Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,596)

Search Parameters:
Keywords = salinity changes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 631 KB  
Article
Assessment of Migration of the Urethral Bulking Agent Zhoabex G® from the Urethral Injection Site to the Distant Organs in a Rabbit Model
by Bhagath Kumar Potu, Diaa Rizk, Muna Aljishi, Ameera Sultan, Wael Amin Nasr El-Din, Stefano Salvatore and Safa Taha
Int. J. Mol. Sci. 2025, 26(21), 10286; https://doi.org/10.3390/ijms262110286 (registering DOI) - 22 Oct 2025
Abstract
Hyaluronic acid (HA)-based urethral bulking agents are promising for the treatment of stress urinary incontinence (SUI), but migration risks to distant organs remain a concern. This study evaluated the migration and cytotoxicity of Zhoabex G®, an HA-based bulking agent, in a [...] Read more.
Hyaluronic acid (HA)-based urethral bulking agents are promising for the treatment of stress urinary incontinence (SUI), but migration risks to distant organs remain a concern. This study evaluated the migration and cytotoxicity of Zhoabex G®, an HA-based bulking agent, in a female rabbit model. Twenty-seven female New Zealand white rabbits were randomized into control (no injection), sham (saline), and experimental (Zhoabex G®) groups (n = 9 each). After 5 months, tissues from the kidney, lung, liver, and spleen were analyzed using quantitative RT-PCR for hyaluronan synthase (HAS1, HAS2, HAS3) and hyaluronidase (HYAL2) gene expression, and ELISA for HA concentrations. No significant differences in gene expression were observed across groups (p ≥ 0.05, range: 0.166–0.997), with experimental fold change values near sham baselines (e.g., kidney HAS2: 0.987 ± 0.071, p = 0.422). Similarly, HA concentrations showed no group differences (p = 0.577; e.g., kidney: 119.2–121.8 ng/mL), reflecting organ-specific basal levels. These findings indicate that Zhoabex G® remains localized at the urethral injection site, with no evidence of migration or cytotoxicity in distant organs. The biodegradable and non-particulate nature of Zhoabex G® further supports its safety for SUI treatment, warranting further clinical investigation. Full article
(This article belongs to the Special Issue Molecular Metabolism in Human Health and Disease)
Show Figures

Figure 1

22 pages, 661 KB  
Review
Research Progress on the Effect of Grafting Technology on Disease Resistance and Stress Resistance of Watermelon
by Xuena Liu, Shikai La, Chang Chen, Ainong Shi, Mingjiao Wang, Yingying Zhang, Jinghua Guo and Lingdi Dong
Horticulturae 2025, 11(10), 1271; https://doi.org/10.3390/horticulturae11101271 - 21 Oct 2025
Abstract
Grafting is an effective horticultural technique that significantly enhances disease resistance and stress tolerance in watermelon. This review systematically summarizes the types of rootstocks used in watermelon grafting and analyzes the effects of grafting on plant responses to biotic stresses, such as viral [...] Read more.
Grafting is an effective horticultural technique that significantly enhances disease resistance and stress tolerance in watermelon. This review systematically summarizes the types of rootstocks used in watermelon grafting and analyzes the effects of grafting on plant responses to biotic stresses, such as viral and fungal pathogens, root-knot nematodes infections, and abiotic stresses, including drought, temperature extremes, and salinity. Furthermore, it discusses the changes in fruit quality and explores the underlying mechanisms associated with graft-induced resistance. By synthesizing recent research advances, this review aims to offer valuable insights and practical references for improving resistance and promoting sustainable production in cucurbit and other vegetable crops through grafting. As a sustainable cultivation strategy, grafting demonstrates considerable potential for enhancing watermelon resilience and yield; however, optimizing fruit quality remains a critical focus for future research. Full article
Show Figures

Figure 1

16 pages, 1093 KB  
Article
A Pilot Study: Comparative Effects of Green Tea Extract and Duloxetine on Oxaliplatin-Induced Allodynia in a Murine Model
by Michael Daniel, Stacie Totsch, Peng Li, Chisom O. Odii, Heather Shelton, Robert E. Sorge and Ellen Mary Lavoie Smith
Metabolites 2025, 15(10), 680; https://doi.org/10.3390/metabo15100680 - 21 Oct 2025
Abstract
Background/Objectives: The purpose of this preclinical pilot study was to explore the potential of green tea extract (GTE) to mitigate and/or prevent oxaliplatin-induced allodynia and axonal damage in rats, when compared to duloxetine (DLX), an ASCO-recommended treatment for established neuropathic pain. Methods: Using [...] Read more.
Background/Objectives: The purpose of this preclinical pilot study was to explore the potential of green tea extract (GTE) to mitigate and/or prevent oxaliplatin-induced allodynia and axonal damage in rats, when compared to duloxetine (DLX), an ASCO-recommended treatment for established neuropathic pain. Methods: Using a randomized, placebo-controlled experimental design, Sprague Dawley rats (N = 41) received 4 intraperitoneal oxaliplatin (2 mg/kg) injections every other day over 7 days. One week prior to the first oxaliplatin dose, animals began 1 of 4 interventions (saline; GTE 100 mg/kg; DLX 3 mg/kg; GTE 100 mg/kg + DLX 3 mg/kg). A naïve group (n = 6) that received no neurotoxic oxaliplatin or intervention was added to serve as a baseline measure for sNfL. Interventions were administered daily for 4 weeks. Mechanical sensitivity (allodynia) was measured 3 times per week using von Frey testing to determine paw withdrawal thresholds. Von Frey testing began one day prior to the start of interventions to establish baselines and continued through Day 35. Groups were compared to their respective baselines to calculate changes in paw withdrawal thresholds. To measure axonal damage, alterations in serum levels of neurofilament light (sNfL) protein were measured at Day 35 using ELISA. Group differences were identified using two-way analysis of variance (ANOVA). Pearson correlation coefficient was used for correlation analysis between paw withdrawal thresholds and sNfL levels at Day 35. Partial eta-squared and Hedges’ g were used to measure effect sizes. Statistical significance was assigned at P ≤ 0.05 with a 95% confidence interval. Results: Overall, the saline group showed significant reductions in mean paw withdrawal thresholds across experimental timepoints, denoting more severe allodynia caused by oxaliplatin. Conversely, intervention groups exhibited mean paw withdrawal thresholds that were significantly greater than the saline group, indicating less allodynia. The average level of sNfL was also significantly higher in the saline group (113.58 ± 43.84 pg/mL) compared to GTE100 (72.75 ± 26.85), DLX3 (59.93 ± 20.57), and DLX3 + GTE100 (77.04 ± 24.35) intervention groups, suggesting less oxaliplatin-induced axonal damage in these groups. The naïve group exhibited the lowest levels of sNfL (45.69 ± 14.64) when compared to the oxaliplatin-receiving groups (saline and intervention). There were large effect sizes between the saline group, naïve (g = 1.88), GTE100 (g = 1.123), DLX3 (g = 1.157), and DLX3 + GTE100 (g = 1.030) groups. There was also a moderate negative correlation [r(30) = −0.38, p = 0.04] between sNfL levels and paw withdrawal thresholds. Conclusions: The preliminary findings from this pilot study suggest that GTE may be an effective, nutraceutical intervention for mitigating OIPN-associated neuropathic pain, warranting further investigation as an intervention to mitigate chemotherapy-associated neurotoxicities like OIPN. Full article
Show Figures

Figure 1

21 pages, 4254 KB  
Article
Effects of Straw Return on Soil Physicochemical Properties and Microbial Communities in a Cold-Region Alkaline Farmland
by Wei Zhang, Jinghong Wang, Aman Khan, Guinan Shen, Dan Wei and Weidong Wang
Agronomy 2025, 15(10), 2433; https://doi.org/10.3390/agronomy15102433 - 21 Oct 2025
Abstract
Straw return is crucial for sustainable agriculture, but its efficiency is limited by low temperatures in cold regions, especially in saline-alkali soils. This study investigates the degradation process of maize straw and the response of soil properties and microbial communities during the winter [...] Read more.
Straw return is crucial for sustainable agriculture, but its efficiency is limited by low temperatures in cold regions, especially in saline-alkali soils. This study investigates the degradation process of maize straw and the response of soil properties and microbial communities during the winter low-temperature period in the alkaline farmland of Anda, China. A two-year field experiment with straw return (SR) and no return (NR) treatments was conducted. Straw degradation rates and structural changes (as observed via scanning electron microscope, SEM) were monitored. Soil physicochemical properties and enzyme activities were analyzed. Microbial community composition was characterized using 16S rRNA and ITS sequencing. The cumulative straw degradation rate over two years reached 94.81%, with 18.33% occurring in the first winter freeze–thaw period. Freeze–thaw cycles significantly damaged the straw structure, facilitating microbial colonization. Straw return significantly improved soil properties after winter, increasing field water capacity (3.45%), content of large aggregates (6.57%), available nutrients (P 38.17 mg/kg, K 191.93 mg/kg), and organic carbon fractions compared to NR. Microbial analysis revealed that low temperatures filtered the community, enriching cold-tolerant taxa like Pseudogymnoascus, Penicillium, and Pedobacter, which are crucial for lignocellulose decomposition under cold conditions. The winter period plays a significant role in initiating straw degradation in cold regions. Straw return mitigates the adverse effects of winter freezing on soil quality and promotes the development of a cold-adapted microbial consortium, thereby enhancing the sustainability of alkaline farmland ecosystems in Northeast China. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

15 pages, 3422 KB  
Article
ITS Sequencing Reveals the Changing Characteristics of Fungal Communities in Different Rice-Growing Substrates Under Salt Stress
by Hang Zhou, Xiaole Du, Yin Lin, Liming Zhao, Naijie Feng and Dianfeng Zheng
Biology 2025, 14(10), 1456; https://doi.org/10.3390/biology14101456 - 21 Oct 2025
Abstract
The impact of substrates with different physicochemical properties on the response of rhizosphere fungi in rice to salt stress has not been fully explored. The purpose of this study is to reveal the adaptation characteristics of fungal colonies to salt stress under different [...] Read more.
The impact of substrates with different physicochemical properties on the response of rhizosphere fungi in rice to salt stress has not been fully explored. The purpose of this study is to reveal the adaptation characteristics of fungal colonies to salt stress under different substrate conditions and the relationship between different properties of substrates and fungal colonies. Four different substrates were set by adjusting the sand, peat moss, and laterite ratio, with different bulk density, total porosity, and nutrient content. The same dose of sodium chloride solution was added to each substrate, and water was used as the control. The results showed that salt stress did not cause significant changes in the diversity and richness of fungal communities in different substrates. This study found that the responses of Ascomycota and Penicillium to salt stress varied depending on the substrate. The abundance of Penicillium was significantly positively correlated with total porosity (saline or non-saline conditions), but that of Acrostalagmus was significantly negatively correlated with total porosity under non-saline conditions. In addition, Lefse multi-level species difference discrimination analysis identified biomarkers in different treatments and revealed the core communities in response to substrate changes or salt stress. The results of this study contribute to a deeper understanding of the ecological functions of fungi. Full article
Show Figures

Figure 1

16 pages, 1658 KB  
Article
Climate Change-Related Salinity Fluctuations and Warming Induce Physiological Stress and Cellular Alterations in an Antarctic Intertidal Brown Alga
by Francisca Morales, Pamela T. Muñoz, Agustina Undabarrena, Paula S. M. Celis-Plá, Consuelo Rámila, Polette Aguilar-Muñoz, Verónica Molina, Nelso P. Navarro, Claudio A. Sáez, Céline Lavergne, Beatriz Cámara, Catherine Tessini, Kerina González-Pino, Gabriela B. Pérez-Hernández and Fernanda Rodríguez-Rojas
Environments 2025, 12(10), 390; https://doi.org/10.3390/environments12100390 - 19 Oct 2025
Viewed by 118
Abstract
Antarctica is experiencing one of the fastest warming rates globally, profoundly impacting seawater temperature and salinity, with direct consequences for marine life. The present study examined the combined effects of salinity fluctuations at 20, 33 (control salinity), and 41 psu, and temperatures of [...] Read more.
Antarctica is experiencing one of the fastest warming rates globally, profoundly impacting seawater temperature and salinity, with direct consequences for marine life. The present study examined the combined effects of salinity fluctuations at 20, 33 (control salinity), and 41 psu, and temperatures of 2 °C (control temperature) and 8 °C (thermal stress) for 3 days, on the health and physiology of the Antarctic intertidal macroalga Adenocystis utricularis. Photosynthetic activity, photoinhibition, and photoprotective processes were assessed alongside biomarkers of oxidative stress/damage (total ROS, lipid peroxidation, and protein carbonylation) and antioxidant/osmotic response (ascorbate, free amino acids, and proline). The results showed that maximum quantum yield (Fv/Fm) remained stable under both salinity and thermal stress. However, productivity (ETRmax), the photoprotection index (NPQmax), and irradiance saturation (EkETR) were significantly decreased at 8 °C, remaining constant under salinity fluctuations. At 2 °C, oxidative stress and damage were significantly higher under hypo- and hypersalinity conditions. However, at 8 °C, oxidative stress indicators decreased, accompanied by increased ascorbate levels in both hypo- (20 psu) and hypersalinity (41 psu) treatments compared to the control salinity. While warming temperatures negatively altered the oxidative response of A. utricularis at a 33 psu, we report here an interactive effect between salinity and temperature, leading to an altered stress response to salinity fluctuations under thermal stress. This study provides key information to better understand the adaptation of Antarctic intertidal macroalgae to multifactor climate change consequences. Full article
Show Figures

Figure 1

14 pages, 4365 KB  
Article
Decadal Trends in Buoyancy, Internal Modes and Horizontal Dynamics in the Northern Ionian Sea
by Gian Luca Eusebi Borzelli, Ernesto Napolitano, Roberto Iacono and Maria Vittoria Struglia
Oceans 2025, 6(4), 69; https://doi.org/10.3390/oceans6040069 - 18 Oct 2025
Viewed by 125
Abstract
The Ionian Sea plays a crucial role as a crossroads for various Mediterranean water masses, making it a significant factor in the seawater budgets, biogeochemistry, and biodiversity of the subbasins of the Mediterranean Sea. In recent years, numerous theories have been proposed in [...] Read more.
The Ionian Sea plays a crucial role as a crossroads for various Mediterranean water masses, making it a significant factor in the seawater budgets, biogeochemistry, and biodiversity of the subbasins of the Mediterranean Sea. In recent years, numerous theories have been proposed in an effort to better understand the complex hydrography and dynamics of the Ionian. These theories primarily focus on the variability of the basin’s near-surface circulation, which is characterized by a recurring reversal that occurs over a period of 10–13 years. This variability is often attributed to internal processes and/or boundary forcing, as waters of Atlantic origin enter the basin from its western boundary. In this study, we utilize temperature–salinity profiles and absolute dynamic topography data provided by the Copernicus database to examine long-term changes in the vertical structure of the basin and their relationships with changes in the horizontal near-surface circulation. Our findings show that the vertical dependency of the density field of the basin undergoes significant fluctuations over interannual and decadal time scales, which induce important buoyancy changes throughout the water column and determine changes in the structure of the first baroclinic mode. However, no changes in the basin-averaged hydrographic structure can be related to the near-surface current reversals. These reversals are mainly associated with deformations of the main isopycnal surface, intended as the region of maximum buoyancy over the water column, suggesting that they do not impact the hydrographic properties of the various Ionian water masses. Instead, they alter their routes and relative volumes within different parts of the basin. Full article
Show Figures

Figure 1

21 pages, 6894 KB  
Article
Abiotic Stress Alters the Nutritional, Metabolomic, and Glycomic Profiles of Piper auritum Kunth
by Adriana Chico-Peralta, Mar Villamiel, Paola Isabel Angulo-Bejarano and Aurea K. Ramírez-Jiménez
Foods 2025, 14(20), 3543; https://doi.org/10.3390/foods14203543 - 17 Oct 2025
Viewed by 189
Abstract
Traditional diets based on diverse edible plants are increasingly threatened by climate change, which exposes crops to abiotic and biotic stressors such as drought, soil salinity, UV radiation, microorganisms, and insect herbivory. Understanding how these conditions influence both the nutritional and nutraceutical profiles, [...] Read more.
Traditional diets based on diverse edible plants are increasingly threatened by climate change, which exposes crops to abiotic and biotic stressors such as drought, soil salinity, UV radiation, microorganisms, and insect herbivory. Understanding how these conditions influence both the nutritional and nutraceutical profiles, as well as the availability of key compounds, is essential to preserve their functional value. Piper auritum Kunth, used in Mexican gastronomy, was selected to assess two abiotic stress scenarios: drought stress (DS) and salicylic acid (SA) to simulate plant defense against pathogens and/or predators. We evaluated proximate composition, dietary fiber, total phenolics, total flavonoids, antioxidant capacity, low molecular weight carbohydrates (LMWCs), monomeric composition, and essential oil volatiles. Additionally, the simulated gastrointestinal digestion (INFOGEST) with an additional rat small-intestine extract (RSIE) revealed that both SA and DS shifted sugar distribution, especially for soluble and structural pools. SA treatment correlated with synthesis of secondary metabolites, particularly oxygenated and hydrocarbon terpenes. Both abiotic stressors modulated LMWC release during digestion, altering the distribution of sugars such as raffinose and galacturonic acid, with potential prebiotic implications. Essential oil analysis revealed stress-specific shifts in volatile composition, particularly in safrole, β-caryophyllene, and related terpenes. Beyond individual compound changes, the combined evaluation of composition, antioxidant properties, and volatile profile provides a comprehensive view of how abiotic stress can reshape the functional potential of P. auritum. To our knowledge, this is the first report on LMWC relative abundance across INFOGEST stages for a quelite species and on the integrated effect of DS and SA on its chemical profile. These findings highlight the importance of including compound release and functional traits, alongside chemical characterization, in future assessments of traditional plants under climate-related stress to safeguard their contribution to sustainable diets. Full article
(This article belongs to the Special Issue Recent Advances in Carbohydrate Functionality in Foods)
Show Figures

Figure 1

12 pages, 1625 KB  
Article
Physiological Responses of Anoectochilus roxburghii to Salt Stress
by Min Li, Hao Rong, Hongxia Li, Na Li and Ying Jiang
Horticulturae 2025, 11(10), 1254; https://doi.org/10.3390/horticulturae11101254 - 17 Oct 2025
Viewed by 176
Abstract
Salt stress is a significant environmental factor influencing plant growth and development. Anoectochilus roxburghii is a valuable medicinal plant, but it is still unclear how it responds to salinity. In this study, A. roxburghii was used as experimental material to investigate its physiological [...] Read more.
Salt stress is a significant environmental factor influencing plant growth and development. Anoectochilus roxburghii is a valuable medicinal plant, but it is still unclear how it responds to salinity. In this study, A. roxburghii was used as experimental material to investigate its physiological mechanisms underlying salt stress resistance. Seedlings were subjected to various NaCl concentrations (0, 50, 100, 150, and 200 mmol/L), and changes in key physiological parameters were subsequently analyzed. The results indicated that under NaCl-induced salt stress, the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX), as well as soluble protein content, initially increased and then decreased, with peak levels observed between 100 and 150 mmol/L. Malondialdehyde (MDA) content exhibited a steady increase with rising salt concentration. Total chlorophyll content declined progressively, while anthocyanin content increased initially but decreased significantly when NaCl concentration exceeded 100 mmol/L. Additionally, the contents of total flavonoids and total phenolics decreased markedly at salt concentrations above 100 mmol/L. These findings suggest that A. roxburghii can tolerate salt stress up to 100 mmol/L for 24 h without exhibiting substantial physiological or morphological damage. This study provides a theoretical basis for analyzing the salt tolerance mechanism of A. roxburghii. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

32 pages, 726 KB  
Article
Organic Rice Transition in a Changing Environment: Linking Farmers’ Benefits to Adaptation and Mitigation
by Jack O’Connor, Joachim H. Spangenberg, Ngan Ha Nguyen, Gioia Emidi, Arne Kappenberg, Linda Klamann, Nick Kupfer, Huynh Ky, Nguyen Thi Thu Nga, Chau Minh Khoi, Cao Dinh An Giang, Jürgen Ott, Björn Thiele, Bei Wu and Lutz Weihermüller
Land 2025, 14(10), 2074; https://doi.org/10.3390/land14102074 - 17 Oct 2025
Viewed by 322
Abstract
Organic rice farming (ORF) can support both climate change mitigation and adaptation. However, a deeper understanding of its specific benefits and challenges is needed. This paper synthesises current knowledge on the potential of ORF to enhance resilience in regions exposed to natural hazards, [...] Read more.
Organic rice farming (ORF) can support both climate change mitigation and adaptation. However, a deeper understanding of its specific benefits and challenges is needed. This paper synthesises current knowledge on the potential of ORF to enhance resilience in regions exposed to natural hazards, with particular attention to the climate-vulnerable region of the Mekong Delta (MKD), Vietnam. ORF can deliver multiple benefits: reducing production costs, revitalising degraded and pesticide-contaminated soils, improving water and soil quality, enhancing biodiversity, and contributing to human health and sustainable livelihoods. In the context of MKD, where rice production intersects with acute vulnerability to salinity intrusion, storms, and drought, ORF also presents opportunities for long-term adaptation by improving ecosystem health and reducing socio-ecological vulnerability. Despite these benefits, ORF remains limited in scale and impact due to the lack of integrated, landscape-level implementation strategies. Challenges like chemical contamination, limited access to certified organic inputs, and insufficient institutional and technical support leave many existing ORF initiatives vulnerable and constrain further expansion. To fully realise ORF’s resilience and sustainability potential, more targeted research and policy attention are needed. An integrated governance approach that considers both biophysical and socio-economic dimensions is essential to support a meaningful and scalable transition to organic rice farming in climate-sensitive regions like the MKD. Full article
(This article belongs to the Section Land Systems and Global Change)
Show Figures

Figure 1

13 pages, 735 KB  
Article
Pleth Variability Index or Inferior Vena Cava Collapsibility Index? Prospective Observational Study in Volume Control and Follow-Up Acute Kidney Injury
by Ecem Ermete Güler, Ejder Saylav Bora, Hüseyin Acar, Süleyman Kırık, Burak Acar and Şakir Hakan Aksu
Medicina 2025, 61(10), 1868; https://doi.org/10.3390/medicina61101868 - 17 Oct 2025
Viewed by 192
Abstract
Background and Objective: Acute kidney injury (AKI) is a serious condition requiring prompt fluid resuscitation, yet both under- and over-treatment carry risks. Accurate volume assessment is essential, especially in emergency settings. The Inferior Vena Cava Collapsibility Index (IVCCI) is commonly used but [...] Read more.
Background and Objective: Acute kidney injury (AKI) is a serious condition requiring prompt fluid resuscitation, yet both under- and over-treatment carry risks. Accurate volume assessment is essential, especially in emergency settings. The Inferior Vena Cava Collapsibility Index (IVCCI) is commonly used but has limitations. The Pleth Variability Index (PVI) offers a non-invasive alternative, though its role in AKI remains unclear. To compare the efficacy of the Pleth Variability Index (PVI) and Inferior Vena Cava Collapsibility Index (IVCCI) in assessing fluid responsiveness and predicting in-hospital mortality in patients with acute kidney injury. Materials and Methods: This prospective observational study enrolled 50 adult AKI patients presenting to a tertiary emergency department. All patients received sequential fluid resuscitation with 1000 mL and 2000 mL of isotonic saline. PVI, IVCCI, mean arterial pressure (MAP), peripheral oxygen saturation (SpO2, perfusion index (PI), and shock index (SI) were recorded at baseline and after each fluid bolus. Changes in these parameters were analyzed to assess their utility in fluid responsiveness. Additionally, the prognostic value of baseline PVI for in-hospital mortality was investigated. Results: PVI demonstrated a significant and dose-responsive decrease following fluid administration, outperforming IVCCI, MAP, PI, SpO2, and SI in sensitivity (p < 0.001). Baseline PVI values were significantly associated with mortality (AUC: 0.821, p < 0.001), whereas post-resuscitation PVI values showed no prognostic significance. IVCCI and PI showed comparable reliability but were less sensitive to incremental volume changes. Conclusions: PVI is a sensitive, non-invasive marker of fluid responsiveness in non-intubated AKI patients and may also serve as an early prognostic indicator. Its use in emergency departments could support fluid management decisions, but further large-scale, multicenter studies are needed to validate these findings. Full article
Show Figures

Figure 1

19 pages, 5643 KB  
Article
Identification of Reliable Reference Genes for qRT-PCR Normalization in Tomato Genotypes with Contrasting Salinity Tolerance
by Helen I. Rostovtseva, Liliya R. Bogoutdinova, Galina N. Raldugina and Ekaterina N. Baranova
Horticulturae 2025, 11(10), 1249; https://doi.org/10.3390/horticulturae11101249 - 16 Oct 2025
Viewed by 419
Abstract
Salt-tolerance improvement of tomatoes is largely a task of modern selection and plant molecular genetics because of cultivation on dry and irrigated lands under salt stress. To reveal the salt resistance gene, we need quantitative real-time polymerase chain reaction (qRT-PCR) normalization through reference [...] Read more.
Salt-tolerance improvement of tomatoes is largely a task of modern selection and plant molecular genetics because of cultivation on dry and irrigated lands under salt stress. To reveal the salt resistance gene, we need quantitative real-time polymerase chain reaction (qRT-PCR) normalization through reference genes analysis. Sometimes, housekeeping gene expression changes in response to various stress factors, especially salinity. In this manuscript, we evaluated expression changes of elongation factor 1α X53043.1 (EF1α), actin BT013707.1 (ACT), ubiquitin NM_001346406.1 (UBI), nuclear transcript factor XM_026030313.2 (NFT-Y), β-tubulin NM_001247878.2 (TUB), glyceraldehyde-3 phosphate dehydrogenase NM_001247874.2 (GAPDH), phosphatase 2A catalytic subunit NM_001247587.2 (PP2a), and phosphoglycerate kinase XM_004243920.4 (PGK) in salt-sensitive Solanum lycopersicum L. YaLF line and salt tolerance Rekordsmen cv. under 100 mM NaCl. We also suggested potential correlations between relative water content (RWC), ion accumulation, and reference gene expression in tomato genotypes with contrasting salinity tolerance. We used geNorm, NormFinder, BestKeeper, ∆Ct, and RefFinder algorithms to establish a set of the most reliable tomato candidate genes. The most stable genes for YaLF tomatoes were ACT, UBI, TUB, and PP2a. Despite differences in ranks, the NFT-Y was present in Rekordsmen’s stable set. Full article
(This article belongs to the Special Issue Stress Physiology and Molecular Biology of Vegetable Crops)
Show Figures

Figure 1

20 pages, 5795 KB  
Article
Freeze–Thaw-Driven Dynamics of Soil Water–Salt and Nitrogen: Effects and Implications for Irrigation Management in the Hetao Irrigation District
by Weili Ge, Jiaqi Jiang, Chunli Su, Xianjun Xie, Qing Zhang, Chunming Zhang, Yanlong Li, Xin Li, Jiajia Song and Yinchun Su
Water 2025, 17(20), 2991; https://doi.org/10.3390/w17202991 - 16 Oct 2025
Viewed by 290
Abstract
This study investigated the mechanisms of soil water–salt and nitrogen transport and optimal strategies under freeze–thaw (F-T) cycles in the salinized farmlands of the Hetao Irrigation District. A combined approach of field monitoring and laboratory simulation, utilizing both undisturbed and repacked soil columns [...] Read more.
This study investigated the mechanisms of soil water–salt and nitrogen transport and optimal strategies under freeze–thaw (F-T) cycles in the salinized farmlands of the Hetao Irrigation District. A combined approach of field monitoring and laboratory simulation, utilizing both undisturbed and repacked soil columns subjected to 0–15 F-T cycles and five irrigation treatments, was employed to analyze the spatiotemporal dynamics in Gleyic Solonchaks. The results demonstrated that freeze–thaw processes play an important role in salt migration in surface soil layers, driving salt redistribution through phase changes of soil moisture. Increased freeze–thaw cycles reduced surface soil moisture content while promoting upward salt accumulation, salt dynamics exhibited pronounced spatial heterogeneity and irrigation source dependency, and the surface layer exhibited lower salinity levels after irrigation compared to pre-irrigation levels. These cycles also enhanced short-term soil nitrogen transformation and facilitated inorganic nitrogen accumulation. Different irrigation regimes exhibited a significant impact on the dynamics of water–salt and nitrogen in soil, with low-salinity treatment (S2) and moderate-nitrogen irrigation (N2) effectively reducing surface salt accumulation while improving nitrogen utilization efficiency (moderate-nitrogen irrigation exhibited higher mineralization rates, which facilitated the release of inorganic nitrogen from soil). This study reveals the synergistic transport mechanisms of water–salt and nitrogen under freeze–thaw driving forces and provides a scientific basis and practical pathway for sustainable agricultural management in cold arid irrigation districts. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Graphical abstract

14 pages, 1049 KB  
Article
Comparative Critical Thermal and Salinity Maxima of a Threatened Freshwater Killifish and of the Global Invader Eastern Mosquitofish
by Yiannis Kapakos, Ioannis Leris, Nafsika Karakatsouli, Brian Zimmerman and Eleni Kalogianni
Fishes 2025, 10(10), 526; https://doi.org/10.3390/fishes10100526 - 16 Oct 2025
Viewed by 167
Abstract
Invasive fish species are a major driver of freshwater native fish biodiversity loss and their spread and impacts on the native fish are expected to increase within the current freshwater salinization and global warming crisis. In the current study, the upper thermal and [...] Read more.
Invasive fish species are a major driver of freshwater native fish biodiversity loss and their spread and impacts on the native fish are expected to increase within the current freshwater salinization and global warming crisis. In the current study, the upper thermal and salinity tolerance of the geographically range-restricted, threatened killifish Valencia robertae and its alien competitor, the globally invasive Eastern mosquitofish Gambusia holbrooki are compared in an experimental setting. Fish were exposed, after acclimation, to a continuous, dynamic temperature or salinity increase until predefined sub-lethal end points (loss of equilibrium and/or loss of buoyancy). The critical thermal and salinity maxima (CTMax and CSMax) were then calculated as the arithmetic mean of the combined thermal or salinity points at which the endpoint was attained. Finally, thermal and salinity safety margins for the two species were also calculated using abiotic data. Mosquitofish (females and males pooled) showed an average CΤmax of 35.85 °C and the killifish 36.27 °C (sexes pooled). Mosquitofish (male) showed an average CSmax of 40.25‰ and (male) killifish 42.64‰ (sexes also pooled). Killifish safety margins are much higher than those of the mosquitofish. Future impacts of global warming and salinisation on these species and on their interactions under current climate change scenarios are discussed. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

25 pages, 12040 KB  
Article
Water and Salt Transport and Balance in Saline Soils Under Different Land Use Types in the Seasonally Frozen Zone of Songnen Plain
by Caidie Chen, Yu Wang, Jianmin Bian, Xiaoqing Sun and Yanchen Wang
Water 2025, 17(20), 2974; https://doi.org/10.3390/w17202974 - 15 Oct 2025
Viewed by 249
Abstract
To investigate differences in water and salt transport during irrigation, freezing, and thawing periods in typical saline-affected paddy fields and saline-affected upland fields, field-based automated in situ monitoring was conducted in both types of saline-affected farmland (May 2023 to May 2024). Correlation analysis [...] Read more.
To investigate differences in water and salt transport during irrigation, freezing, and thawing periods in typical saline-affected paddy fields and saline-affected upland fields, field-based automated in situ monitoring was conducted in both types of saline-affected farmland (May 2023 to May 2024). Correlation analysis identified seasonal drivers of water–salt migration, while the HYDRUS-3D model simulated transport and equilibrium processes. The HYDRUS-3D model, equipped with a freeze–thaw module, accurately simulated complex water–salt transport in cold arid regions. Key findings include: (1) During freeze–thaw periods, soil moisture content and electrical conductivity (Ec) increased with the retreating frost front in both upland and paddy soils. During the irrigation period, maximum soil moisture content and Ec values occurred at 80 cm depth in dryland soils and 60 cm depth in paddy soils, primarily influenced by irrigation and capillary rise. (2) Groundwater salt ions significantly affected soil salinization in both farmland types. During the freeze–thaw period, Ec positively correlated with soil temperature. During the irrigation period, Ec positively correlated with evapotranspiration and negatively correlated with precipitation. (3) Salt changes during the irrigation, freezing, and thawing periods were −565.4, 326.85, and 376.55 kg/ha for upland fields, respectively; corresponding changes for paddy fields were −1217.0, 280.07, and 299.35 kg/ha. (4) Both land types exhibited reduced salinity during the irrigation period, with paddy fields showing a reduction 3.36 times greater than dryland fields. During the freezing and thawing periods, both land types experienced salinity accumulation, with dryland fields accumulating higher salinity levels than paddy fields. These results indicate that paddy field irrigation and drainage systems help mitigate salinization, while dryland fields are more prone to springtime salt accumulation. These findings provide a basis for developing targeted management strategies for saline–alkali soils. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

Back to TopTop