Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,810)

Search Parameters:
Keywords = satellite-based remote-sensing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1142 KiB  
Technical Note
Terrain and Atmosphere Classification Framework on Satellite Data Through Attentional Feature Fusion Network
by Antoni Jaszcz and Dawid Połap
Remote Sens. 2025, 17(14), 2477; https://doi.org/10.3390/rs17142477 (registering DOI) - 17 Jul 2025
Abstract
Surface, terrain, or even atmosphere analysis using images or their fragments is important due to the possibilities of further processing. In particular, attention is necessary for satellite and/or drone images. Analyzing image elements by classifying the given classes is important for obtaining information [...] Read more.
Surface, terrain, or even atmosphere analysis using images or their fragments is important due to the possibilities of further processing. In particular, attention is necessary for satellite and/or drone images. Analyzing image elements by classifying the given classes is important for obtaining information about space for autonomous systems, identifying landscape elements, or monitoring and maintaining the infrastructure and environment. Hence, in this paper, we propose a neural classifier architecture that analyzes different features by the parallel processing of information in the network and combines them with a feature fusion mechanism. The neural architecture model takes into account different types of features by extracting them by focusing on spatial, local patterns and multi-scale representation. In addition, the classifier is guided by an attention mechanism for focusing more on different channels, spatial information, and even feature pyramid mechanisms. Atrous convolutional operators were also used in such an architecture as better context feature extractors. The proposed classifier architecture is the main element of the modeled framework for satellite data analysis, which is based on the possibility of training depending on the client’s desire. The proposed methodology was evaluated on three publicly available classification datasets for remote sensing: satellite images, Visual Terrain Recognition, and USTC SmokeRS, where the proposed model achieved accuracy scores of 97.8%, 100.0%, and 92.4%, respectively. The obtained results indicate the effectiveness of the proposed attention mechanisms across different remote sensing challenges. Full article
Show Figures

Figure 1

18 pages, 7358 KiB  
Article
On the Hybrid Algorithm for Retrieving Day and Night Cloud Base Height from Geostationary Satellite Observations
by Tingting Ye, Zhonghui Tan, Weihua Ai, Shuo Ma, Xianbin Zhao, Shensen Hu, Chao Liu and Jianping Guo
Remote Sens. 2025, 17(14), 2469; https://doi.org/10.3390/rs17142469 - 16 Jul 2025
Abstract
Most existing cloud base height (CBH) retrieval algorithms are only applicable for daytime satellite observations due to their dependence on visible observations. This study presents a novel algorithm to retrieve day and night CBH using infrared observations of the geostationary Advanced Himawari Imager [...] Read more.
Most existing cloud base height (CBH) retrieval algorithms are only applicable for daytime satellite observations due to their dependence on visible observations. This study presents a novel algorithm to retrieve day and night CBH using infrared observations of the geostationary Advanced Himawari Imager (AHI). The algorithm is featured by integrating deep learning techniques with a physical model. The algorithm first utilizes a convolutional neural network-based model to extract cloud top height (CTH) and cloud water path (CWP) from the AHI infrared observations. Then, a physical model is introduced to relate cloud geometric thickness (CGT) to CWP by constructing a look-up table of effective cloud water content (ECWC). Thus, the CBH can be obtained by subtracting CGT from CTH. The results demonstrate good agreement between our AHI CBH retrievals and the spaceborne active remote sensing measurements, with a mean bias of −0.14 ± 1.26 km for CloudSat-CALIPSO observations at daytime and −0.35 ± 1.84 km for EarthCARE measurements at nighttime. Additional validation against ground-based millimeter wave cloud radar (MMCR) measurements further confirms the effectiveness and reliability of the proposed algorithm across varying atmospheric conditions and temporal scales. Full article
Show Figures

Figure 1

24 pages, 1797 KiB  
Article
Forcing the SAFY Dynamic Crop Growth Model with Sentinel-2 LAI Estimates and Weather Inputs from AgERA5 Reanalysis and CM SAF SARAH-3 Radiation Data for Estimating Crop Water Requirements and Yield
by Anna Pelosi, Angeloluigi Aprile, Oscar Rosario Belfiore and Giovanni Battista Chirico
Remote Sens. 2025, 17(14), 2464; https://doi.org/10.3390/rs17142464 (registering DOI) - 16 Jul 2025
Abstract
The continuous development of both numerical weather model outputs and remote sensing-derived products has enabled a wide range of applications across various fields, such as agricultural water management, where the need for robust gridded weather data and recurring Earth Observations (EO) is fundamental [...] Read more.
The continuous development of both numerical weather model outputs and remote sensing-derived products has enabled a wide range of applications across various fields, such as agricultural water management, where the need for robust gridded weather data and recurring Earth Observations (EO) is fundamental for estimating crop water requirements (CWR) and yield. This study used the latest reanalysis dataset, AgERA5, combined with the up-to-date CM SAF SARAH-3 Satellite-Based Radiation Data as meteorological inputs of the SAFY dynamic crop growth model and a one-step evapotranspiration formula for CWR and yield estimates at the farm scale of tomato crops. The Sentinel-2 (S2) estimates of Leaf Area Index (LAI) were used to force the SAFY model as soon as they became available during the growing stage, according to the satellite passages over the area of interest. The SAFY model was calibrated with ground-based weather observations and S2 LAI data on tomato crops that were collected in several farms in Campania Region (Southern Italy) during the irrigation season, which spans from April to August. To validate the method, the model estimates were compared with field observations of irrigation volumes and harvested yield from a monitored farm in the same region for the year 2021. Results demonstrated that integrating AgERA5 and CM SAF weather datasets with S2 imagery for assimilation into the SAFY model enables accurate estimates of both CWR and yield. Full article
Show Figures

Figure 1

18 pages, 3532 KiB  
Article
Anticipating Future Hydrological Changes in the Northern River Basins of Pakistan: Insights from the Snowmelt Runoff Model and an Improved Snow Cover Data
by Urooj Khan, Romana Jamshed, Adnan Ahmad Tahir, Faizan ur Rehman Qaisar, Kunpeng Wu, Awais Arifeen, Sher Muhammad, Asif Javed and Muhammad Abrar Faiz
Water 2025, 17(14), 2104; https://doi.org/10.3390/w17142104 - 15 Jul 2025
Viewed by 76
Abstract
The water regime in Pakistan’s northern region has experienced significant changes regarding hydrological extremes like floods because of climate change. Coupling hydrological models with remote sensing data can be valuable for flow simulation in data-scarce regions. This study focused on simulating the snow- [...] Read more.
The water regime in Pakistan’s northern region has experienced significant changes regarding hydrological extremes like floods because of climate change. Coupling hydrological models with remote sensing data can be valuable for flow simulation in data-scarce regions. This study focused on simulating the snow- and glacier-melt runoff using the snowmelt runoff model (SRM) in the Gilgit and Kachura River Basins of the upper Indus basin (UIB). The SRM was applied by coupling it with in situ and improved cloud-free MODIS snow and glacier composite satellite data (MOYDGL06) to simulate the flow under current and future climate scenarios. The SRM showed significant results: the Nash–Sutcliffe coefficient (NSE) for the calibration and validation period was between 0.93 and 0.97, and the difference in volume (between the simulated and observed flow) was in the range of −1.5 to 2.8% for both catchments. The flow tends to increase by 0.3–10.8% for both regions (with a higher increase in Gilgit) under mid- and late-21st-century climate scenarios. The Gilgit Basin’s higher hydrological sensitivity to climate change, compared to the Kachura Basin, stems from its lower mean elevation, seasonal snow dominance, and greater temperature-induced melt exposure. This study concludes that the simple temperature-based models, such as the SRM, coupled with improved satellite snow cover data, are reliable in simulating the current and future flows from the data-scarce mountainous catchments of Pakistan. The outcomes are valuable and can be used to anticipate and lessen any threat of flooding to the local community and the environment under the changing climate. This study may support flood assessment and mapping models in future flood risk reduction plans. Full article
Show Figures

Figure 1

19 pages, 9752 KiB  
Article
Grasslands in Flux: A Multi-Decadal Analysis of Land Cover Dynamics in the Riverine Dibru-Saikhowa National Park Nested Within the Brahmaputra Floodplains
by Imon Abedin, Tanoy Mukherjee, Shantanu Kundu, Sanjib Baruah, Pralip Kumar Narzary, Joynal Abedin and Hilloljyoti Singha
Earth 2025, 6(3), 78; https://doi.org/10.3390/earth6030078 - 12 Jul 2025
Viewed by 145
Abstract
In recent years, remote sensing and geographic information systems (GISs) have become essential tools for effective landscape management. This study utilizes these technologies to analyze land use and land cover (LULC) changes in Dibru-Saikhowa National Park, a riverine ecosystem in Assam, India, from [...] Read more.
In recent years, remote sensing and geographic information systems (GISs) have become essential tools for effective landscape management. This study utilizes these technologies to analyze land use and land cover (LULC) changes in Dibru-Saikhowa National Park, a riverine ecosystem in Assam, India, from its designation as a national park in 2000 through 2024. The satellite imagery was used to classify LULC types and track landscape changes over time. In 2000, grasslands were the dominant land cover (28.78%), followed by semi-evergreen forests (25.58%). By 2013, shrubland became the most prominent class (81.31 km2), and degraded forest expanded to 75.56 km2. During this period, substantial areas of grassland (29.94 km2), degraded forest (10.87 km2), semi-evergreen forest (12.33 km2), and bareland (10.50 km2) were converted to shrubland. In 2024, degraded forest further increased, covering 80.52 km2 (23.47%). This change resulted since numerous areas of shrubland (11.46 km2) and semi-evergreen forest (27.48 km2) were converted into degraded forest. Furthermore, significant shifts were observed in grassland, shrubland, and degraded forest, indicating a substantial and consistent decline in grassland. These changes are largely attributed to recurring Brahmaputra River floods and increasing anthropogenic pressures. This study recommends a targeted Grassland Recovery Project, control of invasive species, improved surveillance, increased staffing, and the relocation of forest villages to reduce human impact and support community-based conservation efforts. Hence, protecting the landscape through informed LULC-based management can help maintain critical habitat patches, mitigate anthropogenic degradation, and enhance the survival prospects of native floral and faunal assemblages in DSNP. Full article
Show Figures

Figure 1

23 pages, 4237 KiB  
Article
Debris-Flow Erosion Volume Estimation Using a Single High-Resolution Optical Satellite Image
by Peng Zhang, Shang Wang, Guangyao Zhou, Yueze Zheng, Kexin Li and Luyan Ji
Remote Sens. 2025, 17(14), 2413; https://doi.org/10.3390/rs17142413 - 12 Jul 2025
Viewed by 204
Abstract
Debris flows pose significant risks to mountainous regions, and quick, accurate volume estimation is crucial for hazard assessment and post-disaster response. Traditional volume estimation methods, such as ground surveys and aerial photogrammetry, are often limited by cost, accessibility, and timeliness. While remote sensing [...] Read more.
Debris flows pose significant risks to mountainous regions, and quick, accurate volume estimation is crucial for hazard assessment and post-disaster response. Traditional volume estimation methods, such as ground surveys and aerial photogrammetry, are often limited by cost, accessibility, and timeliness. While remote sensing offers wide coverage, existing optical and Synthetic Aperture Radar (SAR)-based techniques face challenges in direct volume estimation due to resolution constraints and rapid terrain changes. This study proposes a Super-Resolution Shape from Shading (SRSFS) approach enhanced by a Non-local Piecewise-smooth albedo Constraint (NPC), hereafter referred to as NPC SRSFS, to estimate debris-flow erosion volume using single high-resolution optical satellite imagery. By integrating publicly available global Digital Elevation Model (DEM) data as prior terrain reference, the method enables accurate post-disaster topography reconstruction from a single optical image, thereby reducing reliance on stereo imagery. The NPC constraint improves the robustness of albedo estimation under heterogeneous surface conditions, enhancing depth recovery accuracy. The methodology is evaluated using Gaofen-6 satellite imagery, with quantitative comparisons to aerial Light Detection and Ranging (LiDAR) data. Results show that the proposed method achieves reliable terrain reconstruction and erosion volume estimates, with accuracy comparable to airborne LiDAR. This study demonstrates the potential of NPC SRSFS as a rapid, cost-effective alternative for post-disaster debris-flow assessment. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Figure 1

17 pages, 15945 KiB  
Article
Mapping Subtidal Marine Forests in the Mediterranean Sea Using Copernicus Contributing Mission
by Dimitris Poursanidis and Stelios Katsanevakis
Remote Sens. 2025, 17(14), 2398; https://doi.org/10.3390/rs17142398 - 11 Jul 2025
Viewed by 262
Abstract
Mediterranean subtidal reefs host ecologically significant habitats, including forests of Cystoseira spp., which form complex benthic communities within the photic zone. These habitats are increasingly degraded due to climate change, invasive species, and anthropogenic pressures, particularly in the eastern Mediterranean. In support of [...] Read more.
Mediterranean subtidal reefs host ecologically significant habitats, including forests of Cystoseira spp., which form complex benthic communities within the photic zone. These habitats are increasingly degraded due to climate change, invasive species, and anthropogenic pressures, particularly in the eastern Mediterranean. In support of habitat monitoring under the EU Natura 2000 directive and the Nature Restoration Regulation, this study investigates the utility of high-resolution satellite remote sensing for mapping subtidal brown algae and associated benthic classes. Using imagery from the SuperDove sensor (Planet Labs, San Francisco, CA, USA), we developed an integrated mapping workflow at the Natura 2000 site GR2420009. Aquatic reflectance was derived using ACOLITE v.20250114.0, and both supervised classification and spectral unmixing were implemented in the EnMAP Toolbox v.3.16.3 within QGIS. A Random Forest classifier (100 fully grown trees) achieved high thematic accuracy across all habitat types (F1 scores: 0.87–1.00), with perfect classification of shallow soft bottoms and strong performance for Cystoseira s.l. (F1 = 0.94) and Seagrass (F1 = 0.93). Spectral unmixing further enabled quantitative estimation of fractional cover, with high predictive accuracy for deep soft bottoms (R2 = 0.99; RPD = 18.66), shallow soft bottoms (R2 = 0.98; RPD = 8.72), Seagrass (R2 = 0.88; RPD = 3.01) and Cystoseira s.l. (R2 = 0.82; RPD = 2.37). The lower performance for rocky reefs with other cover (R2 = 0.71) reflects spectral heterogeneity and shadowing effects. The results highlight the effectiveness of combining classification and unmixing approaches for benthic habitat mapping using CubeSat constellations, offering scalable tools for large-area monitoring and ecosystem assessment. Despite challenges in field data acquisition, the presented framework provides a robust foundation for remote sensing-based conservation planning in optically shallow marine environments. Full article
(This article belongs to the Special Issue Marine Ecology and Biodiversity by Remote Sensing Technology)
Show Figures

Figure 1

19 pages, 7524 KiB  
Article
Surface Reconstruction Planning with High-Quality Satellite Stereo Pairs Searching
by Jinwen Li, Guangli Ren, Youmei Pan, Jing Sun, Peng Wang, Fanjiang Xu and Zhaohui Liu
Remote Sens. 2025, 17(14), 2390; https://doi.org/10.3390/rs17142390 - 11 Jul 2025
Viewed by 206
Abstract
Advancements in remote sensing technology have remarkably enhanced the 3D Earth surface reconstruction, which is pivotal for applications such as disaster relief, emergency management, and urban planning, etc. Although satellite imagery offers a cost-effective and extensive coverage solution for 3D reconstruction, the quality [...] Read more.
Advancements in remote sensing technology have remarkably enhanced the 3D Earth surface reconstruction, which is pivotal for applications such as disaster relief, emergency management, and urban planning, etc. Although satellite imagery offers a cost-effective and extensive coverage solution for 3D reconstruction, the quality of the resulted digital surface model (DSM) heavily relies on the choice of stereo image pairs. However, current approaches of stereo Earth observation still employ a post-acquisition manner without sophisticated planning in advance, causing inefficiencies and low reconstruction quality. This paper introduces a novel quality-driven planning method for satellite stereo imaging, aiming at optimizing the search of stereo pairs to achieve high-quality 3D reconstruction. Moreover, a regression model is customized and incorporated to estimate the reconstructed point cloud geopositioning quality, based on the enhanced features of possible Earth-imaging opportunities. Experiments conducted on both real satellite images and simulated constellation data demonstrate the efficacy of the proposed method in estimating reconstruction quality beforehand and searching for optimal stereo pair combinations as the final satellite imaging schedule, which can improve the stereo quality significantly. Full article
Show Figures

Figure 1

23 pages, 2871 KiB  
Article
Electromagnetic Compatibility Evaluation for Vehicular Communication Systems Based on Urban High-Resolution Satellite Remote Sensing Images
by Guangshuo Zhang, Xiu Zhang, Peng Chen, Shiwei Zhang, Fulin Wu, Yangzhen Qin, Qi Xu and Hongmin Lu
Sustainability 2025, 17(14), 6340; https://doi.org/10.3390/su17146340 - 10 Jul 2025
Viewed by 134
Abstract
With the expansion of urban areas and the increase in the number of vehicles, the complexity and harshness of the electromagnetic environment for vehicular communication in cities have significantly intensified. Traditional methods for evaluating the electromagnetic compatibility (EMC) of vehicular communication systems face [...] Read more.
With the expansion of urban areas and the increase in the number of vehicles, the complexity and harshness of the electromagnetic environment for vehicular communication in cities have significantly intensified. Traditional methods for evaluating the electromagnetic compatibility (EMC) of vehicular communication systems face substantial limitations. With the advancement of high-resolution satellite remote sensing image technology, the acquisition of high-precision urban models has become more accessible, significantly enhancing applications in the field of communication systems. Therefore, a novel EMC evaluation method for vehicular wireless communication systems based on urban high-resolution satellite remote sensing images is proposed in this paper. By analyzing the characteristics of such systems and integrating the requirements of practical urban communication scenarios and vehicular tasks, EMC evaluation indicators were selected, and a hierarchical evaluation indicators system was constructed, comprising target, criterion, and sub-criterion layers. The proposed method leverages the strengths of TOPSIS, AHP, and FCE methods, utilizing quantitative TOPSIS and qualitative AHP to determine the weights of the criterion and sub-criterion layers, respectively. The FCE method was employed to evaluate the EMC of the vehicular wireless communication system. The rationality and feasibility of the method were validated through practical communication experiments conducted with a vehicle in an urban environment. Full article
Show Figures

Figure 1

12 pages, 4866 KiB  
Technical Note
An Elevation-Coupled Multivariate Regression Model for GNSS-Based FY-4A Precipitable Water Vapor
by Yaping Gao, Jing Lin, Junqiang Han, Tong Luo, Min Zhou and Zhen Jiang
Remote Sens. 2025, 17(14), 2371; https://doi.org/10.3390/rs17142371 - 10 Jul 2025
Viewed by 193
Abstract
The measurement of atmospheric moisture content is essential for the monitoring of severe weather events and hydrological studies. This paper proposes a multivariate linear regression correction model that integrates elevation data with Global Navigation Satellite System (GNSS)-derived precipitable water vapor (PWV) to refine [...] Read more.
The measurement of atmospheric moisture content is essential for the monitoring of severe weather events and hydrological studies. This paper proposes a multivariate linear regression correction model that integrates elevation data with Global Navigation Satellite System (GNSS)-derived precipitable water vapor (PWV) to refine the water vapor content based on FY-4A satellite remote sensing data, thereby improving its accuracy. Taking Hong Kong as an experimental area, we investigated the correlation between GNSS PWV and FY-4A PWV, confirming the feasibility of utilizing GNSS PWV to calibrate FY-4A PWV. Subsequently, by examining the differences between the two PWV values, we found that the elevation of the stations affects the consistency of PWV measurement. Based on this finding, the elevation data are introduced to construct a multivariate linear regression correction model with a first-order polynomial. To evaluate the performance of the proposed model, a comparison with other correction models is made, including second-order polynomials and power functions. The results indicate that the elevation-integrated water vapor correction model improves the root mean square error (RMSE) by 27.4% and the MAE by 26.7%, and reduces the bias from 0.592 to nearly 0. Its accuracy surpasses that of second-order polynomial and power function models, demonstrating a considerable improvement in the precision of FY-4A. Full article
Show Figures

Figure 1

31 pages, 6565 KiB  
Article
Remotely Sensing Phytoplankton Size Structure in the Mediterranean Sea: Insights from In Situ Data and Temperature-Corrected Abundance-Based Models
by John A. Gittings, Eleni Livanou, Xuerong Sun, Robert J. W. Brewin, Stella Psarra, Manolis Mandalakis, Alexandra Peltekis, Annalisa Di Cicco, Vittorio E. Brando and Dionysios E. Raitsos
Remote Sens. 2025, 17(14), 2362; https://doi.org/10.3390/rs17142362 - 9 Jul 2025
Viewed by 221
Abstract
Since the mid-1980s, the Mediterranean Sea’s surface and deeper layers have warmed at unprecedented rates, with recent projections identifying it as one of the regions most impacted by rising global temperatures. Metrics that characterize phytoplankton abundance, phenology and size structure are widely utilized [...] Read more.
Since the mid-1980s, the Mediterranean Sea’s surface and deeper layers have warmed at unprecedented rates, with recent projections identifying it as one of the regions most impacted by rising global temperatures. Metrics that characterize phytoplankton abundance, phenology and size structure are widely utilized as ecological indicators that enable a quantitative assessment of the status of marine ecosystems in response to environmental change. Here, using an extensive, updated in situ pigment dataset collated from numerous past research campaigns across the Mediterranean Sea, we re-parameterized an abundance-based phytoplankton size class model that infers Chl-a concentration in three phytoplankton size classes: pico- (<2 μm), nano- (2–20 μm) and micro-phytoplankton (>20 μm). Following recent advancements made within this category of size class models, we also incorporated information of sea surface temperature (SST) into the model parameterization. By tying model parameters to SST, the performance of the re-parameterized model was improved based on comparisons with concurrent, independent in situ measurements. Similarly, the application of the model to remotely sensed ocean color observations revealed strong agreement between satellite-derived estimates of phytoplankton size structure and in situ observations, with a performance comparable to the current regional operational datasets on size structure. The proposed conceptual regional model, parameterized with the most extended in situ pigment dataset available to date for the area, serves as a suitable foundation for long-term (1997–present) analyses on phytoplankton size structure and ecological indicators (i.e., phenology), ultimately linking higher trophic level responses to a changing Mediterranean Sea. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

27 pages, 7955 KiB  
Article
Land Surface Condition-Driven Emissivity Variation and Its Impact on Diurnal Land Surface Temperature Retrieval Uncertainty
by Lijuan Wang, Ping Yue, Yang Yang, Sha Sha, Die Hu, Xueyuan Ren, Xiaoping Wang, Hui Han and Xiaoyu Jiang
Remote Sens. 2025, 17(14), 2353; https://doi.org/10.3390/rs17142353 - 9 Jul 2025
Viewed by 123
Abstract
Land surface emissivity (LSE) is the most critical factor affecting land surface temperature (LST) retrieval. Understanding its variation characteristics is essential, as this knowledge provides fundamental prior constraints for the LST retrieval process. This study utilizes thermal infrared emissivity and hyperspectral data collected [...] Read more.
Land surface emissivity (LSE) is the most critical factor affecting land surface temperature (LST) retrieval. Understanding its variation characteristics is essential, as this knowledge provides fundamental prior constraints for the LST retrieval process. This study utilizes thermal infrared emissivity and hyperspectral data collected from diverse underlying surfaces from 2017 to 2024 to analyze LSE variation characteristics across different surface types, spectral bands, and temporal scales. Key influencing factors are quantified to establish empirical relationships between LSE dynamics and environmental variables. Furthermore, the impact of LSE models on diurnal LST retrieval accuracy is systematically evaluated through comparative experiments, emphasizing the necessity of integrating time-dependent LSE corrections into radiative transfer equations. The results indicate that LSE in the 8–11 µm band is highly sensitive to surface composition, with distinct dual-valley absorption features observed between 8 and 9.5 µm across different soil types, highlighting spectral variability. The 9.6 µm LSE exhibits strong sensitivity to crop growth dynamics, characterized by pronounced absorption valleys linked to vegetation biochemical properties. Beyond soil composition, LSE is significantly influenced by soil moisture, temperature, and vegetation coverage, emphasizing the need for multi-factor parameterization. LSE demonstrates typical diurnal variations, with an amplitude reaching an order of magnitude of 0.01, driven by thermal inertia and environmental interactions. A diurnal LSE retrieval model, integrating time-averaged LSE and diurnal perturbations, was developed based on underlying surface characteristics. This model reduced the root mean square error (RMSE) of LST retrieved from geostationary satellites from 6.02 °C to 2.97 °C, significantly enhancing retrieval accuracy. These findings deepen the understanding of LSE characteristics and provide a scientific basis for refining LST/LSE separation algorithms in thermal infrared remote sensing and for optimizing LSE parameterization schemes in land surface process models for climate and hydrological simulations. Full article
Show Figures

Figure 1

18 pages, 3618 KiB  
Article
Quality Assessment of Dual-Polarization C-Band SAR Data Influenced by Precipitation Based on Normalized Polarimetric Radar Vegetation Index
by Jisung Geba Chang, Simon Kraatz, Yisok Oh, Feng Gao and Martha Anderson
Remote Sens. 2025, 17(14), 2343; https://doi.org/10.3390/rs17142343 - 8 Jul 2025
Viewed by 240
Abstract
Advanced Synthetic Aperture Radar (SAR) has become an essential modality in remote sensing, offering all-weather capabilities and sensitivity to vegetation biophysical parameters and surface conditions, while effectively complementing optical sensor data. This study evaluates the impact of precipitation on the Normalized Polarimetric Radar [...] Read more.
Advanced Synthetic Aperture Radar (SAR) has become an essential modality in remote sensing, offering all-weather capabilities and sensitivity to vegetation biophysical parameters and surface conditions, while effectively complementing optical sensor data. This study evaluates the impact of precipitation on the Normalized Polarimetric Radar Vegetation Index (NPRVI) using dual-polarization Sentinel-1 C-band SAR data from agricultural fields at the Beltsville Agricultural Research Center (BARC). Field-measured precipitation and Global Precipitation Measurement (GPM) precipitation datasets were temporally aligned with Sentinel-1 acquisition times to assess the sensitivity of radar signals to precipitation events. NPRVI exhibited a strong sensitivity to precipitation, particularly within the 1 to 7 h prior to the satellite overpass, even for small amounts of precipitation. A quality assessment (QA) framework was developed to flag and correct precipitation-affected radar observations through interpolation. The adjusted NPRVI values, based on the QA framework using precipitation within a 6 h window, showed strong agreement between field- and GPM-derived data, with an RMSE of 0.09 and a relative RMSE of 19.8%, demonstrating that GPM data can serve as a viable alternative for quality adjustment despite its coarse spatial resolution. The adjusted NPRVI for both soybean and corn fields significantly improved the temporal consistency of the time series and closely followed NDVI trends, while also capturing crop-specific seasonal variations, especially during periods of NDVI saturation or limited variability. These findings underscore the value of the proposed radar-based QA framework in enhancing the interpretability of vegetation dynamics. NPRVI, when adjusted for precipitation effects, can serve as a reliable and complementary tool to optical vegetation indices in agricultural and environmental monitoring. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

31 pages, 6764 KiB  
Article
Upscaling Frameworks Drive Prediction Accuracy and Uncertainty When Mapping Aboveground Biomass Density from the Synergism of Spaceborne LiDAR, SAR, and Passive Optical Data
by Inacio T. Bueno, Carlos A. Silva, Monique B. Schlickmann, Victoria M. Donovan, Jeff W. Atkins, Kody M. Brock, Jinyi Xia, Denis R. Valle, Jiangxiao Qiu, Jason Vogel, Andres Susaeta, Ajay Sharma, Carine Klauberg, Midhun Mohan and Ana Paula Dalla Corte
Remote Sens. 2025, 17(14), 2340; https://doi.org/10.3390/rs17142340 - 8 Jul 2025
Viewed by 381
Abstract
Accurate mapping of aboveground biomass density (AGBD) is vital for ecological research and carbon cycle monitoring. Integrating multi-source remote sensing data offers significant potential to enhance the accuracy and coverage of AGBD estimates. This study evaluated three upscaling frameworks for integrating GEDI LiDAR, [...] Read more.
Accurate mapping of aboveground biomass density (AGBD) is vital for ecological research and carbon cycle monitoring. Integrating multi-source remote sensing data offers significant potential to enhance the accuracy and coverage of AGBD estimates. This study evaluated three upscaling frameworks for integrating GEDI LiDAR, SAR, and optical satellite data to create wall-to-wall AGBD maps. The frameworks tested in this paper were: (1) a single-step approach using optical imagery, (2) a two-stage approach with GEDI-derived variables, and (3) a three-stage approach combining imagery and in situ-derived allometries. Internal validation showed that framework 1 achieved the lowest root mean square difference (%RMSD) of 53.3% and highest coefficient of determination (R2) of 0.53. An independent external validation of the AGBD map was performed using in situ observations, also revealing that framework 1 was the most accurate (%RMSD = 39.3% and R2 = 0.93), while frameworks 2 and 3 were less accurate (%RMSD = 54.7, 44.7 and R2 = 0.95, 0.90, respectively). Herein, we show that upscaling frameworks significantly impacted AGBD map uncertainty and the magnitude of estimate differences. Our findings suggest that upscaling framework 1 based on a single step approach was the most effective for capturing detailed AGBD variations, while careful consideration of model sensitivity and map uncertainties is essential for reliable AGBD estimation. This study provides valuable insights for advancing forest AGBD monitoring and highlights the potential for further enhancements in remote sensing methodologies. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

23 pages, 37536 KiB  
Article
Underwater Sound Speed Profile Inversion Based on Res-SACNN from Different Spatiotemporal Dimensions
by Jiru Wang, Fangze Xu, Yuyao Liu, Yu Chen and Shu Liu
Remote Sens. 2025, 17(13), 2293; https://doi.org/10.3390/rs17132293 - 4 Jul 2025
Viewed by 232
Abstract
The sound speed profile (SSP) is an important feature in the field of ocean acoustics. The accurate estimation of SSP is significant for the development of underwater position, communication, and associated fundamental marine research. The Res-SACNN model is proposed for SSP inversion based [...] Read more.
The sound speed profile (SSP) is an important feature in the field of ocean acoustics. The accurate estimation of SSP is significant for the development of underwater position, communication, and associated fundamental marine research. The Res-SACNN model is proposed for SSP inversion based on the convolutional neural network (CNN) embedded with the residual network and self-attention mechanism. It combines the spatiotemporal characteristics of sea level anomaly (SLA) and sea surface temperature anomaly (SSTA) data and establishes a nonlinear relationship between satellite remote sensing data and sound speed field by deep learning. The single empirical orthogonal function regression (sEOF-r) method is used in a comparative experiment to confirm the model’s performance in both the time domain and the region. Experimental results demonstrate that the proposed model outperforms sEOF-r regarding both spatiotemporal generalization ability and inversion accuracy. The average root mean square error (RMSE) is decreased by 0.92 m/s in the time-domain experiment in the South China Sea, and the inversion results for each month are more consistent. The optimization ratio hits 71.8% and the average RMSE decreases by 7.39 m/s in the six-region experiment. The Res-SACNN model not only shows more superior inversion ability in the comparison with other deep-learning models, but also achieves strong generalization and real-time performance while maintaining low complexity, providing an improved technical tool for SSP estimation and sound field perception. Full article
Show Figures

Figure 1

Back to TopTop