Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (130)

Search Parameters:
Keywords = saturated steam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1465 KiB  
Article
Enhancing Functional and Visual Properties of Paulownia Wood Through Thermal Modification in a Steam Atmosphere
by Beata Doczekalska, Agata Stachowiak-Wencek, Krzysztof Bujnowicz and Maciej Sydor
Polymers 2025, 17(15), 2000; https://doi.org/10.3390/polym17152000 - 22 Jul 2025
Viewed by 346
Abstract
Paulownia elongata wood is characterized by rapid mass gain, but its limited mechanical strength hinders engineering applications. This study aimed to determine the effect of thermal modification in a steam atmosphere (at temperatures of 180 °C and 190 °C for 12 or 6 [...] Read more.
Paulownia elongata wood is characterized by rapid mass gain, but its limited mechanical strength hinders engineering applications. This study aimed to determine the effect of thermal modification in a steam atmosphere (at temperatures of 180 °C and 190 °C for 12 or 6 h with 3 or 6 h of steam dosing) on wood’s selected physicochemical and aesthetic properties. Color changes (CIELAB), chemical composition (FTIR), density, and compressive strength parallel to the grain were evaluated. The results showed a clear darkening of the wood, a shift in hues towards red and yellow, and an increase in color saturation depending on the treatment parameters. FTIR spectroscopy confirmed a reduction in hydroxyl and carbonyl groups, indicating thermal degradation of hemicelluloses and extractives. Wood density remained relatively stable, despite observed mass losses and reduced swelling. The most significant increase in compressive strength, reaching 27%, was achieved after 6 h of modification at 180 °C with a concurrent 6 h steam dosing time. The obtained results confirm that thermal treatment can effectively improve the functional and visual properties of paulownia wood, favoring its broader application in the furniture and construction industries. Full article
(This article belongs to the Special Issue Eco-Friendly Wood-Based Composites—Challenges and Prospects)
Show Figures

Figure 1

14 pages, 2494 KiB  
Article
Colour Homogenisation and Photostability of Beech Wood (Fagus sylvatica L.) as Affected by Mild Steaming and Light-Induced Natural Ageing
by Zuzana Vidholdová, Gabriela Slabejová and Eva Výbohová
Forests 2025, 16(7), 1104; https://doi.org/10.3390/f16071104 - 4 Jul 2025
Viewed by 267
Abstract
This study investigates the impact of mild steaming (105 °C and 120 °C for 12 h) on the colour characteristics and chemical stability of beech wood (Fagus sylvatica L.) during natural indoor ageing. Untreated and steamed samples of mature wood and false [...] Read more.
This study investigates the impact of mild steaming (105 °C and 120 °C for 12 h) on the colour characteristics and chemical stability of beech wood (Fagus sylvatica L.) during natural indoor ageing. Untreated and steamed samples of mature wood and false heartwood were analysed for CIELAB and CIELCh colour parameters (L*, a*, b*, C*, h°) and chemical changes using ATR-FTIR spectroscopy. Steaming resulted in a significant decrease in lightness (L*) and increased a*, b*, and C* values, producing darker and more saturated reddish-brown tones. It also reduced the visual differences between mature wood and false heartwood, enhancing colour uniformity. During the light-induced ageing period, steamed wood—particularly at 105 °C—exhibited improved colour stability, maintaining chroma and hue more effectively than untreated samples. Statistically significant interaction effects between treatment, time, and tissue type revealed that the ageing-related colour changes were jointly influenced by thermal modification and the anatomical characteristics of the wood. In the FTIR spectra, the most pronounced changes were observed in the absorption bands of the aromatic skeleton and carbonyl groups (1504 and 1732 cm−1). These findings confirm that mild steaming alters the original aesthetic properties and colour of beech wood when exposed to an indoor environment. Full article
(This article belongs to the Special Issue Phenomenon of Wood Colour)
Show Figures

Figure 1

24 pages, 11727 KiB  
Article
Experimental Evaluation of Residual Oil Saturation in Solvent-Assisted SAGD Using Single-Component Solvents
by Fernando Rengifo Barbosa, Amin Kordestany and Brij Maini
Energies 2025, 18(13), 3362; https://doi.org/10.3390/en18133362 - 26 Jun 2025
Viewed by 318
Abstract
The massive heavy oil reserves in the Athabasca region of northern Alberta depend on steam-assisted gravity drainage (SAGD) for their economic exploitation. Even though SAGD has been successful in highly viscous oil recovery, it is still a costly technology because of the large [...] Read more.
The massive heavy oil reserves in the Athabasca region of northern Alberta depend on steam-assisted gravity drainage (SAGD) for their economic exploitation. Even though SAGD has been successful in highly viscous oil recovery, it is still a costly technology because of the large energy input requirement. Large water and natural gas quantities needed for steam generation imply sizable greenhouse gas (GHG) emissions and extensive post-production water treatment. Several methods to make SAGD more energy-efficient and environmentally sustainable have been attempted. Their main goal is to reduce steam consumption whilst maintaining favourable oil production rates and ultimate oil recovery. Oil saturation within the steam chamber plays a critical role in determining both the economic viability and resource efficiency of SAGD operations. However, accurately quantifying the residual oil saturation left behind by SAGD remains a challenge. In this experimental research, sand pack Expanding Solvent SAGD (ES-SAGD) coinjection experiments are reported in which Pentane -C5H12, and Hexane -C6H14 were utilised as an additive to steam to produce Long Lake bitumen. Each solvent is assessed at three different constant concentrations through time using experiments simulating SAGD to quantify their impact. The benefits of single-component solvent coinjection gradually diminish as the SAGD process approaches its later stages. ES-SAGD pentane coinjection offers a smaller improvement in recovery factor (RF) (4% approx.) compared to hexane (8% approx.). Between these two single-component solvents, 15 vol% hexane offered the fastest recovery. The obtained data in this research provided compelling evidence that the coinjection of solvent under carefully controlled operating conditions, reduced overall steam requirement, energy consumption, and residual oil saturation allowing proper adjustment of oil and water relative permeability curve endpoints for field pilot reservoir simulations. Full article
(This article belongs to the Special Issue Enhanced Oil Recovery: Numerical Simulation and Deep Machine Learning)
Show Figures

Figure 1

18 pages, 8224 KiB  
Article
Cascaded Absorption Heat Pump Integration in Biomass CHP Systems: Multi-Source Waste Heat Recovery for Low-Carbon District Heating
by Pengying Wang and Hangyu Zhou
Sustainability 2025, 17(13), 5870; https://doi.org/10.3390/su17135870 - 26 Jun 2025
Viewed by 271
Abstract
District heating systems in northern China predominantly rely on coal-fired heat sources, necessitating sustainable alternatives to reduce carbon emissions. This study investigates a biomass combined heat and power (CHP) system integrated with cascaded absorption heat pump (AHP) technology to recover waste heat from [...] Read more.
District heating systems in northern China predominantly rely on coal-fired heat sources, necessitating sustainable alternatives to reduce carbon emissions. This study investigates a biomass combined heat and power (CHP) system integrated with cascaded absorption heat pump (AHP) technology to recover waste heat from semi-dry flue gas desulfurization exhaust and turbine condenser cooling water. A multi-source operational framework is developed, coordinating biomass CHP units with coal-fired boilers for peak-load regulation. The proposed system employs a two-stage heat recovery methodology: preliminary sensible heat extraction from non-saturated flue gas (elevating primary heating loop (PHL) return water from 50 °C to 55 °C), followed by serial AHPs utilizing turbine extraction steam to upgrade waste heat from circulating cooling water (further heating PHL water to 85 °C). Parametric analyses demonstrate that the cascaded AHP system reduces turbine steam extraction by 4.4 to 8.8 t/h compared to conventional steam-driven heating, enabling 3235 MWh of annual additional power generation. Environmental benefits include an annual CO2 reduction of 1821 tonnes, calculated using regional grid emission factors. The integration of waste heat recovery and multi-source coordination achieves synergistic improvements in energy efficiency and operational flexibility, advancing low-carbon transitions in district heating systems. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

26 pages, 3663 KiB  
Article
Influence of Cooking Methods on Flavor Parameters and Sensory Quality of Tibetan Sheep Meat Examined Using an Electronic Nose, an Electronic Tongue, GC–IMS, and GC–MS
by Shipeng Ge, Lijuan Han, Shengzhen Hou, Zhenzhen Yuan, Linsheng Gui, Shengnan Sun, Chao Yang, Zhiyou Wang and Baochun Yang
Foods 2025, 14(13), 2181; https://doi.org/10.3390/foods14132181 - 22 Jun 2025
Viewed by 511
Abstract
To explore the influence of cooking methods on the flavor parameters of Tibetan sheep, various techniques such as atmospheric-pressure (AP), high-pressure (HP), atmospheric-pressure high-pressure (APHP), and high-pressure atmospheric-pressure (HPAP) cooking were tested. The results indicated that APHP and HP cooking yielded the best [...] Read more.
To explore the influence of cooking methods on the flavor parameters of Tibetan sheep, various techniques such as atmospheric-pressure (AP), high-pressure (HP), atmospheric-pressure high-pressure (APHP), and high-pressure atmospheric-pressure (HPAP) cooking were tested. The results indicated that APHP and HP cooking yielded the best sensory qualities, accounting for 26.15% and 25.51%, respectively. The HP group had the highest amino acid content at 34%, enhancing the meat’s sweet taste due to alanine, glycine, arginine, and methionine. Among 40 detected fatty acids, the order of saturated fatty acid (SFA), monounsaturated fatty acid (MUFA), polyunsaturated fatty acid (PUFA), and n-6/n-3 content was AP > APHP > HPAP > HP (p < 0.05). An electronic tongue and nose identified aroma components across the four cooking methods. Similarities in aroma were observed among the samples after cooking, while significant differences were found in the aroma components between the AP group and the other three cooking methods (p < 0.05). The gas chromatography–ion mobility spectrometry (GC–IMS) and gas chromatography–mass spectrometry (GC–MS) analyses of the meat in the four groups indicated that there were significant differences in volatile compounds among meat cooked with different methods (p < 0.05), with 56 and 365 flavor compounds detected by the two analytical techniques, respectively. Moreover, the GC–MS results indicated that the flavor substance content in the HP group accounted for 30.80% among these four sample groups. This comprehensive analysis showed that high-pressure steaming could significantly improve the flavor quality of Tibetan sheep, providing a theoretical basis and empirical reference for the optimization of pre-treatment conditions and the processing of Tibetan sheep. Full article
Show Figures

Graphical abstract

28 pages, 5919 KiB  
Article
Numerical Simulation of Two-Phase Boiling Heat Transfer in a 65 mm Horizontal Tube for Enhanced Heavy Oil Recovery
by Genying Gao, Zicheng Wang, Gaoqiao Li, Chizhong Wang and Lei Deng
Energies 2025, 18(12), 3100; https://doi.org/10.3390/en18123100 - 12 Jun 2025
Viewed by 302
Abstract
To enhance the steam parameters of steam injection boilers during the thermal recovery of heavy oil while ensuring the safe and stable operation of boiler pipelines, this study conducted two-phase flow boiling numerical simulations in a horizontal heated tube with an inner diameter [...] Read more.
To enhance the steam parameters of steam injection boilers during the thermal recovery of heavy oil while ensuring the safe and stable operation of boiler pipelines, this study conducted two-phase flow boiling numerical simulations in a horizontal heated tube with an inner diameter of 65 mm, using water and water vapor as working fluids. The analysis focused on the gas–liquid phase distribution, temperature profiles, near-wall fluid velocity, and pressure drop along both the axial and radial directions of the tube. Furthermore, the effects of heat flux density, mass flow rate, and inlet subcooling on these parameters were systematically investigated. The results reveal that higher heat fluxes intensify the velocity difference between the upper and lower tube walls and enlarge the temperature gradient across the wall surface. A reduction in mass flow rate increases the gas phase fraction within the tube and causes the occurrence of identical flow patterns at earlier axial positions. Additionally, the onset of nucleate boiling shifts upstream, accompanied by an increase and upstream movement of the wall’s maximum temperature. An increase in inlet subcooling prolongs the time required for the working fluid mixture to reach saturation, thereby decreasing the gas phase fraction and delaying the appearance of the same flow patterns. Finally, preventive and control strategies for ensuring the safe operation of steam injection boiler pipelines during heavy oil recovery are proposed from the perspective of flow pattern regulation. Full article
Show Figures

Figure 1

21 pages, 7248 KiB  
Article
Synergistic Enhancement of Physicomechanical Performance and Microstructural Integrity in Hydrothermally Synthesized Autoclaved Lightweight Aggregates Through Quicklime–Fly Ash Blends
by Xue-Fei Chen, Xiu-Cheng Zhang and Ying Peng
Materials 2025, 18(12), 2739; https://doi.org/10.3390/ma18122739 - 11 Jun 2025
Viewed by 364
Abstract
Herein, fly ash aggregates (FAAs) were synthesized through a hydrothermal process, utilizing fly ash (FA) and quicklime at a temperature of 180 °C under saturated steam conditions. The study focused on analyzing the ramifications of varying quicklime content on the physicomechanical attributes of [...] Read more.
Herein, fly ash aggregates (FAAs) were synthesized through a hydrothermal process, utilizing fly ash (FA) and quicklime at a temperature of 180 °C under saturated steam conditions. The study focused on analyzing the ramifications of varying quicklime content on the physicomechanical attributes of the resultant FAAs. A comprehensive examination of mineralogical composition, microstructure, insoluble matter content, and loss on ignition was conducted to elucidate the mechanisms through which quicklime influences the cylinder compressive strength of the FAAs. An observed trend indicated that as the quicklime content increased, the water requirement during the granulation process also increased. Consequently, there was a gradual augmentation in the water absorption capacity of the FAAs, accompanied by a progressive decrement in their apparent density. The augmentation in the filling effect, attributed to the hydration products, led to a steady rise in cylinder compressive strength as the quicklime content escalated from 5 wt.% to 25 wt.%. However, beyond this threshold, between 25 wt.% and 45 wt.%, a decrement in cylinder compressive strength was noted due to the deterioration of the micro-aggregate effect. The interplay between the filling effect and the micro-aggregate effect resulted in the cylinder compressive strength of the FAAs peaking at 13 MPa at a quicklime content of 25 wt.%. The overarching objective of this research is to propose an efficacious approach for mitigating solid waste, with a particular emphasis on reducing the burden of FA. This study provides insights into optimizing FAAs through the modulation of quicklime content, thereby fostering advancements in waste management and resource recovery. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 7341 KiB  
Article
Multi-Scale Investigation of Fly Ash Aggregates (FAAs) in Concrete: From Macroscopic Physical–Mechanical Properties to Microscopic Structure of Hydration Products
by Xue-Fei Chen, Xiu-Cheng Zhang and Ying Peng
Materials 2025, 18(11), 2651; https://doi.org/10.3390/ma18112651 - 5 Jun 2025
Viewed by 418
Abstract
Fly ash aggregates (FAAs) were synthesized via a hydrothermal process, involving the reaction of fly ash and cement at 180 °C under saturated steam conditions. A thorough examination was carried out to evaluate the impact of cement content on the physico-mechanical properties of [...] Read more.
Fly ash aggregates (FAAs) were synthesized via a hydrothermal process, involving the reaction of fly ash and cement at 180 °C under saturated steam conditions. A thorough examination was carried out to evaluate the impact of cement content on the physico-mechanical properties of the resulting FAAs. A comprehensive exploration was undertaken to decipher the mechanisms by which cement modulates the cylinder compressive strength of FAAs, encompassing mineralogical composition, microstructure, insoluble residue content, and loss on ignition. As the cement proportion increased, a concomitant rise in the amount of hydration products was observed, leading to an enhanced filling effect. This, subsequently, resulted in reduced water absorption and increased apparent density of the FAAs. The augmented filling effect of hydration products contributed to a gradual elevation in the cylinder compressive strength of FAAs as cement content escalated from 5 to 35 wt%. However, a significant transition occurred when cement content surpassed 35%, reaching 35–45 wt%. Within this range, the micro-aggregate effect was diminished, causing a decrease in cylinder compressive strength. The optimal equilibrium between the filling effect and micro-aggregate effect was attained at 35 wt% cement content, where the cylinder compressive strength of FAAs reached its peak value of 18.5 MPa. This research is expected to provide a feasible approach for solid waste reduction, with a particular emphasis on the utilization of fly ash. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

34 pages, 5032 KiB  
Article
Improving the Efficiency of Essential Oil Distillation via Recurrent Water and Steam Distillation: Application of a 500-L Prototype Distillation Machine and Different Raw Material Packing Grids
by Namphon Pipatpaiboon, Thanya Parametthanuwat, Nipon Bhuwakietkumjohn, Yulong Ding, Yongliang Li and Surachet Sichamnan
AgriEngineering 2025, 7(6), 175; https://doi.org/10.3390/agriengineering7060175 - 4 Jun 2025
Viewed by 2496
Abstract
This research presents an essential oil (EO) distillation method with improved efficiency, called recurrent water and steam distillation (RWASD), as well as the testing of a 500 L prototype essential oil distillation machine (500 L PDM). The raw material used was 100 kg [...] Read more.
This research presents an essential oil (EO) distillation method with improved efficiency, called recurrent water and steam distillation (RWASD), as well as the testing of a 500 L prototype essential oil distillation machine (500 L PDM). The raw material used was 100 kg of lime fruit. At each distillation time point, the test result was compared with that obtained via water and steam distillation (WASD), and different raw material grid configurations were taken into consideration. It was found that distillation using the RWASD method increased the amount of EO obtained from limes by 53.69 ± 2.68% (or 43.21 ± 2.16 mL) compared with WASD. The results of gas chromatography mass spectrometry (GC-MS) analysis of bioactive compounds from the distilled EO revealed that important compounds were present in amounts close to the standards reported in many studies; namely, β-myrcene (2.72%), limonene (20.72%), α-phellandrene (1.27%), and terpinen-4-ol (3.04%). In addition, it was found that the temperature, state of saturated steam, and heat distribution during distillation were relatively constant. The results showed the design, construction, and heat loss error values of the 500 L PDM were 5.90 ± 0.29% and 7.83 ± 0.39%, respectively, leading to the use and percentage of useful heat energy to stabilize at 29,880 ± 1,494 kJ/s and 22.47 ± 1.12%, respectively. Additionally, the shape of the grid containing the raw material affects the temperature distribution and the amount of EO distilled, with values 10.14 ± 0.51% and 8.07 ± 0.40% higher for the normal grid (NS), respectively, as well as an exergy efficiency of 49.97 ± 2.49%. The highest values found for exergy in, exergy out, and exergy loss were 294.29 ± 14.71 kJ/s, 144.76 ± 7.23 kJ/s, and 150.22 ± 7.51 kJ/s, respectively. The obtained results can be further developed and expanded to promote the application of this method in SMEs, serving as basic information for the development of the EO distillation industry. Full article
(This article belongs to the Section Pre and Post-Harvest Engineering in Agriculture)
Show Figures

Figure 1

14 pages, 2641 KiB  
Article
Evaluation of the Process of Steaming Beech Sapwood and False Heartwood with Saturated Water Steam in Terms of Acidity Changes and Color Wood
by Michal Dudiak
Forests 2025, 16(5), 864; https://doi.org/10.3390/f16050864 - 21 May 2025
Viewed by 334
Abstract
The paper presents changes in the color and acidity of beech wood with false heartwood in the process of pressure steaming at the temperature interval t = 105 °C and 125 °C during τ = 6 to 24 h. The light white-gray color [...] Read more.
The paper presents changes in the color and acidity of beech wood with false heartwood in the process of pressure steaming at the temperature interval t = 105 °C and 125 °C during τ = 6 to 24 h. The light white-gray color of sapwood with a yellow tint changes to pale pink and red-brown to brown-red color during the steaming process. The color of beech wood with false heartwood changed to brown-gray color shades during 24 h of steaming with saturated water steam. From the measured data, as well as the visual evaluation of the color of the wood, I can conclude that, in the process of steaming beech wood with false heartwood, we can achieve color unification between false heartwood and sapwood in mode at temperature t = 105 °C for time τ = 18 h and in mode at temperature t = 125 °C for time τ = 12 h. Due to the influence of hemicellulose hydrolysis, the acidity of beech wood changes in the process of steaming. The decrease in acidity of beech wood in the temperature interval t = 105–125 °C and time τ = 6–24 h is in the range of values pHsapwood = 5.2 to 3.6 and pHfalse heartwood = 5.0 to 3.9. The relationship between the total color difference ∆E and the acidity change in beech sapwood and false heartwood is expressed by a second-degree polynomial function. The above mathematical relations represent a useful tool for evaluating the achieved color shade before further technological processing. Full article
Show Figures

Figure 1

16 pages, 1492 KiB  
Article
The Effect of Photoreactive Diluents on the Properties of a Styrene-Free Vinyl Ester Resin for Cured-In-Place Pipe (CIPP) Technology
by Małgorzata Krasowska, Agnieszka Kowalczyk, Krzysztof Kowalczyk, Rafał Oliwa and Mariusz Oleksy
Materials 2025, 18(10), 2304; https://doi.org/10.3390/ma18102304 - 15 May 2025
Viewed by 462
Abstract
Cured-in-place pipe (CIPP) technology is a trenchless rehabilitation method for damaged pipelines in which a resin-saturated liner (often a fiber-reinforced type) is inserted into a host pipe and cured in situ, typically using a UV light beam or steam. This study investigates the [...] Read more.
Cured-in-place pipe (CIPP) technology is a trenchless rehabilitation method for damaged pipelines in which a resin-saturated liner (often a fiber-reinforced type) is inserted into a host pipe and cured in situ, typically using a UV light beam or steam. This study investigates the influence of selected photoreactive diluents on the photopolymerization process of a styrene-free vinyl ester resin designed for the CIPP applications by evaluating the rheological properties, photopolymerization kinetics (photo-DSC), thermal characteristics (DSC), crosslinking density (gel content), and mechanical properties of thick (15 mm) UV-cured layers. The tested diluents included monofunctional (i.e., methyl methacrylate and vinyl neodecanoate), difunctional (1,6-hexanediol diacrylate, aliphatic urethane acrylates, and an epoxy acrylate), and trifunctional monomers (trimethylolpropane triacrylate, pentaerythritol triacrylate, and trimethylolpropane ethoxylate triacrylate). The key findings demonstrate that the addition of pentaerythritol triacrylate (the most attractive diluent) increases the flexural strength (+6%) and deflection at strength (+28%) at the unchanged flexural modulus value (ca. 2.1 GPa). The difunctional epoxy acrylate caused an even greater increase in the deflection (+52%, at a 5% increase in the flexural strength). Full article
Show Figures

Figure 1

20 pages, 6191 KiB  
Article
Numerical Investigation of Energy Efficiency and Remediation Performance of Steam Injection via Horizontal Wells for Soil Xylene Pollution
by Yuchao Zeng, Lixing Ding, Haizhen Zhai and Bin He
Processes 2025, 13(5), 1491; https://doi.org/10.3390/pr13051491 - 13 May 2025
Viewed by 351
Abstract
Soil organic pollution poses a significant threat to agricultural safety in China, underscoring the critical importance of developing efficient remediation technologies for soil environmental protection. Steam injection, a promising method for removing organic pollutants from soil, has yet to be thoroughly investigated in [...] Read more.
Soil organic pollution poses a significant threat to agricultural safety in China, underscoring the critical importance of developing efficient remediation technologies for soil environmental protection. Steam injection, a promising method for removing organic pollutants from soil, has yet to be thoroughly investigated in terms of its energy efficiency. A novel steam injection system with horizontal wells is proposed to remediate soil xylene pollution, and a corresponding numerical model is established and solved through TOUGH2-T2VOC codes. The energy efficiency characteristics and main influencing factors of the system are analyzed. The results demonstrate that steam injection is an effective method to remediate xylene pollution. It is evaluated that during the first 1.5 years of the 5-year operation period, production xylene saturation gradually decreases from 0.3 to 0.05, and the production xylene mass flow rate gradually decreases from 0.179 kg/s to 2.448 × 10−4 kg/s. Pump power consumption gradually increases from 17.23 kW to 30.67 kW, while energy efficiency gradually decreases from 7.73 × 10−4 kg/kJ to 1.00 × 10−6 kg/kJ. Sensitivity analyses indicate that the main factors affecting the xylene mass flow rate are formation permeability, production pressure and the initial xylene saturation, and the main factors affecting energy efficiency are the steam injection flow rate, formation permeability, production pressure and initial xylene saturation. This has significant practical significance for the optimal design of the steam injection remediation scheme for soil organic pollution. Full article
(This article belongs to the Topic Advanced Heat and Mass Transfer Technologies)
Show Figures

Figure 1

19 pages, 7955 KiB  
Article
Volatile Compounds and Fatty Acids of Mutton Carrot Filling During Dynamic Steaming Investigated Based on GC-MS and GC-IMS Analyses
by Kaiyan You, Qianyu Li, Ya Wang and Xuehui Cao
Foods 2025, 14(9), 1535; https://doi.org/10.3390/foods14091535 - 27 Apr 2025
Viewed by 468
Abstract
To investigate the impact of varying steaming durations on the flavor characteristics of mutton and carrot stuffing, dynamic changes in volatile organic compounds (VOCs) and fatty acids were analyzed using solid-phase micro-extraction gas chromatography–mass spectrometry (SPME-GC-MS) and gas chromatography–ion mobility spectrometry (GC-IMS). The [...] Read more.
To investigate the impact of varying steaming durations on the flavor characteristics of mutton and carrot stuffing, dynamic changes in volatile organic compounds (VOCs) and fatty acids were analyzed using solid-phase micro-extraction gas chromatography–mass spectrometry (SPME-GC-MS) and gas chromatography–ion mobility spectrometry (GC-IMS). The results revealed a total of 116 VOCs identified throughout the steaming process, with 73 detected by GC-MS and 44 by GC-IMS. Notably, VOC concentrations were significantly higher at 18–24 min compared to 8–16 min. Additionally, a GC-IMS fingerprint was developed to assess the distribution of VOCs during steaming. Orthogonal partial least squares discriminant analysis (OPLS-DA) indicated that 11 compounds, such as ethyl caprylate (B3), linalyl acetate (B6), and 1-nonanal (C1), significantly influenced the flavor characteristics of the mutton and carrot filling. Further analysis demonstrated that stearic acid content reached its lowest point at 20–22 min of steaming, while n-6 and n-3 series polyunsaturated fatty acids (PUFAs) and the ratio of polyunsaturated fatty acids to saturated fatty acids (P/S) peaked at this time. Full article
Show Figures

Figure 1

19 pages, 5817 KiB  
Article
Effect of Quicklime Substitution for Cement on the Physical and Mechanical Properties of Autoclaved Fly Ash Aggregates via Hydrothermal Synthesis
by Dongyun Wang, Xuan Shen, Zhiyan Wang, Xiucheng Zhang and Xue-Fei Chen
Materials 2025, 18(3), 707; https://doi.org/10.3390/ma18030707 - 6 Feb 2025
Cited by 3 | Viewed by 730
Abstract
Herein, we synthesized fly ash aggregates (FAAs) through a hydrothermal synthesis process utilizing fly ash, quicklime, and cement under saturated steam conditions at 180 °C. We systematically investigated the influence and mechanisms governing the physical and mechanical properties of autoclaved FAAs by incrementally [...] Read more.
Herein, we synthesized fly ash aggregates (FAAs) through a hydrothermal synthesis process utilizing fly ash, quicklime, and cement under saturated steam conditions at 180 °C. We systematically investigated the influence and mechanisms governing the physical and mechanical properties of autoclaved FAAs by incrementally replacing cement with quicklime in 5% equal mass intervals. Our results revealed that the substitution of cement with quicklime yielded lightweight aggregates (LWAs) exhibiting water absorption ranging from 1.33% to 22.88% after 1 h and 1.67% to 26.22% after 24 h, loose bulk densities between 847 kg/m3 and 1043 kg/m3, apparent densities spanning from 1484 kg/m3 to 1880 kg/m3, and cylinder compressive strengths varying from 11.9 MPa to 18.5 MPa. Notably, as the proportion of quicklime substitution for cement increased, there was a corresponding augmentation in water consumption during granulation, resulting in an elevated water–cement ratio ranging from 27.5% to 51.39%. This led to an enhancement in the water absorption of the FAAs, accompanied by a decrement in cylinder compressive strength and overall density. The hydration products, including tobermorite and calcium silicate hydrate, contributed to the creation of a dense microstructure within the FAAs. However, with higher quantities of quicklime replacing cement, the content of hydration products increased while the proportion of unreacted fly ash particles decreased significantly. The resultant weakening micro-aggregate effect emerged as a pivotal factor contributing to the observed decrement in the strength of these FAAs. The findings of this research are anticipated to provide significant theoretical insights and technical support for the selection of calcareous materials in the resource-recycling process of fly ash. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

22 pages, 10682 KiB  
Article
Insight into the Microscopic Interactions Among Steam, Non-Condensable Gases, and Heavy Oil in Steam and Gas Push Processes: A Molecular Dynamics Simulation Study
by Jiuning Zhou, Xiyan Wang, Xiaofei Sun and Zifei Fan
Energies 2025, 18(1), 125; https://doi.org/10.3390/en18010125 - 31 Dec 2024
Cited by 1 | Viewed by 738
Abstract
The SAGP (steam and gas push) process is an effective enhanced oil recovery (EOR) method for heavy oil reservoirs. Understanding the microscopic interactions among steam, non-condensable gasses (NCGs), and heavy oil under reservoir conditions in SAGP processes is important for their EOR applications. [...] Read more.
The SAGP (steam and gas push) process is an effective enhanced oil recovery (EOR) method for heavy oil reservoirs. Understanding the microscopic interactions among steam, non-condensable gasses (NCGs), and heavy oil under reservoir conditions in SAGP processes is important for their EOR applications. In this study, molecular simulations were performed to investigate the microscopic interactions among steam, NCG, and heavy oil under reservoir conditions in SAGP processes. In addition, the microscopic EOR mechanisms during SAGP processes and the effects of operational parameters (NCG type, NCG–steam mole ratio, temperature, and pressure) were discussed. The results show that the diffusion and dissolution of CH4 molecules and the extraction of steam molecules cause the molecules of saturates with light molecular weights in the oil globules to stretch and gradually detach from one another, resulting in the swelling of heavy oil. Compared with N2, CH4 has a stronger ability to diffuse and dissolve in heavy oil, swell the heavy oil, and reduce the density and viscosity of heavy oil. For this reason, compared with cases where N2 is used, SAGP processes perform better when CH4 is used, indicating that CH4 can be used as the injected NCG in the SAGP process to improve heavy oil recovery. As the NCG–steam mole ratio and injection pressure increase, the diffusion and solubility abilities of CH4 in heavy oil increase, enabling CH4 to perform better in swelling the heavy oil and reducing the density and viscosity of heavy oil. Hence, increasing the NCG–steam mole ratio and injection pressure is helpful in improving the performance of SAGP processes in heavy oil reservoirs. However, the NCG–steam mole ratio and injection pressure should be reasonably determined based on actual field conditions because excessively high NCG–steam mole ratios and injection pressures lead to higher operation costs. Increasing the temperature is favorable for increasing the diffusion coefficient of CH4 in heavy oil, swelling heavy oil, and reducing the oil density and viscosity. However, high temperatures can result in intensified thermal motion of CH4 molecules, reduce the interaction energy between CH4 molecules and heavy oil molecules, and increase the difference in the Hildebrand solubility parameter between heavy oil and CH4–steam mixtures, which is unfavorable for the dissolution of CH4 in heavy oil. This study can help readers deeply understand the microscopic interactions among steam, NCG, and heavy oil under reservoir conditions in SAGP processes and its results can provide valuable information for the actual application of SAGP processes in enhancing heavy oil recovery. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

Back to TopTop