Influence of Cooking Methods on Flavor Parameters and Sensory Quality of Tibetan Sheep Meat Examined Using an Electronic Nose, an Electronic Tongue, GC–IMS, and GC–MS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Experimental Samples
2.2. Experimental Methods
2.2.1. Sample Preparation
2.2.2. Sensory Evaluation
2.2.3. Electronic Nose Assessments
2.2.4. Electronic Tongue Assessments
2.2.5. Determination of Free Amino Acids
2.2.6. Determination of Fatty Acids
2.2.7. HS–GC–IMS Analysis
2.2.8. HS–GC–MS Analysis
2.2.9. Taste Activity Values (TAV) and Relative Odor Activity Value (ROAV) Calculation
2.3. Data Processing
3. Results and Discussion
3.1. Effects of Different Steaming and Cooking Methods on the Sensory Evaluation of Tibetan Sheep Meat
3.2. The Effects of Different Steaming and Cooking Methods on the Odor Characteristics of Tibetan Sheep Meat
3.3. The Effects of Different Steaming and Cooking Methods on the Taste Characteristics of Tibetan Sheep Meat
3.4. The Effects of Different Cooking Methods on the Free Amino Acid Contents of Tibetan Sheep Meat
3.5. The Effects of Different Steaming and Cooking Methods on Fatty Acids in Tibetan Sheep Meat
3.6. GC–IMS Analysis of Volatile Constituents of Tibetan Sheep Meat After Different Steaming Methods
3.6.1. GC–IMS Profiling of Tibetan Sheep Cooked with Different Steaming Methods
3.6.2. Qualitative and Quantitative Analysis (GC–IMS) of Volatile Constituents of Tibetan Sheep in Different Cooking Methods
3.6.3. PCA Analysis (GC–IMS) of Volatile Constituents of Tibetan Sheep Meat After Different Methods of Cooking
3.6.4. OPLS–DA Analysis (GC–IMS) of Volatile Constituents of Tibetan Sheep Meat After Different Methods of Cooking
3.6.5. Identification of Key Volatile Flavor Substances (GC–IMS)
3.7. GC–MS Analysis of Volatile Components of Tibetan Sheep Meat After Different Methods of Cooking
3.7.1. PCA Plot of Volatile Components Identified by GC–MS
3.7.2. Qualitative and Quantitative Analysis (GC–MS) of the Aroma Components of Tibetan Sheep After Different Methods of Cooking
3.7.3. OPLS–DA Determination of Volatile Components of Tibetan Sheep Meat After Different Methods of Cooking
3.7.4. Identification of Key Volatile Flavor Substances (GC–MS)
3.8. GC–MS and GC–IMS Wayne’s Plot Analysis of Volatile Components of Tibetan Sheep Meat After Different Methods of Cooking
3.9. Correlation Analysis of Characteristic Flavor Substances with Key Fatty Acids and Amino Acids in Tibetan Sheep Meat After Different Methods of Cooking
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AP | Atmospheric Pressure |
HP | High-Pressure |
APHP | Atmospheric-High Pressure |
HPAP | High-Atmospheric Pressure |
GC–IMS | Gas Chromatography–Ion Mobility Spectrometry |
GC–MS | Gas Chromatography–Mass Spectrometry |
ROVA | Relative Oder Activity Value |
VIP | Variable Influence on Projection |
SFA | Saturated Fatty Acid |
PUFA | Polyunsaturated Fatty Acid |
MUFA | Monounsaturated Fatty Acid |
LDL | Low-Density Lipoprotein |
TAV | Taste Activity Value |
OPLS-DA | Orthogonal Partial Least Squares-Discriminant Analysis |
ASTREE | Abstract Syntax Tree |
References
- Wu, Z.; Liu, M.; Yan, M.; Dong, S.; Wu, S. Regulation Mechanism and Functional Verification of Key Functional Genes Regulating Muscle Development in Black Tibetan Sheep. Gene 2023, 868, 147375. [Google Scholar] [CrossRef]
- Jiao, J.; Wang, T.; Zhou, J.; Degen, A.A.; Gou, N.; Li, S.; Bai, Y.; Jing, X.; Wang, W.; Shang, Z. Carcass Parameters and Meat Quality of Tibetan Sheep and Small-Tailed Han Sheep Consuming Diets of Low-Protein Content and Different Energy Yields. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1010–1023. [Google Scholar] [CrossRef]
- Zhu, X.; Yang, C.; Song, Y.; Qiang, Y.; Han, D.; Zhang, C. Changes Provoked by Altitudes and Cooking Methods in Physicochemical Properties, Volatile Profile, and Sensory Characteristics of Yak Meat. Food Chem. X 2023, 20, 101019. [Google Scholar] [CrossRef] [PubMed]
- Madruga, M.S.; Elmore, J.S.; Dodson, A.T.; Mottram, D.S. Volatile Flavour Profile of Goat Meat Extracted by Three Widely Used Techniques. Food Chem. 2009, 115, 1081–1087. [Google Scholar] [CrossRef]
- Khan, M.I.; Jo, C.; Tariq, M.R. Meat Flavor Precursors and Factors Influencing Flavor Precursors—A Systematic Review. Meat Sci. 2015, 110, 278–284. [Google Scholar] [CrossRef] [PubMed]
- Thorslund, C.A.H.; Sandøe, P.; Aaslyng, M.D.; Lassen, J. A Good Taste in the Meat, a Good Taste in the Mouth—Animal Welfare as an Aspect of Pork Quality in Three European Countries. Livest. Sci. 2016, 193, 58–65. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Mujumdar, A.S. Development of Flavor during Drying and Applications of Edible Mushrooms: A Review. Dry. Technol. 2021, 39, 1685–1703. [Google Scholar] [CrossRef]
- Chen, X.; Chen, H.; Xiao, J.; Liu, J.; Tang, N.; Zhou, A. Variations of Volatile Flavour Compounds in Finger Citron (Citrus medica L. Var. sarcodactylis) Pickling Process Revealed by E-Nose, HS-SPME-GC-MS and HS-GC-IMS. Food Res. Int. 2020, 138, 109717. [Google Scholar] [CrossRef]
- Papadimitropoulos, M.-E.P.; Vasilopoulou, C.G.; Maga-Nteve, C.; Klapa, M.I. Untargeted GC-MS Metabolomics. In Metabolic Profiling; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2018; Volume 1738, pp. 133–147. [Google Scholar] [CrossRef]
- Yang, W.; Yu, J.; Pei, F.; Mariga, A.M.; Ma, N.; Fang, Y.; Hu, Q. Effect of Hot Air Drying on Volatile Compounds of Flammulina velutipes Detected by HS-SPME-GC-MS and Electronic Nose. Food Chem. 2016, 196, 860–866. [Google Scholar] [CrossRef]
- Zhang, Z.; Zang, M.; Zhang, K.; Wang, S.; Li, D.; Li, X. Effect of Two Types of Thermal Processing Methods on the Aroma and Taste Profiles of Three Commercial Plant-Based Beef Analogues and Beef by GC-MS, E-Nose, E-Tongue, and Sensory Evaluation. Food Control 2023, 146, 109551. [Google Scholar] [CrossRef]
- Duan, S.; Tang, X.; Li, W.; Huang, X. Analysis of the Differences in Volatile Organic Compounds in Different Muscles of Pork by GC-IMS. Molecules 2023, 28, 1726. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Han, L.; Hou, S.; Gui, L.; Yuan, Z.; Sun, S.; Wang, Z.; Yang, B.; Yang, C. Insights into the Effects of Saline Forage on the Meat Quality of Tibetan Sheep by Metabolome and Multivariate Analysis. Food Chem. X 2024, 22, 101411. [Google Scholar] [CrossRef]
- Zhang, X.; Han, L.; Hou, S.; Raza, S.H.A.; Wang, Z.; Yang, B.; Sun, S.; Ding, B.; Gui, L.; Simal-Gandara, J.; et al. Effects of Different Feeding Regimes on Muscle Metabolism and Its Association with Meat Quality of Tibetan Sheep. Food Chem. 2022, 374, 131611. [Google Scholar] [CrossRef]
- Yufei, Y.; Pan, L.; Jia, C.; Guofei, W.; Hongqiang, R.; Ling, W.; Hongzhao, L.; Wenxian, Z.; Tao, Z. Using Untargeted Metabolomics and GC-IMS to Analysis the Influence of Fat Distribution on the Flavor Formation of Bacon. Food Biosci. 2024, 59, 103986. [Google Scholar] [CrossRef]
- Ahamed, Z.; Seo, J.; Eom, J.-U.; Yang, H.-S. Optimization of Volatile Compound Extraction on Cooked Meat Using HS-SPME-GC-MS, and Evaluation of Diagnosis to Meat Species Using Volatile Compound by Multivariate Data Analysis. LWT 2023, 188, 115374. [Google Scholar] [CrossRef]
- Xu, X.; Bi, K.; Wu, G.; Yang, P.; Li, H.; Jia, W.; Zhang, C. The Effect of Enzymatic Hydrolysis and Maillard Reaction on the Flavor of Chicken Osteopontin. Foods 2024, 13, 702. [Google Scholar] [CrossRef]
- Wang, Y.; He, Y.; Liu, Y.; Wang, D. Analyzing Volatile Compounds of Young and Mature Docynia delavayi Fruit by HS-SPME-GC-MS and rOAV. Foods 2022, 12, 59. [Google Scholar] [CrossRef] [PubMed]
- Bi, J.; Li, Y.; Yang, Z.; Lin, Z.; Chen, F.; Liu, S.; Li, C. Effect of Different Cooking Times on the Fat Flavor Compounds of Pork Belly. J. Food Biochem. 2022, 46, e14184. [Google Scholar] [CrossRef]
- Xiang, C.; Li, S.; Zhang, D.; Huang, C.; Zhao, Y.; Zheng, X.; Wang, Z.; Chen, L. Characterization and Discrimination of the Flavor Profiles of Chinese Indigenous Sheep Breeds via Electronic Sensory, Smart Instruments and Chemometrics. J. Food Compos. Anal. 2023, 122, 105458. [Google Scholar] [CrossRef]
- Hoti, G.; Matencio, A.; Rubin Pedrazzo, A.; Cecone, C.; Appleton, S.L.; Khazaei Monfared, Y.; Caldera, F.; Trotta, F. Nutraceutical Concepts and Dextrin-Based Delivery Systems. Int. J. Mol. Sci. 2022, 23, 4102. [Google Scholar] [CrossRef]
- Stoiloudis, P.; Kesidou, E.; Bakirtzis, C.; Sintila, S.-A.; Konstantinidou, N.; Boziki, M.; Grigoriadis, N. The Role of Diet and Interventions on Multiple Sclerosis: A Review. Nutrients 2022, 14, 1150. [Google Scholar] [CrossRef] [PubMed]
- Cerf, M.E. Cardiac Glucolipotoxicity and Cardiovascular Outcomes. Medicina 2018, 54, 70. [Google Scholar] [CrossRef] [PubMed]
- Prendeville, H.; Lynch, L. Diet, Lipids, and Antitumor Immunity. Cell. Mol. Immunol. 2022, 19, 432–444. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.C.; Spiazzi, B.F.; Zingano, C.P.; Merello, E.N.; Wayerbacher, L.F.; Teixeira, P.P.; Farenzena, L.P.; de Araujo, C.; Amazarray, C.R.; Colpani, V.; et al. The Effects of Coconut Oil on the Cardiometabolic Profile: A Systematic Review and Meta-Analysis of Randomized Clinical Trials. Lipids Health Dis. 2022, 21, 83. [Google Scholar] [CrossRef]
- Al-Dalali, S.; Li, C.; Xu, B. Insight into the Effect of Frozen Storage on the Changes in Volatile Aldehydes and Alcohols of Marinated Roasted Beef Meat: Potential Mechanisms of Their Formation. Food Chem. 2022, 385, 132629. [Google Scholar] [CrossRef]
- Onaolapo, A.Y.; Obelawo, A.Y.; Onaolapo, O.J. Brain Ageing, Cognition and Diet: A Review of the Emerging Roles of Food-Based Nootropics in Mitigating Age-Related Memory Decline. Curr. Aging Sci. 2019, 12, 2–14. [Google Scholar] [CrossRef]
- Jachimowicz, K.; Winiarska-Mieczan, A.; Tomaszewska, E. The Impact of Herbal Additives for Poultry Feed on the Fatty Acid Profile of Meat. Animals 2022, 12, 1054. [Google Scholar] [CrossRef]
- Sales-Campos, H.; de Souza, P.R.; Peghini, B.C.; da Silva, J.S.; Cardoso, C.R. An Overview of the Modulatory Effects of Oleic Acid in Health and Disease. Mini Rev. Med. Chem. 2013, 13, 201–210. [Google Scholar]
- Wu, H.; Ganguly, S.; Tollefsbol, T.O. Modulating Microbiota as a New Strategy for Breast Cancer Prevention and Treatment. Microorganisms 2022, 10, 1727. [Google Scholar] [CrossRef]
- Ma, Y.; Han, L.; Hou, S.; Gui, L.; Sun, S.; Yuan, Z.; Yang, C.; Wang, Z.; Yang, B. Fatty Acids and Volatile Flavor Components of Adipose Tissue from Local Tibetan Sheep in Qinghai with Dietary Supplementation of Palm Kernel Meal (PKM). Animals 2024, 14, 2113. [Google Scholar] [CrossRef]
- Guo, X.; Schwab, W.; Ho, C.-T.; Song, C.; Wan, X. Characterization of the Aroma Profiles of Oolong Tea Made from Three Tea Cultivars by Both GC-MS and GC-IMS. Food Chem. 2021, 376, 131933. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Wu, Y.; Wang, Y.; Li, L.; Li, C.; Zhao, Y.; Yang, S. Contribution of Autochthonous Microbiota Succession to Flavor Formation during Chinese Fermented Mandarin Fish (Siniperca chuatsi). Food Chem. 2021, 348, 129107. [Google Scholar] [CrossRef]
- Zheng, X.; Ji, H.; Zhang, D.; Zhang, Z.; Liu, S.; Song, W. The Identification of Three Phospholipid Species Roles on the Aroma Formation of Hot-Air-Dried Shrimp (Litopenaeus vannamei) by Gas Chromatography-Ion Mobility Spectrometry and Gas Chromatography- Mass Spectrometry. Food Res. Int. 2022, 162, 112191. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Hossain, A.; Pegg, R.B. Dikeman, M., Ed.; Cooking of Meat | Maillard Reaction and Browning. In Encyclopedia of Meat Sciences, 3rd ed.; Elsevier: Oxford, UK, 2024; pp. 173–188. ISBN 978-0-323-85198-5. [Google Scholar]
- Tanimoto, S.; Kitabayashi, K.; Fukusima, C.; Sugiyama, S.; Hashimoto, T. Effect of Storage Period before Reheating on the Volatile Compound Composition and Lipid Oxidation of Steamed Meat of Yellowtail Seriola quinqueradiata. Fish. Sci. 2015, 81, 1145–1155. [Google Scholar] [CrossRef]
- Xu, N.; Lai, Y.; Shao, X.; Zeng, X.; Wang, P.; Han, M.; Xu, X. Different Analysis of Flavors among Soft-Boiled Chicken: Based on GC-IMS and PLS-DA. Food Biosci. 2023, 56, 103243. [Google Scholar] [CrossRef]
- Huang, Q.; Dong, K.; Wang, Q.; Huang, X.; Wang, G.; An, F.; Luo, Z.; Luo, P. Changes in Volatile Flavor of Yak Meat during Oxidation Based on Multi-Omics. Food Chem. 2022, 371, 131103. [Google Scholar] [CrossRef]
- Wang, W.; Feng, X.; Zhang, D.; Li, B.; Sun, B.; Tian, H.; Liu, Y. Analysis of Volatile Compounds in Chinese Dry-Cured Hams by Comprehensive Two-Dimensional Gas Chromatography with High-Resolution Time-of-Flight Mass Spectrometry. Meat Sci. 2018, 140, 14–25. [Google Scholar] [CrossRef]
- Li, W.; Chen, Y.P.; Blank, I.; Li, F.; Li, C.; Liu, Y. GC × GC-ToF-MS and GC-IMS Based Volatile Profile Characterization of the Chinese Dry-Cured Hams from Different Regions. Food Res. Int. 2021, 142, 110222. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Ji, H.; Zhang, D.; Zhang, Z.; Liu, S.; Song, W. Evaluation of Aroma Characteristics of Dried Shrimp (Litopenaeus vannamei) Prepared by Five Different Procedures. Foods 2022, 11, 3532. [Google Scholar] [CrossRef]
- Chen, Q.; Lu, K.; He, J.; Zhou, Q.; Li, S.; Xu, H.; Su, Y.; Wang, M. Effects of Seasoning Addition and Cooking Conditions on the Formation of Free and Protein-Bound Heterocyclic Amines and Advanced Glycation End Products in Braised Lamb. Food Chem. 2024, 446, 138850. [Google Scholar] [CrossRef]
- Chen, H.; Wu, Y.; Wang, J.; Hong, J.; Tian, W.; Zhao, D.; Sun, J.; Huang, M.; Li, H.; Zheng, F.; et al. Uncover the Flavor Code of Roasted Sesame for Sesame Flavor Baijiu: Advance on the Revelation of Aroma Compounds in Sesame Flavor Baijiu by Means of Modern Separation Technology and Molecular Sensory Evaluation. Foods 2022, 11, 998. [Google Scholar] [CrossRef] [PubMed]
- Calò, F.; Girelli, C.R.; Wang, S.C.; Fanizzi, F.P. Geographical Origin Assessment of Extra Virgin Olive Oil via NMR and MS Combined with Chemometrics as Analytical Approaches. Foods 2022, 11, 113. [Google Scholar] [CrossRef] [PubMed]
- Valdés García, A.; Sánchez Romero, R.; Juan Polo, A.; Prats Moya, S.; Maestre Pérez, S.E.; Beltrán Sanahuja, A. Volatile Profile of Nuts, Key Odorants and Analytical Methods for Quantification. Foods 2021, 10, 1611. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Ren, Y.; Shi, Y.; Fan, S.; Zhao, L.; Dong, M.; Li, J.; Yang, Y.; Yu, Y.; Zhao, Q.; et al. Comprehensive Foodomics Analysis Reveals Key Lipids Affect Aroma Generation in Beef. Food Chem. 2024, 461, 140954. [Google Scholar] [CrossRef]
- Choi, Y.; Kim, M.; Kim, S.J.; Yoo, H.-J.; Kim, S.-H.; Park, H.-S. Metabolic Shift Favoring C18:0 Ceramide Accumulation in Obese Asthma. Allergy 2020, 75, 2858–2866. [Google Scholar] [CrossRef]
Cooking Method | Liquid–Solid Ratio | Temperature/°C | Time/h |
---|---|---|---|
AP | 2:1 | 100 | 2 |
HP | 2:1 | 110 | 2 |
APHP | 2:1 | 100/110 | 1/1 |
HPAP | 2:1 | 110/100 | 1/1 |
Types of Amino Acids | Content g/100 g | p-Value | Taste Attribute | Taste Threshold g/100 g | TAV | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
AP | APHP | HP | HPAP | AP | APHP | HP | HPAP | ||||
Aspartate | 21.62 ± 0.33 c | 17.99 ± 1.27 b | 43.52 ± 2.05 d | 14.32 ± 1.41 a | <0.001 | Fresh flavor | 100 | 0.22 | 0.18 | 0.44 | 0.14 |
Glutamate | 1124.78 ± 28.45 c | 319.32 ± 22.23 a | 1220.86 ± 34.07 d | 585.45 ± 31.2 b | <0.001 | Fresh flavor | 30 | 37.49 | 10.64 | 40.70 | 19.52 |
Alanine | 952.17 ± 5.77 c | 455.35 ± 8.05 a | 1174.24 ± 12.24 d | 810.72 ± 10.15 b | <0.001 | Sweet taste | 60 | 15.87 | 7.59 | 19.57 | 13.51 |
Glycine | 2238.11 ± 114.07 c | 774.95 ± 20.41 a | 2610 ± 58.48 d | 1526.69 ± 51.96 b | <0.001 | Sweet taste | 130 | 17.22 | 5.96 | 20.08 | 11.74 |
Serine | 880.59 ± 26.01 c | 381.26 ± 35.76 a | 938.73 ± 35.9 d | 583.33 ± 9.47 b | <0.001 | Sweet taste | 150 | 5.87 | 2.54 | 6.26 | 3.89 |
Threonine | 1440.63 ± 52.79 c | 491.04 ± 10.42 a | 1429.44 ± 80.81 c | 1038.26 ± 73.95 b | <0.001 | Sweet taste | 260 | 5.54 | 1.89 | 5.50 | 3.99 |
Tyrosine | 340.83 ± 18.6 c | 147.63 ± 11.4 a | 435.32 ± 25.31 d | 295.98 ± 6.86 b | <0.001 | bitterness | - | - | - | - | - |
Histidine | 1420.4 ± 374.66 ab | 1042.68 ± 126.24 ab | 2711.52 ± 1097.02 ab | 1535.85 ± 607.79 a | 0.065 | bitterness | 20 | 71.02 | 52.13 | 135.58 | 76.79 |
Isoleucine | 1270.91 ± 27.66 c | 534.07 ± 23.57 a | 1468.74 ± 38.37 d | 1063.11 ± 25.27 b | <0.001 | bitterness | 90 | 14.12 | 5.93 | 16.32 | 11.81 |
Leucine | 1275.26 ± 29.37 b | 530.58 ± 26.81 a | 1465.11 ± 8.89 b | 1335.9 ± 447.98 b | 0.004 | bitterness | 190 | 6.71 | 2.79 | 7.71 | 7.03 |
Tryptophan | 28.47 ± 0.72 d | 13.74 ± 0.53 a | 27.18 ± 0.31 c | 25.39 ± 0.79 b | <0.001 | - | - | - | - | - | - |
Phenylalanine | 1391.07 ± 72.44 c | 496.59 ± 42.26 a | 1808.15 ± 19.43 d | 1151.2 ± 27.88 b | <0.001 | bitterness | 90 | 15.46 | 5.52 | 20.09 | 12.79 |
Lysine | 37.11 ± 7.01 a | 43.46 ± 3.19 a | 51.97 ± 3.66 b | 38.24 ± 2.1 a | 0.012 | Sweet taste/bitterness | 50 | 0.74 | 0.87 | 1.04 | 0.76 |
Methionine | 383.27 ± 9.54 b | 204.79 ± 5.99 a | 505.02 ± 10.76 c | 398.27 ± 11.65 b | <0.001 | Sweet taste/bitterness | 30 | 12.78 | 6.83 | 16.83 | 13.28 |
Proline | 585.88 ± 5.73 c | 289.61 ± 8.27 a | 698.69 ± 25.23 d | 421.99 ± 5.4 b | <0.001 | Sweet taste/bitterness | 300 | 1.95 | 0.97 | 2.33 | 1.41 |
Arginine | 3247.85 ± 1007.9 a | 2864.69 ± 706.87 a | 3885.63 ± 1297.82 a | 2694.04 ± 1124.41 a | 0.552 | Sweet taste/bitterness | 50 | 64.96 | 57.29 | 77.71 | 53.88 |
Cysteine | 0.36 ± 0.01 b | 0.27 ± 0 a | 0.27 ± 0.01 a | 0.28 ± 0 a | <0.001 | Sweet taste/bitterness | - | - | - | - | - |
Cystine | 1431.51 ± 438.73 a | 1464.67 ± 313.69 a | 1774.43 ± 561.32 a | 1631.04 ± 618.89 a | 0.821 | - | - | - | - | - | - |
Valine | 1230.38 ± 11.47 c | 502.13 ± 4.92 a | 1382.71 ± 39.11 d | 992.51 ± 10.59 b | <0.001 | Sweet taste/bitterness | 40 | 30.76 | 12.55 | 34.57 | 24.81 |
Essential amino acid | 8477.51 ± 585.65 b | 3859.08 ± 243.92 a | 10,849.84 ± 1298.35 c | 7578.73 ± 1208.01 b | <0.001 | ||||||
Umami amino acids | 7584.53 ± 1156.52 b | 4432.31 ± 758.84 a | 8934.26 ± 1404.65 b | 5631.22 ± 1219.13 a | 0.003 | ||||||
Total free amino acids | 19,301.2 ± 2231.26 b | 10,574.82 ± 1371.88 a | 23,631.55 ± 3350.76 c | 16,142.57 ± 3067.75 b | <0.001 |
Name | Content/μg/mL | p-Value | |||
---|---|---|---|---|---|
AP | HP | APHP | HPAP | ||
c4:0 | 0 | 0 | 0 | 0 | - |
c6:0 | 0.07 ± 0.00 b | 0.06 ± 0.01 a | 0.07 ± 0.01 ab | 0.08 ± 0.00 c | 0.004 |
c8:0 | 0.62 ± 0.01 c | 0.37 ± 0.01 a | 0.52 ± 0.02 b | 0.51 ± 0.01 b | <0.001 |
c10:0 | 41.78 ± 0.05 d | 14.36 ± 0.11 a | 31.72 ± 0.05 c | 21.45 ± 0.10 b | <0.001 |
c11:0 | 1.46 ± 0.02 d | 0.5 ± 0.02 a | 1.01 ± 0.03 c | 0.76 ± 0.01 b | <0.001 |
c12:0 | 117.72 ± 0.12 d | 41.31 ± 0.14 a | 79.68 ± 0.35 c | 67.48 ± 0.35 b | <0.001 |
c13:0 | 10.08 ± 0.11 d | 3.44 ± 0.02 a | 7.04 ± 0.05 c | 5.27 ± 0.03 b | <0.001 |
c14:0 | 1390.07 ± 1.09 d | 514.38 ± 1.33 a | 974.16 ± 4.23 c | 793.88 ± 2.66 b | <0.001 |
c14:1n5 | 40.54 ± 0.21 d | 16.77 ± 0.19 a | 24.73 ± 0.09 c | 23.78 ± 0.44 b | <0.001 |
c15:0 | 309.3 ± 0.08 d | 102.8 ± 0.16 a | 219.93 ± 0.95 c | 166.08 ± 0.64 b | <0.001 |
C15:1 | 0 | 0 | 0 | 0 | - |
c16:0 | 7181.61 ± 30.78 d | 3461.6 ± 15.48 a | 5817.63 ± 17.66 c | 4777.99 ± 5.78 b | <0.001 |
c16:1n7 | 471.32 ± 1.52 d | 228.71 ± 0.31 a | 344 ± 0.91 c | 316.09 ± 2.86 b | <0.001 |
c17:0 | 670.42 ± 1.72 d | 240.09 ± 1.19 a | 524.59 ± 2.48 c | 394.13 ± 0.28 b | <0.001 |
c17:1n7 | 193.32 ± 2.37 d | 91.99 ± 1.35 a | 152.61 ± 1.07 c | 134.25 ± 0.56 b | <0.001 |
c18:0 | 8100.85 ± 8.69 d | 3324.34 ± 14.78 a | 6430.79 ± 16.45 c | 4683.11 ± 7.27 b | <0.001 |
c18:1tn9 | 207.49 ± 2.28 d | 74.99 ± 0.16 a | 166.8 ± 1.09 c | 119.34 ± 1.65 b | <0.001 |
c18:1n9 | 9499.59 ± 46.51 d | 5382.79 ± 2.17 a | 8144.97 ± 13.89 c | 6912.5 ± 7.89 b | <0.001 |
c18:2ttn6 | 19.19 ± 0.28 c | 8.43 ± 0.10 a | 19.22 ± 0.18 c | 13.47 ± 0.17 b | <0.001 |
c18:2n6 | 1254.81 ± 5.40 d | 781.65 ± 1.98 a | 1095.64 ± 1.74 c | 953.46 ± 2.17 b | <0.001 |
c18:3n6 | 8.03 ± 0.07 c | 5.61 ± 0.03 a | 6.77 ± 0.04 b | 5.57 ± 0.03 a | <0.001 |
c18:3n3 | 604.21 ± 1.56 d | 378.65 ± 1.00 a | 495.15 ± 1.05 c | 421.24 ± 0.68 b | <0.001 |
c20:0 | 135.87 ± 0.88 d | 41.61 ± 0.29 a | 103.33 ± 0.7 c | 70.6 ± 0.10 b | <0.001 |
c20:1n9 | 28.14 ± 0.15 d | 13.42 ± 0.13 a | 25.03 ± 0.2 c | 24.24 ± 0.17 b | <0.001 |
c20:2n6 | 36.39 ± 0.24 c | 34.74 ± 0.27 a | 37.69 ± 0.16 d | 35.91 ± 0.31 b | <0.001 |
c20:3n6 | 22.73 ± 0.10 c | 19.89 ± 0.22 a | 22.12 ± 0.19 b | 20.03 ± 0.04 a | <0.001 |
c20:3n3 | 8.15 ± 0.02 d | 4.84 ± 0.04 a | 6.25 ± 0.01 c | 5.53 ± 0.07 b | <0.001 |
c20:4n6 | 260.19 ± 1.51 b | 267.75 ± 2.27 c | 274.05 ± 0.66 d | 250.24 ± 2.90 a | <0.001 |
c20:5n3 | 13.84 ± 0.06 d | 3.98 ± 0.06 a | 10.11 ± 0.19 c | 6.7 ± 0.03 b | <0.001 |
c21:0 | 13.65 ± 0.16 d | 3.89 ± 0.02 a | 9.8 ± 0.07 c | 6.56 ± 0.01 b | <0.001 |
c22:0 | 272.16 ± 0.62 d | 240.61 ± 0.97 c | 223.19 ± 2.27 b | 212.81 ± 0.86 a | <0.001 |
c22:1n9 | 3.65 ± 0.03 b | 2.48 ± 0.01 a | 4.6 ± 0.02 c | 4.85 ± 0.08 d | <0.001 |
c22:2n6 | 1.04 ± 0.03 b | 0.86 ± 0.02 a | 1.96 ± 0.04 d | 1.55 ± 0.06 c | <0.001 |
c22:4n6 | 9.95 ± 0.1 a | 10.49 ± 0.17 b | 10.53 ± 0.2 b | 11.11 ± 0.1 c | <0.001 |
c22:5n3 | 182.94 ± 1.13 d | 156.26 ± 0.26 b | 162.28 ± 0.77 c | 153.64 ± 0.89 a | <0.001 |
c22:5n6 | 3.33 ± 0.02 a | 4.39 ± 0.04 c | 4.81 ± 0.03 d | 4.07 ± 0.01 b | <0.001 |
c22:6n3 | 5.78 ± 0.03 d | 2.1 ± 0.02 a | 3.08 ± 0.01 c | 2.86 ± 0.05 b | <0.001 |
c23:0 | 8.02 ± 0.08 d | 1.7 ± 0.01 a | 5.04 ± 0.04 c | 3.62 ± 0.07 b | <0.001 |
c24:0 | 10.44 ± 0.03 d | 6.1 ± 0.02 a | 8.47 ± 0.09 c | 7.13 ± 0.03 b | <0.001 |
c24:1n9 | 39.72 ± 0.11 b | 45.38 ± 0.3 d | 41.61 ± 0.06 c | 34.98 ± 0.28 a | <0.001 |
Total SFA | 18,264.12 ± 33.94 d | 7997.15 ± 31.78 a | 14,436.97 ± 40.20 c | 11,211.47 ± 1.81 b | <0.001 |
Total MUFA | 10,483.77 ± 52.57 d | 5856.52 ± 2.94 a | 8904.35 ± 13.81 c | 7570.04 ± 8.79 b | <0.001 |
Total PUFA | 2430.58 ± 6.30 d | 1679.63 ± 2.39 a | 2149.67 ± 1.09 c | 1885.37 ± 2.41 b | <0.001 |
total_n-3 | 814.92 ± 2.26 d | 545.84 ± 1.03 a | 676.87 ± 1.64 c | 589.98 ± 1.35 b | <0.001 |
total_n-6 | 1615.66 ± 4.56 d | 1133.79 ± 1.37 a | 1472.80 ± 1.95 c | 1295.40 ± 1.25 b | <0.001 |
Name | Thresholds mg/kg | ROVA-Value | Odor Characteristics | |||
---|---|---|---|---|---|---|
AP | HP | APHP | HPAP | |||
1-Hexanal | 0.005 | 100 | 100 | 100 | 100 | Grass, Butter, Fat |
(E)-2-Nonenal | 0.00008 | 2.7348 | 2.4607 | 4.1682 | 3.5317 | Cucumber, Fat, Green |
(Z)-4-Heptenal | 0.0034 | 10.7319 | 10.8634 | 11.1558 | 9.6248 | Cookies, Cream |
Isovaleraldehyde (CH20)3 | 0.0016 | 56.4529 | 70.3360 | 42.6913 | 50.8259 | Malt |
(E)-2-Octenal | 0.003 | 4.9991 | 3.7853 | 7.2082 | 5.9633 | Green, Nuts, Fat |
1-Hexanol | 0.5 | 0.2584 | 0.2129 | 0.3127 | 0.4320 | Resin, Flower, Green |
1-Octanol | 0.003 | 1.2939 | 1.3530 | 1.6106 | 1.86 | Green, Nut, Fat |
1-Octen-3-ol | 0.1 | 0.9817 | 0.9918 | 1.2247 | 1.3479 | Mushroom Flavor |
2-Butanone-3-hydroxy | 0.055 | 1.2121 | 2.0097 | 0.9106 | 1.7526 | Butter, Cream |
2-Butanone | 1.3 | 0.2455 | 0.2194 | 0.2611 | 0.2882 | Ether |
2-Heptanone | 0.140 | 0.4710 | 0.3831 | 0.5839 | 0.6917 | Soap |
2-Hexanone | 0.098 | 0.1195 | 0.1122 | 0.1409 | 0.1554 | Ether |
2-Hexenal | 0.030 | 1.6359 | 0.9550 | 1.8395 | 1.5493 | Fat, Rancid |
2-Methylpropyl butyrate | 0.0094 | 0.8500 | 1.0393 | 1.1576 | 1.4023 | - |
2-Pentylfuran | 0.006 | 4.6876 | 4.1328 | 6.2467 | 7.8197 | Green beans, Butter |
2-Phenylacetaldehyde | 0.004 | 2.0281 | 1.8077 | 3.3242 | 3.1988 | Hawthorn, Honey, Sweet |
Benzaldehyde | 0.350 | 0.4207 | 0.7625 | 0.4772 | 0.5414 | Almond, Caramel |
butanal | 0.009 | 3.8087 | 4.0925 | 2.8226 | 3.3521 | Pungent, Green |
Butyl 2-methylbutyrate | 0.017 | 0.2022 | 0.3982 | 0.5332 | 0.4441 | Fruit, Cocoa Nibs |
Ethyl hexanoate | 0.001 | 8.6336 | 12.0343 | 9.0295 | 12.0622 | Apple Peel, Fruit |
Heptanol | 0.023 | 1.0280 | 0.8286 | 1.3581 | 1.4492 | Citrus |
Limonene | 0.01 | 1.3925 | 2.7656 | 1.6886 | 3.8007 | Lemon, Orange |
Pentanal | 0.012 | 11.2752 | 10.3673 | 10.6086 | 10.0669 | Almond, Malt, Spicy |
Name | Thresholds (mg/kg) | ROVA-Value | Odor Characteristics | |||
---|---|---|---|---|---|---|
AP | APHP | HP | HPAP | |||
3-Methyl-1-butanol | 0.2500 | 100.00 | 100.00 | 100.000 | 100.00 | Whisky, malt, caramelized flavors |
Methyl butyrate | 0.0151 | 5.03 | 0.075 | 0.30 | 0.08 | Fruity, sweet |
2-Ethylpyridine | 0.0570 | 3.02 | 2.771 | 13.88 | 2.82 | Grassy |
Vinyl propionate | 0.0400 | 3.16 | 0.220 | 39.04 | 0.69 | - |
3-(methylthio)-1-propanol | 0.1230 | 4.29 | 1.659 | 1.50 | 1.29 | Sweet, departmental |
S-methyl propylthioate | 0.0500 | 10.00 | 58.312 | 36.96 | 27.71 | - |
Trimethylpyrazine | 0.0230 | 9.13 | 23.553 | 83.09 | 24.13 | Barbecue, potato |
2-methyl-1-butanol | 0.3000 | 0.01 | 4.054 | 85.00 | 8.48 | Wine, onion flavor |
2-Octanol | 0.0500 | 4.08 | 11.778 | 46.92 | 11.68 | Mushroom, fat. |
p-Xylene | 0.6000 | 1.67 | 1.216 | 5.82 | 0.28 | - |
2-Pentanol | 1.0000 | 1.35 | 3.726 | 9.11 | 0.77 | Green |
2-Nonanone | 0.2000 | 19.34 | 24.355 | 28.60 | 10.35 | Hot milk, soap, green |
Dimethyl disulfide | 0.0120 | 1.71 | 18.94 | 58.69 | 18.54 | Onion, cabbage, putrid odor |
3-Methylphenol | 0.0004 | 3.06 | 5.63 | 16.59 | 8.90 | Feces, plastic |
3-Methyl-2-hexanone | 0.0410 | 11.57 | 4.929 | 4.77 | 2.26 | - |
2-Ethyl-1-hexanol | 0.3000 | 3.98 | 1.642 | 13.98 | 1.14 | Rose odor, green |
5-Pentyl dihydro-2(3H)-furanone | 0.0097 | 12.04 | 19.792 | 82.79 | 29.38 | Coconut, peach flavor |
5-Ethyldihydro-2(3H)-furanone | 0.0500 | 1.93 | 6.935 | 15.01 | 2.70 | Coumarin, sweet |
(E,E)-2,4-heptadienal | 0.0154 | 12.58 | 8.076 | 32.67 | 8.67 | Nutty, fatty |
4-ethylbenzaldehyde | 0.0130 | 13.28 | 1.777 | 40.01 | 4.40 | Sweet |
(1R)-2,6,6-trimethylbicycl0[3.1.1] hept-2-ene | 0.0046 | 11.23 | 13.677 | 57.03 | 7.95 | - |
hexyl acetate | 0.0020 | 52.63 | 5.020 | 13.19 | 0.76 | Fruity, herbal |
(-)-Carvone | 0.0020 | 2.76 | 23.292 | 76.38 | 67.41 | Mint flavor |
1-Hexanol | 0.5000 | 13.62 | 18.696 | 30.04 | 28.80 | Resinous, floral, green |
(E,E)-3,5-octadien-2-one | 0.1000 | 3.66 | 3.176 | 11.85 | 3.47 | - |
1-Octen-3-ol | 0.0010 | 11.26 | 69.160 | 47.43 | 27.94 | Mushroom flavor |
2-Octanone | 0.0500 | 20.06 | 5.047 | 8.42 | 6.52 | Soap, gasoline |
1,3-Dimethylbenzene | 1.1000 | 1.53 | 1.516 | 5.17 | 0.99 | Plastic |
2-methyl-1-pentanol | 0.8300 | 3.36 | 4.595 | 11.30 | 2.44 | Green, seaweed, cucumber |
(E,E)-2,4-octadienal | 0.0100 | 12.92 | 10.829 | 37.00 | 12.38 | Green, seaweed, cucumber |
3-Pentanone | 0.0400 | 75.97 | 25.299 | 89.14 | 12.68 | Ether |
β-Terpinene | 0.2600 | 10.26 | 2.460 | 94.46 | 6.01 | Gasoline, turpentine |
hexanal | 0.0050 | 2.30 | 3.318 | 5.66 | 1.59 | Grass, tallow, fat |
(Z)-2-decenal | 0.0022 | 11.60 | 10.886 | 88.16 | 7.68 | Tallow |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, S.; Han, L.; Hou, S.; Yuan, Z.; Gui, L.; Sun, S.; Yang, C.; Wang, Z.; Yang, B. Influence of Cooking Methods on Flavor Parameters and Sensory Quality of Tibetan Sheep Meat Examined Using an Electronic Nose, an Electronic Tongue, GC–IMS, and GC–MS. Foods 2025, 14, 2181. https://doi.org/10.3390/foods14132181
Ge S, Han L, Hou S, Yuan Z, Gui L, Sun S, Yang C, Wang Z, Yang B. Influence of Cooking Methods on Flavor Parameters and Sensory Quality of Tibetan Sheep Meat Examined Using an Electronic Nose, an Electronic Tongue, GC–IMS, and GC–MS. Foods. 2025; 14(13):2181. https://doi.org/10.3390/foods14132181
Chicago/Turabian StyleGe, Shipeng, Lijuan Han, Shengzhen Hou, Zhenzhen Yuan, Linsheng Gui, Shengnan Sun, Chao Yang, Zhiyou Wang, and Baochun Yang. 2025. "Influence of Cooking Methods on Flavor Parameters and Sensory Quality of Tibetan Sheep Meat Examined Using an Electronic Nose, an Electronic Tongue, GC–IMS, and GC–MS" Foods 14, no. 13: 2181. https://doi.org/10.3390/foods14132181
APA StyleGe, S., Han, L., Hou, S., Yuan, Z., Gui, L., Sun, S., Yang, C., Wang, Z., & Yang, B. (2025). Influence of Cooking Methods on Flavor Parameters and Sensory Quality of Tibetan Sheep Meat Examined Using an Electronic Nose, an Electronic Tongue, GC–IMS, and GC–MS. Foods, 14(13), 2181. https://doi.org/10.3390/foods14132181