fire emissions inventories: Indonesia as regional case study. Remote Sens. Environ. 2020, 237, 111557. [Google Scholar] [CrossRef]
- Ichoku, C.; Kahn, R.; Chin, M. Satellite contributions to the quantitative characterization of biomass burning for climate modeling. Atmos. Res. 2012, 111, 1–28. [Google Scholar] [CrossRef]
- Andreae, M.O.; Merlet, P. Emission of trace gases and aerosols from biomass burning. Glob. Biogeochem. Cycles 2001, 15, 955–966. [Google Scholar] [CrossRef]
- Andreae, M.O. Emission of trace gases and aerosols from biomass burning—An updated assessment. Atmos. Chem. Phys. 2019, 19, 8523–8546. [Google Scholar] [CrossRef]
- Ballesteros-Gonzalez, K.; Sullivan, A.P.; Morales-Betancourt, R. Estimating the air quality and health impacts of biomass burning in northern South America using a chemical transport model. Sci. Total Environ. 2020, 739, 139755. [Google Scholar] [CrossRef] [PubMed]
- Calì Quaglia, F.; Meloni, D.; Muscari, G.; Di Iorio, T.; Ciardini, V.; Pace, G.; Becagli, S.; Di Bernardino, A.; Cacciani, M.; Hannigan, J.W.; et al. On the Radiative Impact of Biomass-Burning Aerosols in the Arctic: The August 2017 Case Study. Remote Sens. 2022, 14, 313. [Google Scholar] [CrossRef]
- Mataveli, G.A.V.; Silva, M.E.S.; França, D.d.A.; Brunsell, N.A.; de Oliveira, G.; Cardozo, F.d.S.; Bertani, G.; Pereira, G. Characterization and Trends of Fine Particulate Matter (PM2.5) Fire Emissions in the Brazilian Cerrado during 2002–2017. Remote Sens. 2019, 11, 2254. [Google Scholar] [CrossRef]
- Pivello, V.R. The Use of Fire in the Cerrado and Amazonian Rainforests of Brazil: Past and Present. Fire Ecol. 2011, 7, 24–39. [Google Scholar] [CrossRef]
- National Institute for Space Research (INPE). Native Vegetation Suppression Dashboard—PRODES. Available online: http://terrabrasilis.dpi.inpe.br/app/dashboard/deforestation/biomes/legal_amazon/rates (accessed on 16 January 2025).
- Mataveli, G.; Jones, M.W.; Carmenta, R.; Sanchez, A.; Dutra, D.J.; Chaves, M.; de Oliveira, G.; Anderson, L.O.; Aragao, L. Deforestation falls but rise of wildfires continues degrading Brazilian Amazon forests. Glob. Change Biol. 2024, 30, e17202. [Google Scholar] [CrossRef]
- Drüke, M.; Sakschewski, B.; von Bloh, W.; Billing, M.; Lucht, W.; Thonicke, K. Fire may prevent future Amazon forest recovery after large-scale deforestation. Commun. Earth Environ. 2023, 4, 248. [Google Scholar] [CrossRef]
- de Oliveira, G.; Mataveli, G.; Stark, S.C.; Jones, M.W.; Carmenta, R.; Brunsell, N.A.; Santos, C.A.G.; da Silva Junior, C.A.; Cunha, H.F.A.; da Cunha, A.C.; et al. Increasing wildfires threaten progress on halting deforestation in Brazilian Amazonia. Nat. Ecol. Evol. 2023, 7, 1945–1946. [Google Scholar] [CrossRef]
- Marengo, J.A.; Cunha, A.P.; Espinoza, J.-C.; Fu, R.; Schöngart, J.; Jimenez, J.C.; Costa, M.C.; Ribeiro, J.M.; Wongchuig, S.; Zhao, S. The Drought of Amazonia in 2023–2024. Am. J. Clim. Change 2024, 13, 567–597. [Google Scholar] [CrossRef]
- Watts, J. Drought Turns Amazonian Capital into Climate Dystopia. Available online: http://www.theguardian.com/environment/2023/oct/18/drought-amazon-capital-climate-manaus-forest-fires-air-quality-rivers (accessed on 16 January 2025).
- Alencar, A.A.C.; Arruda, V.L.S.; Silva, W.V.d.; Conciani, D.E.; Costa, D.P.; Crusco, N.; Duverger, S.G.; Ferreira, N.C.; Franca-Rocha, W.; Hasenack, H.; et al. Long-Term Landsat-Based Monthly Burned Area Dataset for the Brazilian Biomes Using Deep Learning. Remote Sens. 2022, 14, 2510. [Google Scholar] [CrossRef]
- Ward, D.S.; Shevliakova, E.; Malyshev, S.; Rabin, S. Trends and Variability of Global Fire Emissions Due To Historical Anthropogenic Activities. Glob. Biogeochem. Cycles 2018, 32, 122–142. [Google Scholar] [CrossRef]
- Longo, K.M.; Freitas, S.R.; Pirre, M.; Marécal, V.; Rodrigues, L.F.; Panetta, J.; Alonso, M.F.; Rosário, N.E.; Moreira, D.S.; Gácita, M.S.; et al. The Chemistry CATT-BRAMS model (CCATT-BRAMS 4.5): A regional atmospheric model system for integrated air quality and weather forecasting and research. Geosci. Model Dev. 2013, 6, 1389–1405. [Google Scholar] [CrossRef]
- Archer-Nicholls, S.; Lowe, D.; Darbyshire, E.; Morgan, W.T.; Bela, M.M.; Pereira, G.; Trembath, J.; Kaiser, J.W.; Longo, K.M.; Freitas, S.R.; et al. Characterising Brazilian biomass burning emissions using WRF-Chem with MOSAIC sectional aerosol. Geosci. Model Dev. 2015, 8, 549–577. [Google Scholar] [CrossRef]
- Santos, P.R.; Pereira, G.; Cardozo, F.d.S.; Mataveli, G.A.V.; Moraes, E.C. Desenvolvimento e implementação do ciclo diurno da queima de biomassa no PREP-CHEM-SRC. Geog. Dep. Uni. Sao Paulo 2021, 41, e174236. [Google Scholar] [CrossRef]
- Cardozo, F.d.S.; Pereira, G.; Mataveli, G.A.V.; Shimabukuro, Y.E.; Moraes, E.C. Avaliação Dos Modelos De Emissão 3BEM E 3BEM_FRP No Estado De Rondônia. Rev. Bras. Cart. 2015, 67, 1247–1264. [Google Scholar] [CrossRef]
- Conceição, K.V.; Chaves, M.E.D.; Picoli, M.C.A.; Sánchez, A.H.; Soares, A.R.; Mataveli, G.A.V.; Silva, D.E.; Costa, J.S.; Camara, G. Government policies endanger the indigenous peoples of the Brazilian Amazon. Land Use Policy 2021, 108, 105663. [Google Scholar] [CrossRef]
- de Oliveira, G.; Chen, J.M.; Mataveli, G.A.V.; Chaves, M.E.D.; Seixas, H.T.; Cardozo, F.d.S.; Shimabukuro, Y.E.; He, L.; Stark, S.C.; dos Santos, C.A.C. Rapid Recent Deforestation Incursion in a Vulnerable Indigenous Land in the Brazilian Amazon and Fire-Driven Emissions of Fine Particulate Aerosol Pollutants. Forests 2020, 11, 829. [Google Scholar] [CrossRef]
- Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.J.; Reid, J.S.; Karl, T.; Crounse, J.D.; Wennberg, P.O. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 2011, 11, 4039–4072. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef]
- Giglio, L.; Randerson, J.T.; van der Werf, G.R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 2013, 118, 317–328. [Google Scholar] [CrossRef]
- Lapola, D.M.; Pinho, P.; Barlow, J.; Aragao, L.; Berenguer, E.; Carmenta, R.; Liddy, H.M.; Seixas, H.; Silva, C.V.J.; Silva-Junior, C.H.L.; et al. The drivers and impacts of Amazon forest degradation. Science 2023, 379, eabp8622. [Google Scholar] [CrossRef]
- Jiang, K.; Xing, R.; Luo, Z.; Huang, W.; Yi, F.; Men, Y.; Zhao, N.; Chang, Z.; Zhao, J.; Pan, B.; et al. Pollutant emissions from biomass burning: A review on emission characteristics, environmental impacts, and research perspectives. Particuology 2024, 85, 296–309. [Google Scholar] [CrossRef]
- Karanasiou, A.; Alastuey, A.; Amato, F.; Renzi, M.; Stafoggia, M.; Tobias, A.; Reche, C.; Forastiere, F.; Gumy, S.; Mudu, P.; et al. Short-term health effects from outdoor exposure to biomass burning emissions: A review. Sci. Total Environ. 2021, 781, 146739. [Google Scholar] [CrossRef] [PubMed]
- Yokelson, R.J.; Burling, I.R.; Gilman, J.B.; Warneke, C.; Stockwell, C.E.; de Gouw, J.; Akagi, S.K.; Urbanski, S.P.; Veres, P.; Roberts, J.M.; et al. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires. Atmospheric Chem. Phys. 2013, 13, 89–116. [Google Scholar] [CrossRef]
- van Leeuwen, T.T.; Peters, W.; Krol, M.C.; van der Werf, G.R. Dynamic biomass burning emission factors and their impact on atmospheric CO mixing ratios. J. Geophys. Res. Atmos. 2013, 118, 6797–6815. [Google Scholar] [CrossRef]
- Vernooij, R.; Eames, T.; Russell-Smith, J.; Yates, C.; Beatty, R.; Evans, J.; Edwards, A.; Ribeiro, N.; Wooster, M.; Strydom, T.; et al. Dynamic savanna burning emission factors based on satellite data using a machine learning approach. Earth Syst. Dyn. 2023, 14, 1039–1064. [Google Scholar] [CrossRef]
- Forkel, M.; Andela, N.; Huijnen, V.; Wessollek, C.; Awotwi, A.; Kinalczyk, D.; Marrs, C.; de Laat, J. Effects of land use, fuel loads and fuel moisture on fire intensity and fire emissions in South America derived by reconciling bottom-up and top-down satellite observations. In Proceedings of the EGU General Assembly 2023, Vienna, Austria, 23–28 April 2023. [Google Scholar]
- Sense4Fire. Experimental Database. Available online: https://sense4fire.eu/database/ (accessed on 16 January 2025).
- van der Werf, G.; Randerson, J.; van Wees, D.; Chen, Y.; Vernooij, R.; Giglio, L.; Hall, J.; Morton, D.; Barsanti, K.; Yokelson, B. Burned area and fire emissions according to the fifth version of the Global Fire Emissions Database (GFED). In Proceedings of the EGU General Assembly 2024, Vienna, Austria, 14–19 April 2024. [Google Scholar]
- Aragao, L.; Anderson, L.O.; Fonseca, M.G.; Rosan, T.M.; Vedovato, L.B.; Wagner, F.H.; Silva, C.V.J.; Silva Junior, C.H.L.; Arai, E.; Aguiar, A.P.; et al. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nat. Commun. 2018, 9, 536. [Google Scholar] [CrossRef]
- Rappaport, D.I.; Morton, D.C.; Longo, M.; Keller, M.; Dubayah, R.; dos-Santos, M.N. Quantifying long-term changes in carbon stocks and forest structure from Amazon forest degradation. Environ. Res. Lett. 2018, 13, 065013. [Google Scholar] [CrossRef]
- Brando, P.; Macedo, M.; Silvério, D.; Rattis, L.; Paolucci, L.; Alencar, A.; Coe, M.; Amorim, C. Amazon wildfires: Scenes from a foreseeable disaster. Flora 2020, 268, 151609. [Google Scholar] [CrossRef]
- De Faria, B.L.; Brando, P.M.; Macedo, M.N.; Panday, P.K.; Soares-Filho, B.S.; Coe, M.T. Current and future patterns of fire-induced forest degradation in Amazonia. Environ. Res. Lett. 2017, 12, 095005. [Google Scholar] [CrossRef]
- Schroeder, W.; Prins, E.; Giglio, L.; Csiszar, I.; Schmidt, C.; Morisette, J.; Morton, D. Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data. Remote Sens. Environ. 2008, 112, 2711–2726. [Google Scholar] [CrossRef]
- Román, M.O.; Justice, C.; Paynter, I.; Boucher, P.B.; Devadiga, S.; Endsley, A.; Erb, A.; Friedl, M.; Gao, H.; Giglio, L.; et al. Continuity between NASA MODIS Collection 6.1 and VIIRS Collection 2 land products. Remote Sens. Environ. 2024, 302, 113963. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Remer, L.A.; Mattoo, S.; Levy, R.C.; Munchak, L.A. MODIS 3 km aerosol product: Algorithm and global perspective. Atmos. Meas. Tech. 2013, 6, 1829–1844. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanré, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A Federated Instrument Network and Data Archive for Aerosol Characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
PM2.5 Emission Factors (g kg−1) | ||||
---|---|---|---|---|
Land Use and Land Cover | Ori | Avg | Loe | Hie |
Tropical Forest | 9.4 | 8.3 | 5.0 | 11.6 |
Extratropical Forest | 15.7 | 18.4 | 3.2 | 33.6 |
Savanna | 4.0 | 6.7 | 3.4 | 10.0 |
Croplands | 4.0 | 8.2 | 3.8 | 12.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mataveli, G.; Jones, M.W.; Pereira, G.; Freitas, S.R.; Oliveira, V.; Silva Oliveira, B.; Aragão, L.E.O.C. How Do Emission Factors Contribute to the Uncertainty in Biomass Burning Emissions in the Amazon and Cerrado? Atmosphere 2025, 16, 423. https://doi.org/10.3390/atmos16040423
Mataveli G, Jones MW, Pereira G, Freitas SR, Oliveira V, Silva Oliveira B, Aragão LEOC. How Do Emission Factors Contribute to the Uncertainty in Biomass Burning Emissions in the Amazon and Cerrado? Atmosphere. 2025; 16(4):423. https://doi.org/10.3390/atmos16040423
Chicago/Turabian StyleMataveli, Guilherme, Matthew W. Jones, Gabriel Pereira, Saulo R. Freitas, Valter Oliveira, Bruno Silva Oliveira, and Luiz E. O. C. Aragão. 2025. "How Do Emission Factors Contribute to the Uncertainty in Biomass Burning Emissions in the Amazon and Cerrado?" Atmosphere 16, no. 4: 423. https://doi.org/10.3390/atmos16040423
APA StyleMataveli, G., Jones, M. W., Pereira, G., Freitas, S. R., Oliveira, V., Silva Oliveira, B., & Aragão, L. E. O. C. (2025). How Do Emission Factors Contribute to the Uncertainty in Biomass Burning Emissions in the Amazon and Cerrado? Atmosphere, 16(4), 423. https://doi.org/10.3390/atmos16040423