Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = salmon bone

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3596 KiB  
Article
Chondroitin Sulfate Nanovectorized by LC-PUFAs Nanocarriers Extracted from Salmon (Salmo salar) by Green Process with Decreased Inflammatory Marker Expression in Interleukin-1β-Stimulated Primary Human Chondrocytes In Vitro Culture
by Louis Pruvost, Maureen Gerlei, Cédric Paris, Émilie Velot, Cyril J.-F. Kahn, Arnaud Bianchi and Michel Linder
Mar. Drugs 2024, 22(12), 571; https://doi.org/10.3390/md22120571 - 20 Dec 2024
Viewed by 1414
Abstract
Chondroitin sulfate (CS), a glycosaminoglycan, supports health through various physiological functions, including tissue protection, bone growth, and skin aging prevention. It also contributes to anticoagulant or anti-inflammatory processes, with its primary clinical use being osteoarthritis treatment. This study presents the results of the [...] Read more.
Chondroitin sulfate (CS), a glycosaminoglycan, supports health through various physiological functions, including tissue protection, bone growth, and skin aging prevention. It also contributes to anticoagulant or anti-inflammatory processes, with its primary clinical use being osteoarthritis treatment. This study presents the results of the valorization of lipids and CS, both extracted from salmon co-products through enzymatic processes. The polar lipids, naturally rich in long-chain fatty acids (docosahexaenoic acid DHA C22:6 n-3 and eicosapentaenoic acid EPA C20:5 n-3), and the CS, primarily located in the nasal cartilage, were separated and concentrated before being characterized using various techniques to determine functional and lipid composition. These compounds were then used to formulate liposomes of 63 to 95 nm in size composed of 19.38% of DHA and 7.44% of EPA and encapsulating CS extract with a Δdi-4S/Δdi-6S ratio of 0.53 at 2 weight masses (10–30 kDa and >30 kDa) or CS standard all at two different concentrations. Liposomes were tested on human chondrocytes in inflamed conditions. Thus, compatibility tests, the expression of various inflammation markers at transcriptional and molecular levels, nitrites, and the amount of collagenase produced were analyzed. The results showed that CS, in synergy with the liposomes, played a positive role in combating chondrocyte inflammation even at a low concentration. Full article
(This article belongs to the Special Issue Marine Anti-Inflammatory and Antioxidant Agents, 4th Edition)
Show Figures

Graphical abstract

33 pages, 1346 KiB  
Review
Primary Osteoporosis Induced by Androgen and Estrogen Deficiency: The Molecular and Cellular Perspective on Pathophysiological Mechanisms and Treatments
by Shao-Heng Hsu, Li-Ru Chen and Kuo-Hu Chen
Int. J. Mol. Sci. 2024, 25(22), 12139; https://doi.org/10.3390/ijms252212139 - 12 Nov 2024
Cited by 7 | Viewed by 6680
Abstract
Primary osteoporosis is closely linked to hormone deficiency, which disrupts the balance of bone remodeling. It affects postmenopausal women but also significantly impacts older men. Estrogen can promote the production of osteoprotegerin, a decoy receptor for RANKL, thereby preventing RANKL from activating osteoclasts. [...] Read more.
Primary osteoporosis is closely linked to hormone deficiency, which disrupts the balance of bone remodeling. It affects postmenopausal women but also significantly impacts older men. Estrogen can promote the production of osteoprotegerin, a decoy receptor for RANKL, thereby preventing RANKL from activating osteoclasts. Furthermore, estrogen promotes osteoblast survival and function via activation of the Wnt signaling pathway. Likewise, androgens play a critical role in bone metabolism, primarily through their conversion to estrogen in men. Estrogen deficiency accelerates bone resorption through a rise in pro-inflammatory cytokines (IL-1, IL-6, TNF-α) and RANKL, which promote osteoclastogenesis. In the classic genomic pathway, estrogen binds to estrogen receptors in the cytoplasm, forming a complex that migrates to the nucleus and binds to estrogen response elements on DNA, regulating gene transcription. Androgens can be defined as high-affinity ligands for the androgen receptor; their combination can serve as a ligand-inducible transcription factor. Hormone replacement therapy has shown promise but comes with associated risks and side effects. In contrast, the non-genomic pathway involves rapid signaling cascades initiated at the cell membrane, influencing cellular functions without directly altering gene expression. Therefore, the ligand-independent actions and rapid signaling pathways of estrogen and androgen receptors can be harnessed to develop new drugs that provide bone protection without the side effects of traditional hormone therapies. To manage primary osteoporosis, other pharmacological treatments (bisphosphonates, teriparatide, RANKL inhibitors, sclerostin inhibitors, SERMs, and calcitonin salmon) can ameliorate osteoporosis and improve BMD via actions on different pathways. Non-pharmacological treatments include nutritional support and exercise, as well as the dietary intake of antioxidants and natural products. The current study reviews the processes of bone remodeling, hormone actions, hormone receptor status, and therapeutic targets of primary osteoporosis. However, many detailed cellular and molecular mechanisms underlying primary osteoporosis seem complicated and unexplored and warrant further investigation. Full article
(This article belongs to the Special Issue Molecular Research in Primary Osteoporosis)
Show Figures

Figure 1

12 pages, 4238 KiB  
Article
Salmon Nasal Cartilage-Derived Proteoglycans Alleviate Monosodium Iodoacetate-Induced Osteoarthritis in Rats
by Inae Jeong, Jinbum Park, Shinjung Park, Tatuya Wada, Dae Soo Lim and Ok-Kyung Kim
Mar. Drugs 2024, 22(11), 507; https://doi.org/10.3390/md22110507 - 8 Nov 2024
Viewed by 2147
Abstract
Osteoarthritis is a chronic inflammatory condition characterized by the degeneration of joint cartilage and underlying bone, resulting in pain, swelling, and reduced mobility. This study evaluates the efficacy of salmon nasal cartilage-derived proteoglycans in mitigating osteoarthritis symptoms and investigates the underlying molecular mechanisms. [...] Read more.
Osteoarthritis is a chronic inflammatory condition characterized by the degeneration of joint cartilage and underlying bone, resulting in pain, swelling, and reduced mobility. This study evaluates the efficacy of salmon nasal cartilage-derived proteoglycans in mitigating osteoarthritis symptoms and investigates the underlying molecular mechanisms. This study employed a rat model of osteoarthritis induced by monosodium iodoacetate (MIA) injection. The rats were orally administered salmon nasal cartilage-derived proteoglycans or ibuprofen. Key aspects of osteoarthritis pathology, including impaired exercise ability, inflammation, extracellular matrix degradation, and chondrocyte apoptosis, were assessed using histological analysis, micro-CT, treadmill testing, serum assays, and mRNA/protein expression studies. The MIA injection caused significant cartilage damage, reduced bone mineral density, and impaired exercise ability. Additionally, it elevated serum levels of prostaglandin E2 and nitric oxide, increased the mRNA and protein levels of inflammation-related factors, and activated apoptosis signaling pathways in cartilage. Treatment with salmon nasal cartilage-derived proteoglycans significantly improved cartilage morphology and mineralization, reduced inflammation, and inhibited apoptosis signaling pathways, with effects comparable to those observed with ibuprofen treatment. These findings highlight the potential of salmon nasal cartilage-derived proteoglycans as a therapeutic agent for managing osteoarthritis by effectively reducing inflammation, preventing cartilage degradation, and inhibiting chondrocyte apoptosis. Full article
(This article belongs to the Special Issue Bioactive Compounds from Marine Fish)
Show Figures

Figure 1

15 pages, 6667 KiB  
Article
Impact of Polydeoxyribonucleotides on the Morphology, Viability, and Osteogenic Differentiation of Gingiva-Derived Stem Cell Spheroids
by Heera Lee, Somyeong Hwa, Sunga Cho, Ju-Hwan Kim, Hye-Jung Song, Youngkyung Ko and Jun-Beom Park
Medicina 2024, 60(10), 1610; https://doi.org/10.3390/medicina60101610 - 1 Oct 2024
Cited by 4 | Viewed by 2583
Abstract
Background and Objectives: Polydeoxyribonucleotides (PDRN), composed of DNA fragments derived from salmon DNA, is widely recognized for its regenerative properties. It has been extensively used in medical applications, such as dermatology and wound healing, due to its ability to enhance cellular metabolic [...] Read more.
Background and Objectives: Polydeoxyribonucleotides (PDRN), composed of DNA fragments derived from salmon DNA, is widely recognized for its regenerative properties. It has been extensively used in medical applications, such as dermatology and wound healing, due to its ability to enhance cellular metabolic activity, stimulate angiogenesis, and promote tissue regeneration. In the field of dentistry, PDRN has shown potential in promoting periodontal healing and bone regeneration. This study aims to investigate the effects of PDRN on the morphology, survival, and osteogenic differentiation of gingiva-derived stem cell spheroids, with a focus on its potential applications in tissue engineering and regenerative dentistry. Materials and Methods: Gingiva-derived mesenchymal stem cells were cultured and formed into spheroids using microwells. The cells were treated with varying concentrations of PDRN (0, 25, 50, 75, and 100 μg/mL) and cultivated in osteogenic media. Cell morphology was observed over seven days using an inverted microscope, and viability was assessed with Live/Dead Kit assays and Cell Counting Kit-8. Osteogenic differentiation was evaluated by measuring alkaline phosphatase activity and calcium deposition. The expression levels of osteogenic markers RUNX2 and COL1A1 were quantified using real-time polymerase chain reaction. RNA sequencing was performed to assess the gene expression profiles related to osteogenesis. Results: The results demonstrated that PDRN treatment had no significant effect on spheroid diameter or cellular viability during the observation period. However, a PDRN concentration of 75 μg/mL significantly enhanced calcium deposition by Day 14, suggesting increased mineralization. RUNX2 and COL1A1 mRNA expression levels varied with PDRN concentration, with the highest RUNX2 expression observed at 25 μg/mL and the highest COL1A1 expression at 75 μg/mL. RNA sequencing further confirmed the upregulation of genes involved in osteogenic differentiation, with enhanced expression of RUNX2 and COL1A1 in PDRN-treated gingiva-derived stem cell spheroids. Conclusions: In summary, PDRN did not significantly affect the viability or morphology of gingiva-derived stem cell spheroids but influenced their osteogenic differentiation and mineralization in a concentration-dependent manner. These findings suggest that PDRN may play a role in promoting osteogenic processes in tissue engineering and regenerative dentistry applications, with specific effects observed at different concentrations. Full article
(This article belongs to the Section Dentistry and Oral Health)
Show Figures

Figure 1

15 pages, 1446 KiB  
Article
Efficient Hydroxyapatite Extraction from Salmon Bone Waste: An Improved Lab-Scaled Physico-Chemico-Biological Process
by Francisco Muñoz, Ziyad S. Haidar, Andreu Puigdollers, Ignacio Guerra, María Cristina Padilla, Nicole Ortega, Mercedes Balcells and María José García
Molecules 2024, 29(17), 4002; https://doi.org/10.3390/molecules29174002 - 24 Aug 2024
Cited by 5 | Viewed by 2559
Abstract
The demand for novel tissue grafting and regenerative wound care biomaterials is growing as traditional options often fall short in biocompatibility, functional integration with human tissue, associated cost(s), and sustainability. Salmon aquaculture generates significant volumes of waste, offering a sustainable opportunity for biomaterial [...] Read more.
The demand for novel tissue grafting and regenerative wound care biomaterials is growing as traditional options often fall short in biocompatibility, functional integration with human tissue, associated cost(s), and sustainability. Salmon aquaculture generates significant volumes of waste, offering a sustainable opportunity for biomaterial production, particularly in osteo-conduction/-induction, and de novo clinical/surgical bone regeneration. Henceforth, this study explores re-purposing salmon waste through a standardized pre-treatment process that minimizes the biological waste content, followed by a treatment stage to remove proteins, lipids, and other compounds, resulting in a mineral-rich substrate. Herein, we examined various methods—alkaline hydrolysis, calcination, and NaOH hydrolysis—to better identify and determine the most efficient and effective process for producing bio-functional nano-sized hydroxyapatite. Through comprehensive chemical, physical, and biological assessments, including Raman spectroscopy and X-ray diffraction, we also optimized the extraction process. Our modified and innovative alkaline hydrolysis–calcination method yielded salmon-derived hydroxyapatite with a highly crystalline structure, an optimal Ca/P ratio, and excellent biocompatibility. The attractive nano-scale cellular/tissular properties and favorable molecular characteristics, particularly well-suited for bone repair, are comparable to or even surpass those of synthetic, human, bovine, and porcine hydroxyapatite, positioning it as a promising candidate for use in tissue engineering, wound healing, and regenerative medicine indications. Full article
(This article belongs to the Topic Injectable Hydrogels for Cell and Drug Delivery)
Show Figures

Graphical abstract

10 pages, 892 KiB  
Article
Fish Bones as Calcium Source: Bioavailability of Micro and Nano Particles
by Benjamín Torres, Alvaro Pérez, Paula García, Paula Jiménez, Karen Abrigo, Pedro Valencia, Cristian Ramírez, Marlene Pinto, Sergio Almonacid and Manuel Ruz
Foods 2024, 13(12), 1840; https://doi.org/10.3390/foods13121840 - 12 Jun 2024
Cited by 5 | Viewed by 4555
Abstract
The amount of by-products/waste in the fish industry is roughly 50%. Fish bones could be used to produce nanoparticles, which may have potential use in the food industry as a novel calcium source and at the same time, contribute to reduce waste production. [...] Read more.
The amount of by-products/waste in the fish industry is roughly 50%. Fish bones could be used to produce nanoparticles, which may have potential use in the food industry as a novel calcium source and at the same time, contribute to reduce waste production. The objective of this study was to evaluate the bioavailability of nano-size salmon fish bone particles compared to micro-size salmon fish bone particles, and calcium carbonate. The study was carried out in 21–28-day-old C57BL/6 male mice fed for 21 days with the experimental diets. The groups were as follows: CaCO3 0.5% Ca (CN 0.5); CaCO3 1.0% Ca (CN 1.0); salmon fish bone (SFB) microparticles 0.5% Ca (MP 0.5); SFB microparticles 1.0% Ca (MP 1.0); SFB nanoparticles 0.5% Ca (NP 0.5); and SFB nanoparticles 1.0% Ca (NP 1.0). Calcium bioavailability, defined as the percent calcium in femur showed an increasing trend from CN 0.5 to NP 1.0 group. According to ANCOVA, the greatest Ca content was observed in the NP 1.0 group compared with all groups but NP 0.5. In conclusion, in a murine model, salmon fish bone nanoparticles present higher calcium bioavailability than salmon fish bone microparticles, and both, in turn, have better bioavailability than calcium carbonate. Full article
(This article belongs to the Special Issue Valorization of Seafood Resources to Obtain High-Value Products)
Show Figures

Figure 1

28 pages, 812 KiB  
Review
In Search of a Target Gene for a Desirable Phenotype in Aquaculture: Genome Editing of Cyprinidae and Salmonidae Species
by Svetlana Yu. Orlova, Maria N. Ruzina, Olga R. Emelianova, Alexey A. Sergeev, Evgeniya A. Chikurova, Alexei M. Orlov and Nikolai S. Mugue
Genes 2024, 15(6), 726; https://doi.org/10.3390/genes15060726 - 1 Jun 2024
Cited by 6 | Viewed by 3091
Abstract
Aquaculture supplies the world food market with a significant amount of valuable protein. Highly productive aquaculture fishes can be derived by utilizing genome-editing methods, and the main problem is to choose a target gene to obtain the desirable phenotype. This paper presents a [...] Read more.
Aquaculture supplies the world food market with a significant amount of valuable protein. Highly productive aquaculture fishes can be derived by utilizing genome-editing methods, and the main problem is to choose a target gene to obtain the desirable phenotype. This paper presents a review of the studies of genome editing for genes controlling body development, growth, pigmentation and sex determination in five key aquaculture Salmonidae and Cyprinidae species, such as rainbow trout (Onchorhynchus mykiss), Atlantic salmon (Salmo salar), common carp (Cyprinus carpio), goldfish (Carassius auratus), Gibel carp (Carassius gibelio) and the model fish zebrafish (Danio rerio). Among the genes studied, the most applicable for aquaculture are mstnba, pomc, and acvr2, the knockout of which leads to enhanced muscle growth; runx2b, mutants of which do not form bones in myoseptae; lepr, whose lack of function makes fish fast-growing; fads2, Δ6abc/5Mt, and Δ6bcMt, affecting the composition of fatty acids in fish meat; dnd mettl3, and wnt4a, mutants of which are sterile; and disease-susceptibility genes prmt7, gab3, gcJAM-A, and cxcr3.2. Schemes for obtaining common carp populations consisting of only large females are promising for use in aquaculture. The immobilized and uncolored zebrafish line is of interest for laboratory use. Full article
(This article belongs to the Special Issue Genetic Studies of Fish)
Show Figures

Figure 1

17 pages, 1705 KiB  
Article
Valorization of the Salmon Frame as a High-Calcium Ingredient in the Formulation of Nuggets: Evaluation of the Nutritional and Sensory Properties
by Camila Matamala, Paula Garcia, Pedro Valencia, Alvaro Perez, Manuel Ruz, Leyla Sanhueza, Sergio Almonacid, Cristian Ramirez, Marlene Pinto and Paula Jiménez
Foods 2024, 13(11), 1701; https://doi.org/10.3390/foods13111701 - 29 May 2024
Viewed by 1700
Abstract
In the Chilean population, calcium consumption is deficient. Therefore, several strategies have been implemented to increase calcium intake, such as consuming dairy products and supplements. In this study, an ingredient composed of bone flour (BF) and protein hydrolysate (PH) obtained from salmon frame [...] Read more.
In the Chilean population, calcium consumption is deficient. Therefore, several strategies have been implemented to increase calcium intake, such as consuming dairy products and supplements. In this study, an ingredient composed of bone flour (BF) and protein hydrolysate (PH) obtained from salmon frame was used as an innovative source of calcium. The objective was to evaluate the effect of the incorporation of BF and PH in a 1:1 ratio (providing two calcium concentrations to the nuggets, 75 and 125 mg/100 g) on calcium content and sensory attributes of salmon nuggets submitted to baking or shallow frying. Proximal chemical analyses, fatty acid composition, calcium content, and sensory evaluation (acceptability and check-all-that-apply test) were tested in the nuggets. The incorporation of BF/PH (1:1) in both concentrations increased the calcium content of salmon nuggets being higher for the 125 mg/100 g. On the other hand, no negative effects were observed on sensory properties where all samples showed good overall acceptability for baked and fried nuggets. Therefore, the incorporation of BF/PH (1:1) into salmon nuggets enhances the nutritional quality of these products by providing a higher calcium content without significantly affecting their sensory properties. Full article
(This article belongs to the Special Issue Advances in Food Bioactive Compounds as Health Promoters)
Show Figures

Figure 1

11 pages, 681 KiB  
Article
Content and Bioaccessibility of Minerals and Proteins in Fish-Bone Containing Side-Streams from Seafood Industries
by Marie Bagge Jensen, Jette Jakobsen, Charlotte Jacobsen, Jens J. Sloth, Jone Ibarruri, Carlos Bald, Bruno Iñarra, Niels Bøknæs and Ann-Dorit Moltke Sørensen
Mar. Drugs 2024, 22(4), 162; https://doi.org/10.3390/md22040162 - 3 Apr 2024
Cited by 5 | Viewed by 2768
Abstract
With the aim to upcycle fish side-streams, enzymatic hydrolysis is often applied to produce protein hydrolysates with bioactive properties or just as a protein source for food and feed. However, the production of hydrolysates generates a side-stream. For underutilized fish and fish backbone [...] Read more.
With the aim to upcycle fish side-streams, enzymatic hydrolysis is often applied to produce protein hydrolysates with bioactive properties or just as a protein source for food and feed. However, the production of hydrolysates generates a side-stream. For underutilized fish and fish backbone this side-stream will contain fish bones and make it rich in minerals. The aim of this study was to assess the relative bioaccessibility (using the standardized in vitro model INFOGEST 2.0) of minerals in a dietary supplement compared to bone powder generated after enzymatic hydrolysis of three different fish side-streams: undersized whole hake, cod and salmon backbones consisting of insoluble protein and bones. Differences in the bioaccessibility of protein between the powders were also investigated. The enzyme hydrolysis was carried out using different enzymes and hydrolysis conditions for the different fish side-streams. The content and bioaccessibility of protein and the minerals phosphorus (P), calcium (Ca), potassium (K) and magnesium (Mg) were measured to evaluate the potential of the powder as an ingredient in, e.g., dietary supplements. The bone powders contained bioaccessible proteins and minerals. Thus, new side-streams generated from enzymatic hydrolysis can have possible applications in the food sector due to bioaccessible proteins and minerals. Full article
Show Figures

Figure 1

30 pages, 4701 KiB  
Article
Elevated Water CO2 Can Prevent Dietary-Induced Osteomalacia in Post-Smolt Atlantic Salmon (Salmo salar, L.)
by Lucia Drábiková, Per Gunnar Fjelldal, Muhammad Naveed Yousaf, Thea Morken, Adelbert De Clercq, Charles McGurk and Paul Eckhard Witten
Biomolecules 2023, 13(4), 663; https://doi.org/10.3390/biom13040663 - 10 Apr 2023
Cited by 4 | Viewed by 2959
Abstract
Expansion of land-based systems in fish farms elevate the content of metabolic carbon dioxide (CO2) in the water. High CO2 is suggested to increase the bone mineral content in Atlantic salmon (Salmo salar, L.). Conversely, low dietary phosphorus [...] Read more.
Expansion of land-based systems in fish farms elevate the content of metabolic carbon dioxide (CO2) in the water. High CO2 is suggested to increase the bone mineral content in Atlantic salmon (Salmo salar, L.). Conversely, low dietary phosphorus (P) halts bone mineralization. This study examines if high CO2 can counteract reduced bone mineralization imposed by low dietary P intake. Atlantic salmon post-seawater transfer (initial weight 207.03 g) were fed diets containing 6.3 g/kg (0.5P), 9.0 g/kg (1P), or 26.8 g/kg (3P) total P for 13 weeks. Atlantic salmon from all dietary P groups were reared in seawater which was not injected with CO2 and contained a regular CO2 level (5 mg/L) or in seawater with injected CO2 thus raising the level to 20 mg/L. Atlantic salmon were analyzed for blood chemistry, bone mineral content, vertebral centra deformities, mechanical properties, bone matrix alterations, expression of bone mineralization, and P metabolism-related genes. High CO2 and high P reduced Atlantic salmon growth and feed intake. High CO2 increased bone mineralization when dietary P was low. Atlantic salmon fed with a low P diet downregulated the fgf23 expression in bone cells indicating an increased renal phosphate reabsorption. The current results suggest that reduced dietary P could be sufficient to maintain bone mineralization under conditions of elevated CO2. This opens up a possibility for lowering the dietary P content under certain farming conditions. Full article
Show Figures

Figure 1

7 pages, 644 KiB  
Article
An Assessment of Starch Content and Gelatinization in Traditional and Non-Traditional Dog Food Formulations
by Erin Beth Perry, Alyssa Ann Valach, Jesse Marie Fenton and George E. Moore
Animals 2022, 12(23), 3357; https://doi.org/10.3390/ani12233357 - 30 Nov 2022
Cited by 5 | Viewed by 3568
Abstract
Starch gelatinization in pet food may be affected by moisture, retention time, and ingredients used. Starch gelatinization has been associated with changes in digestibility but is not well studied using non-traditional ingredients in canine diets. The objective of this research was to examine [...] Read more.
Starch gelatinization in pet food may be affected by moisture, retention time, and ingredients used. Starch gelatinization has been associated with changes in digestibility but is not well studied using non-traditional ingredients in canine diets. The objective of this research was to examine differences in starch content and gelatinization associated with changes in ingredient profile (traditional vs. non-traditional) and nutrient content requirements associated with differing life stages. Traditional diets (n = 10) utilizing protein sources including chicken, chicken by-product meal, meat and bone meal and plant-based ingredients including rice, barley, oats, and corn were examined in comparison with non-traditional diets (n = 10) utilizing protein sources including alligator, buffalo, venison, kangaroo, squid, quail, rabbit, and salmon along with plant-based ingredients including tapioca, chickpeas, lentils, potato, and pumpkin. Total starch and gelatinized starch (as percent of total diet) were measured with variation due to ingredient type assessed using Student’s t-test in SAS 9.4. Significance was set at p < 0.05. Total starch (as a percent of diet) was higher in traditional diets compared to non-traditional diets formulated for maintenance (p < 0.0032) or all life stages (p < 0.0128). However, starch gelatinization as a proportion of total starch was lower in traditional diets formulated for maintenance (p < 0.0165) and all life stages (p < 0.0220). Total starch and gelatinized starch had a strong negative correlation (r = −0.78; p < 0.01) in diets utilizing traditional ingredients. These novel data reveal important differences between starch content and gelatinization and may impact selection of various ingredient types by pet food manufacturers. Full article
Show Figures

Figure 1

16 pages, 4027 KiB  
Article
Hybrid Vibration and UV Fluorescence Technology for Rapid Imaging and Guidance for Manual Removal of Fish Bones from Fish Floss
by Yen-Hsiang Wang, Kuan-Chieh Lee, Wen-Chun Wei, Chung-Huang Wang, Hao-Jie Liu, Jia-Rong Hou, Tien-Chen Hsieh, Ju-Kai Chen, Ting-Yuan Chen, Shien-Kuei Liaw, Choa-Feng Lin, Chin-Cheng Wu, Jen-Jie Chieh and Chin-Hung Chang
Sensors 2022, 22(22), 8978; https://doi.org/10.3390/s22228978 - 20 Nov 2022
Cited by 2 | Viewed by 2570
Abstract
The objective of the proposed human–machine cooperation (HMC) workstation is to both rapidly detect calcium-based fish bones in masses of minced fish floss and visually guide operators in approaching and removing the detected fish bones by hand based on the detection of fingernails [...] Read more.
The objective of the proposed human–machine cooperation (HMC) workstation is to both rapidly detect calcium-based fish bones in masses of minced fish floss and visually guide operators in approaching and removing the detected fish bones by hand based on the detection of fingernails or plastic-based gloves. Because vibration is a separation mechanism that can prevent absorption or scattering in thick fish floss for UV fluorescence detection, the design of the HMC workstation included a vibration unit together with an optical box and display screens. The system was tested with commonly used fish (swordfish, salmon, tuna, and cod) representing various cooking conditions (raw meat, steam-cooked meat, and fish floss), their bones, and contaminating materials such as derived from gloves made of various types of plastic (polyvinylchloride, emulsion, and rubber) commonly used in the removal of fish bones. These aspects were each investigated using the spectrum analyzer and the optical box to obtain and analyze the fluorescence spectra and images. The filter was mounted on a charge-coupled device, and its transmission-wavelength window was based on the characteristic band for fish bones observed in the spectra. Gray-level AI algorithm was utilized to generate white marker rectangles. The vibration unit supports two mechanisms of air and downstream separation to improve the imaging screening of fish bones inside the considerable flow of fish floss. Notably, under 310 nm ultraviolet B (UVB) excitation, the fluorescence peaks of the raw fillets, steam-cooked meat, and fish floss were observed at for bands at longer wavelengths (500–600 nm), whereas those of the calcium and plastic materials occurred in shorter wavelength bands (400–500 nm). Perfect accuracy of 100% was achieved with the detection of 20 fish bones in 2 kg of fish floss, and the long test time of around 10–12 min results from the manual removal of these fish bones. Full article
(This article belongs to the Special Issue Imaging and Sensing in Optics and Photonics)
Show Figures

Figure 1

25 pages, 40235 KiB  
Article
Gene Expression Profile of Human Mesenchymal Stromal Cells Exposed to Hypoxic and Pseudohypoxic Preconditioning—An Analysis by RNA Sequencing
by Katarzyna Zielniok, Anna Burdzinska, Victor Murcia Pienkowski, Agnieszka Koppolu, Malgorzata Rydzanicz, Radoslaw Zagozdzon and Leszek Paczek
Int. J. Mol. Sci. 2021, 22(15), 8160; https://doi.org/10.3390/ijms22158160 - 29 Jul 2021
Cited by 5 | Viewed by 15004
Abstract
Mesenchymal stromal cell (MSC) therapy is making its way into clinical practice, accompanied by research into strategies improving their therapeutic potential. Preconditioning MSCs with hypoxia-inducible factors-α (HIFα) stabilizers is an alternative to hypoxic priming, but there remains insufficient data evaluating its transcriptomic effect. [...] Read more.
Mesenchymal stromal cell (MSC) therapy is making its way into clinical practice, accompanied by research into strategies improving their therapeutic potential. Preconditioning MSCs with hypoxia-inducible factors-α (HIFα) stabilizers is an alternative to hypoxic priming, but there remains insufficient data evaluating its transcriptomic effect. Herein, we determined the gene expression profile of 6 human bone marrow-derived MSCs preconditioned for 6 h in 2% O2 (hypoxia) or with 40 μM Vadadustat, compared to control cells and each other. RNA-Sequencing was performed using the Illumina platform, quality control with FastQC and adapter-trimming with BBDUK2. Transcripts were mapped to the Homo_sapiens. GRCh37 genome and converted to relative expression using Salmon. Differentially expressed genes (DEGs) were generated using DESeq2 while functional enrichment was performed in GSEA and g:Profiler. Comparison of hypoxia versus control resulted in 250 DEGs, Vadadustat versus control 1071, and Vadadustat versus hypoxia 1770. The terms enriched in both phenotypes referred mainly to metabolism, in Vadadustat additionally to vesicular transport, chromatin modifications and interaction with extracellular matrix. Compared with hypoxia, Vadadustat upregulated autophagic, phospholipid metabolism, and TLR cascade genes, downregulated those of cytoskeleton and GG-NER pathway and regulated 74 secretory factor genes. Our results provide valuable insight into the transcriptomic effects of these two methods of MSCs preconditioning. Full article
Show Figures

Figure 1

12 pages, 1540 KiB  
Article
Whole Body Low Dose Computed Tomography (WBLDCT) Can Be Comparable to Whole-Body Magnetic Resonance Imaging (WBMRI) in the Assessment of Multiple Myeloma
by Davide Ippolito, Teresa Giandola, Cesare Maino, Davide Gandola, Maria Ragusi, Pietro Andrea Bonaffini and Sandro Sironi
Diagnostics 2021, 11(5), 857; https://doi.org/10.3390/diagnostics11050857 - 11 May 2021
Cited by 5 | Viewed by 3974
Abstract
Aim of the study is to compare the agreement between whole-body low-dose computed tomography (WBLDCT) and magnetic resonance imaging (WBMRI) in the evaluation of bone marrow involvement in patients with multiple myeloma (MM). Patients with biopsy-proven MM, who underwent both WBLDCT and WBMRI [...] Read more.
Aim of the study is to compare the agreement between whole-body low-dose computed tomography (WBLDCT) and magnetic resonance imaging (WBMRI) in the evaluation of bone marrow involvement in patients with multiple myeloma (MM). Patients with biopsy-proven MM, who underwent both WBLDCT and WBMRI were retrospectively enrolled. After identifying the presence of focal bone involvement (focal infiltration pattern), the whole skeleton was divided into five anatomic districts (skull, spine, sternum and ribs, pelvis, and limbs). Patients were grouped according to the number and location of the lytic lesions (<5, 5–20, and >20) and Durie and Salmon staging system. The agreement between CT and MRI regarding focal pattern, staging, lesion number, and distribution was assessed using the Cohen Kappa statistics. The majority of patients showed focal involvement. According to the distribution of the focal lesions and Durie Salmon staging, the agreement between CT and MRI was substantial or almost perfect (all κ > 0.60). The agreement increased proportionally with the number of lesions in the pelvis and spine (κ = 0.373 to κ = 0.564, and κ = 0.469–0.624), while for the skull the agreement proportionally decreased without reaching a statistically significant difference (p > 0.05). In conclusion, WBLDCT showed an almost perfect agreement in the evaluation of focal involvement, staging, lesion number, and distribution of bone involvement in comparison with WBMRI. Full article
(This article belongs to the Special Issue Whole Body MRI: Major Advances and Future Perspective)
Show Figures

Figure 1

13 pages, 3341 KiB  
Article
Biogenic Calcium Phosphate from Fish Discards and By-Products
by Mónica Fernández-Arias, Iago Álvarez-Olcina, Pablo Malvido-Fresnillo, José Antonio Vázquez, Mohamed Boutinguiza, Rafael Comesaña and Juan Pou
Appl. Sci. 2021, 11(8), 3387; https://doi.org/10.3390/app11083387 - 9 Apr 2021
Cited by 14 | Viewed by 3960
Abstract
Every year, millions of tons of fish waste are generated from fishing activities, and a similar amount is discarded and returned to the sea as unwanted catches. This material can be used as a biological source for many potential new added-value products, such [...] Read more.
Every year, millions of tons of fish waste are generated from fishing activities, and a similar amount is discarded and returned to the sea as unwanted catches. This material can be used as a biological source for many potential new added-value products, such asobtaining hyaluronic acid from fish eyeballs or extracting collagen from fish skin, but there are not many utilities for fish bones yet. This work tackles the transformation of fish discards into calcium phosphates. Discards from scorpionfish (Scorpaena scrofa) and Atlantic horse mackerel (Trachurus trachurus), as well as by-products generated from aquaculture activities (heads and trimmings frames) of salmon (Salmon salar), were used to obtain calcium phosphate. Biphasic carbonated hydroxyapatite (HA) /beta-tricalcium phosphate (TCP) material was obtained. The biphasic HA-TCP material has a promising range of applications in the biomedical field based on its similarity to calcium phosphates found in human bones in terms of crystallite size and carbonate content. The presence of Na, Mg, Sr, and K ions in the HA-TCP material is very beneficial, since they contribute to bone metabolism and cell adhesion. Full article
(This article belongs to the Special Issue New Trends on Marine Biomaterials)
Show Figures

Figure 1

Back to TopTop