Anticipating Future Hydrological Changes in the Northern River Basins of Pakistan: Insights from the Snowmelt Runoff Model and an Improved Snow Cover Data
Abstract
1. Introduction
2. Material and Methods
2.1. Study Areas (Gilgit and Kachura River Basins)
2.2. Dataset Sources and Treatment
2.3. Snowmelt Runoff Model (SRM)
3. Results and Discussion
3.1. Snow Cover Area Estimation Using Improved Cloud-Free MODIS Data
3.2. River Flow Simulation by SRM in Gilgit and Kachura River Basin over Historical Data
3.3. Impact of Climate Change Scenarios on the Mean Summer Flows of Gilgit and Kachura
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Shrestha, A.B.; Wake, C.P.; Mayewski, P.A.; Dibb, J.E. Maximum temperature trends in the Himalaya and its vicinity: An analysis based on temperature records from Nepal for the period 1971–1994. J. Clim. 1999, 12, 2775–2786. [Google Scholar] [CrossRef]
- Wester, P.; Mishra, A.; Mukherji, A.; Shrestha, A.B. The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People; Springer Nature: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Liu, X.; Chen, B. Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol. A J. R. Meteorol. Soc. 2000, 20, 1729–1742. [Google Scholar] [CrossRef]
- DHM. Observed Climate Trend Analysis in the Districts and Physiographic Regions of Nepal (1971–2014); Department of Hydrology and Meteorology: Kathmandu, Nepal, 2017; p. 74. [Google Scholar]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Ashraf, A.; Rustam, M.; Khan, S.I.; Adnan, M.; Naz, R. Remote sensing of the glacial environment influenced by climate change. In Environmental Applications of Remote Sensing, 1st ed.; InTech: London, UK, 2016; pp. 99–129. [Google Scholar] [CrossRef]
- Salerno, F.; Thakuri, S.; Tartari, G.; Nuimura, T.; Sunako, S.; Sakai, A.; Fujita, K. Debris-covered glacier anomaly? Morphological factors controlling changes in the mass balance, surface area, terminus position, and snow line altitude of Himalayan glaciers. Earth Planet. Sci. Lett. 2017, 471, 19–31. [Google Scholar] [CrossRef]
- Fowler, H.J.; Kilsby, C.G.; O’Connell, P.E. Modeling the impacts of climatic change and variability on the reliability, resilience, and vulnerability of a water resource system. Water Resour. Res. 2003, 39, 1222. [Google Scholar] [CrossRef]
- Adam, J.C.; Hamlet, A.F.; Lettenmaier, D.P. Implications of global climate change for snowmelt hydrology in the twenty-first century. Hydrol. Process. Int. J. 2009, 23, 962–972. [Google Scholar] [CrossRef]
- Bookhagen, B.; Burbank, D.W. Toward a complete Himalayan hydrological budget: Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. Earth Surf. 2010, 115, F03019. [Google Scholar] [CrossRef]
- Bergstrom, S.; Graham, L.P. On the scale problem in hydrological modelling. J. Hydrol. 1998, 211, 253–265. [Google Scholar] [CrossRef]
- Bartelt, P.; Lehning, M. A physical SNOWPACK model for the Swiss avalanche warning: Part I: Numerical model. Cold Reg. Sci. Technol. 2002, 35, 123–145. [Google Scholar] [CrossRef]
- Chen, T.; Pan, J.; Chang, S.; Xiong, C.; Shi, J.; Liu, M.; Che, T.; Wang, L.; Liu, H. Validation of the SNTHERM model applied for snow depth, grain size, and brightness temperature simulation at meteorological stations in China. Remote Sens. 2020, 12, 507. [Google Scholar] [CrossRef]
- Tateishi, R.; Shalaby, A. Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Appl. Geogr. 2007, 27, 28–41. [Google Scholar]
- Senay, G.B.; Bohms, S.; Singh, R.K.; Gowda, P.H.; Velpuri, N.M.; Alemu, H.; Verdin, J.P. Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 577–591. [Google Scholar] [CrossRef]
- Seidel, K.; Martinec, J.; Baumgartner, M.F. Modelling runoff and impact of climate change in large Himalayan basins. In Proceedings of the International Conference on Integrated Water Resources Management (ICIWRM), New Delhi, India, 19–21 December 2000; pp. 19–21. [Google Scholar]
- Martinec, J. Snowmelt-runoff model for stream flow forecasts. Hydrol. Res. 1975, 6, 145–154. [Google Scholar] [CrossRef]
- Azmat, M.; Choi, M.; Kim, T.W.; Liaqat, U.W. Hydrological modeling to simulate streamflow under changing climate in a scarcely gauged cryosphere catchment. Environ. Earth Sci. 2016, 75, 1–16. [Google Scholar] [CrossRef]
- DeWalle, D.; Rango, A. Snowmelt-Runoff Model (SRM). In Principles of Snow Hydrology; Cambridge University Press: Cambridge, UK, 2008; pp. 306–364. [Google Scholar]
- Tahir, A.A.; Chevallier, P.; Arnaud, Y.; Neppel, L.; Ahmad, B. Modeling snowmelt-runoff under climate scenarios in the Hunza River basin, Karakoram Range, Northern Pakistan. J. Hydrol. 2011, 409, 104–117. [Google Scholar] [CrossRef]
- WMO. Intercomparison of Models of Snowmelt Runoff; World Meteorological Organization: Geneva, Switzerland, 1986. [Google Scholar]
- WMO. Simulated Real-Time Intercomparison of Hydrological Models; World Meteorological Organization: Geneva, Switzerland, 1992. [Google Scholar]
- Tekeli, A.E.; Akyürek, Z.; Arda Sorman, A.; Sensoy, A.; Ünal Sorman, A. Using MODIS snow cover maps in modeling snowmelt runoff process in the eastern part of Turkey. Remote Sens. Environ. 2005, 97, 216–230. [Google Scholar] [CrossRef]
- Ma, M.; Cheng, L. The application of remote sensing and GIS in snowmelt runoff model. Hydrol. Process. 2003, 17, 737–751. [Google Scholar] [CrossRef]
- Butt, M.J.; Bilal, M. Application of snowmelt runoff model (SRM) for stream flow modelling of Hunza River, Karakoram range, northern Pakistan. Pak. J. Meteorol. 2011, 8, 63–74. [Google Scholar]
- Zhang, Y.; Liu, S.; Ding, Y.; Wang, J. Hydrological modeling in glacierized catchments of the Chinese Tianshan Mountains. Quat. Int. 2014, 313–314, 135–144. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian water towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef]
- Muhammad, S.; Thapa, A. An improved Terra–Aqua MODIS snow cover and Randolph Glacier Inventory 6.0 combined product (MOYDGL06) for high-mountain Asia between 2002 and 2018. Earth Syst. Sci. Data 2020, 12, 345–356. [Google Scholar] [CrossRef]
- Mukhopadhyay, B.; Khan, A. A quantitative assessment of the genetic sources of the hydrologic flow regimes in Upper Indus Basin and its significance in a changing climate. J. Hydrol. 2014, 509, 549–572. [Google Scholar] [CrossRef]
- Khan, A.; Richards, K.S.; Parker, G.T.; McRobie, A.; Mukhopadhyay, B. How large is the Upper Indus Basin? The pitfalls of auto-delineation using DEMs. J. Hydrol. 2014, 509, 442–453. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Droogers, P.; De Jong, S.M.; Bierkens, M.F.P. Large-scale monitoring of snow cover and runoff simulation in Himalayan river basins using remote sensing. Remote Sens. Environ. 2009, 113, 40–49. [Google Scholar] [CrossRef]
- USGS. SRTM 1 Arc-Second Global; USGS: Reston, VA, USA, 2015. [CrossRef]
- Mahmood, K.; Batool, S.A.; Chaudhry, M.N. Studying bio-thermal effects at and around MSW dumps using Satellite Remote Sensing and GIS. Waste Manag. 2016, 55, 118–128. [Google Scholar] [CrossRef]
- RGI Consortium. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 6.0. In Global Land Ice Measurements from Space; NSIDC: Boulder, CO, USA, 2017. [Google Scholar]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. MODIS snow-cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef]
- Parajka, J.; Blöschl, G. Validation of MODIS snow cover images over Austria. Hydrol. Earth Syst. Sci. 2006, 10, 679–689. [Google Scholar] [CrossRef]
- Kollert, A.; Mayr, A.; Dullinger, S.; Hülber, K.; Moser, D.; Lhermitte, S.; Gascoin, S.; Rutzinger, M. Downscaling MODIS NDSI to Sentinel-2 fractional snow cover by random forest regression. Remote Sens. Lett. 2024, 15, 363–372. [Google Scholar] [CrossRef]
- Gurung, D.R.; Giriraj, A.; Aung, K.S.; Shrestha, B.; Kulkarni, A.V. Snow-Cover Mapping and Monitoring in the Hindu Kush-Himalayas Using MODIS; International Centre for Integrated Mountain Development (ICIMOD): Kathmandu, Nepal, 2011. [Google Scholar]
- Pfeffer, W.T.; Arendt, A.A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.-O.; Hock, R.; Kaser, G.; Kienholz, C.; et al. The Randolph Glacier Inventory: A globally complete inventory of glaciers. J. Glaciol. 2014, 60, 537–552. [Google Scholar] [CrossRef]
- Martinec, J.; Rango, A.; Roberts, R.; Landesa, E.G. SRM Snowmelt Runoff Model User’s Manual; New Mexico State University: Las Cruces, NM, USA, 2008. [Google Scholar]
- Jubb, I.; Canadell, P.; Dix, M. Representative Concentration Pathways (RCPs); Australian Government, Department of the Environment: Canberra, Australia, 2013.
- Su, B.; Huang, J.; Gemmer, M.; Jian, D.; Tao, H.; Jiang, T.; Zhao, C. Statistical downscaling of CMIP5 multi-model ensemble for projected changes of climate in the Indus River Basin. Atmos. Res. 2016, 178–179, 138–149. [Google Scholar] [CrossRef]
- Hayat, H.; Tahir, A.A.; Wajid, S.; Abbassi, A.M.; Zubair, F.; Hashmi, Z.U.R.; Khan, A.; Khan, A.J.; Irshad, M. Simulation of the meltwater under different climate change scenarios in a poorly gauged snow and glacier-fed Chitral River catchment (Hindukush region). Geocarto Int. 2022, 37, 103–119. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W. Climate change impacts on the hydrological cycle. Ecohydrol. Hydrobiol. 2008, 8, 195–203. [Google Scholar] [CrossRef]
- Bolch, T.; Kulkarni, A.; Kääb, A.; Huggel, C.; Paul, F.; Cogley, J.G.; Frey, H.; Kargel, J.S.; Fujita, K.; Scheel, M.; et al. The state and fate of Himalayan glaciers. Science 2012, 336, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Herreid, S.; Pellicciotti, F.; Ayala, A.; Chesnokova, A.; Shea, J.M. Satellite observations show no net mass loss in heavily debris-covered glaciers in the Karakoram. Nat. Geosci. 2015, 8, 718–724. [Google Scholar] [CrossRef]
- Scherler, D.; Bookhagen, B.; Strecker, M.R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover. Nat. Geosci. 2011, 4, 156–159. [Google Scholar] [CrossRef]
Characteristics | Catchments | ||
---|---|---|---|
Kachura | Gilgit | ||
Flow gauge | Latitude (dd) | 35.5 N | 35.9 N |
Longitude (dd) | 75.4 E | 74.3 E | |
Mean elevation (m asl) | ~4960 | ~4200 | |
Total area (km2) | ~150,360 | ~12,671 | |
Glacier cover (km2) | 12,630 (8.4%) | 1178 (9.3%) | |
Mean annual snow cover (%) | 41 | 62 |
Parameters | Variables |
---|---|
Snowmelt-Runoff coefficient (Cs) | Temperature (°C) |
Rainfall-Runoff coefficient (Cr) | Precipitation (cm) |
Degree-day factor (an) (cm °C−1d−1) | Snow cover (%) |
Temperature lapse rate (ΔT) (°C/100 m) | Runoff/Flow |
Critical temperature (T) | |
Total rainfall contribution area (A) | |
Recession coefficient (k) | |
Lag time (hour) |
Time Period | RCP Scenarios | Mean Annual Temperature (°C) | Mean Annual Precipitation (%) |
---|---|---|---|
MID-21st century (2046–2065) | 2.6 | +1.21 | +3.2 |
4.5 | +1.93 | +0.1 | |
8.5 | +2.71 | +6.2 | |
LATE-21st century (2081–2100) | 2.6 | +1.10 | +3.2 |
4.5 | +2.49 | +0.1 | |
8.5 | +5.19 | +6.2 |
Parameters | Gilgit | Kachura |
---|---|---|
Lapse Rate (°C/100 m) | 0.650 | 0.650 |
Tcrit (°C) | 0 | 0 |
AN or an [degree-day factor (cm/°C/d)] | 0.15–0.35 | 0.10–0.35 |
Lag Time (hr) | 16 | 16 |
Cs | 0.01–0.40 | 0.005–0.29 |
Cr | 0.01–0.40 | 0.005–0.29 |
RCA | 1 | 1 |
Xc | 1.06 | 1.06 |
Yc | 0.02 | 0.02 |
Model Efficiency | ||||
---|---|---|---|---|
Basin | Mean Summer Flow (Apr–Oct) | Volume Difference, Dv (%) | Nash–Sutcliffe Coefficient (NSE) | Pearson Correlation Coefficient |
Gilgit | Calibration | |||
2003 | −2.01 | 0.97 | 0.98 | |
2004 | −0.5 | 0.98 | 0.98 | |
2006 | −4.9 | 0.97 | 0.98 | |
Validation | ||||
2007 | −1.0 | 0.94 | 0.97 | |
2008 | −1.9 | 0.96 | 0.98 | |
2009 | −2.9 | 0.97 | 0.97 | |
2010 | −2.2 | 0.94 | 0.97 | |
Kachura | Calibration | |||
2003 | 1.2 | 0.96 | 0.98 | |
2004 | −4.7 | 0.90 | 0.95 | |
2006 | −5.0 | 0.94 | 0.97 | |
Validation | ||||
2007 | −2.1 | 0.90 | 0.95 | |
2008 | −1.9 | 0.96 | 0.98 | |
2009 | −9.8 | 0.93 | 0.98 | |
2010 | −1.3 | 0.96 | 0.98 |
Period | RCP Scenarios | Change in River Flow (%) | |
---|---|---|---|
Gilgit River | Kachura River | ||
MID-21st century (2046–2065) | 2.6 | +0.3 | +0.6 |
4.5 | +3.6 | +0.9 | |
8.5 | +9.4 | +2.0 | |
LATE-21st century (2081–2100) | 2.6 | +3.4 | +1.2 |
4.5 | +9.3 | +1.9 | |
8.5 | +10.8 | +3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, U.; Jamshed, R.; Tahir, A.A.; Qaisar, F.u.R.; Wu, K.; Arifeen, A.; Muhammad, S.; Javed, A.; Faiz, M.A. Anticipating Future Hydrological Changes in the Northern River Basins of Pakistan: Insights from the Snowmelt Runoff Model and an Improved Snow Cover Data. Water 2025, 17, 2104. https://doi.org/10.3390/w17142104
Khan U, Jamshed R, Tahir AA, Qaisar FuR, Wu K, Arifeen A, Muhammad S, Javed A, Faiz MA. Anticipating Future Hydrological Changes in the Northern River Basins of Pakistan: Insights from the Snowmelt Runoff Model and an Improved Snow Cover Data. Water. 2025; 17(14):2104. https://doi.org/10.3390/w17142104
Chicago/Turabian StyleKhan, Urooj, Romana Jamshed, Adnan Ahmad Tahir, Faizan ur Rehman Qaisar, Kunpeng Wu, Awais Arifeen, Sher Muhammad, Asif Javed, and Muhammad Abrar Faiz. 2025. "Anticipating Future Hydrological Changes in the Northern River Basins of Pakistan: Insights from the Snowmelt Runoff Model and an Improved Snow Cover Data" Water 17, no. 14: 2104. https://doi.org/10.3390/w17142104
APA StyleKhan, U., Jamshed, R., Tahir, A. A., Qaisar, F. u. R., Wu, K., Arifeen, A., Muhammad, S., Javed, A., & Faiz, M. A. (2025). Anticipating Future Hydrological Changes in the Northern River Basins of Pakistan: Insights from the Snowmelt Runoff Model and an Improved Snow Cover Data. Water, 17(14), 2104. https://doi.org/10.3390/w17142104