Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (737)

Search Parameters:
Keywords = safety-critical scenario

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2573 KiB  
Review
A Review on Pipeline In-Line Inspection Technologies
by Qingmiao Ma, Weige Liang and Peiyi Zhou
Sensors 2025, 25(15), 4873; https://doi.org/10.3390/s25154873 (registering DOI) - 7 Aug 2025
Abstract
Pipelines, as critical infrastructure in energy transmission, municipal facilities, industrial production, and specialized equipment, are essential to national economic security and social stability. This paper systematically reviews the domestic and international research status of pipeline in-line inspection (ILI) technologies, with a focus on [...] Read more.
Pipelines, as critical infrastructure in energy transmission, municipal facilities, industrial production, and specialized equipment, are essential to national economic security and social stability. This paper systematically reviews the domestic and international research status of pipeline in-line inspection (ILI) technologies, with a focus on four major technological systems: electromagnetic, acoustic, optical, and robotic technologies. The operational principles, application scenarios, advantages, and limitations of each technology are analyzed in detail. Although existing technologies have achieved significant progress in defect detection accuracy and environmental adaptability, they still face challenges including insufficient adaptability to complex environments, the inherent trade-off between detection accuracy and efficiency, and high equipment costs. Future research directions are identified as follows: intelligent algorithm optimization for multi-physics collaborative detection, miniaturized and integrated design of inspection devices, and scenario-specific development for specialized environments. Through technological innovation and multidisciplinary integration, pipeline ILI technologies are expected to progressively realize efficient, precise, and low-cost lifecycle safety monitoring of pipelines. Full article
Show Figures

Figure 1

18 pages, 3548 KiB  
Article
A Fault Diagnosis Framework for Waterjet Propulsion Pump Based on Supervised Autoencoder and Large Language Model
by Zhihao Liu, Haisong Xiao, Tong Zhang and Gangqiang Li
Machines 2025, 13(8), 698; https://doi.org/10.3390/machines13080698 - 7 Aug 2025
Abstract
The ship waterjet propulsion system is a crucial power unit for high-performance vessels, and the operational state of its core component, the waterjet pump, is directly related to navigation safety and mission reliability. To enhance the intelligence and accuracy of pump fault diagnosis, [...] Read more.
The ship waterjet propulsion system is a crucial power unit for high-performance vessels, and the operational state of its core component, the waterjet pump, is directly related to navigation safety and mission reliability. To enhance the intelligence and accuracy of pump fault diagnosis, this paper proposes a novel diagnostic framework that integrates a supervised autoencoder (SAE) with a large language model (LLM). This framework first employs an SAE to perform task-oriented feature learning on raw vibration signals collected from the pump’s guide vane casing. By jointly optimizing reconstruction and classification losses, the SAE extracts deep features that both represent the original signal information and exhibit high discriminability for different fault classes. Subsequently, the extracted feature vectors are converted into text sequences and fed into an LLM. Leveraging the powerful sequential information processing and generalization capabilities of LLM, end-to-end fault classification is achieved through parameter-efficient fine-tuning. This approach aims to avoid the traditional dependence on manually extracted time-domain and frequency-domain features, instead guiding the feature extraction process via supervised learning to make it more task-specific. To validate the effectiveness of the proposed method, we compare it with a baseline approach that uses manually extracted features. In two experimental scenarios, direct diagnosis with full data and transfer diagnosis under limited-data, cross-condition settings, the proposed method significantly outperforms the baseline in diagnostic accuracy. It demonstrates excellent performance in automated feature extraction, diagnostic precision, and small-sample data adaptability, offering new insights for the application of large-model techniques in critical equipment health management. Full article
(This article belongs to the Special Issue Fault Diagnosis and Fault Tolerant Control in Mechanical System)
Show Figures

Figure 1

17 pages, 1653 KiB  
Article
Corner Case Dataset for Autonomous Vehicle Testing Based on Naturalistic Driving Data
by Jian Zhao, Wenxu Li, Bing Zhu, Peixing Zhang, Zhaozheng Hu and Jie Meng
Smart Cities 2025, 8(4), 129; https://doi.org/10.3390/smartcities8040129 - 5 Aug 2025
Viewed by 35
Abstract
The safe and reliable operation of autonomous vehicles is contingent on comprehensive testing. However, the operational scenarios are inexhaustible. Corner cases, which critically influence autonomous vehicle safety, occur at an extremely low probability and follow a long-tail distribution. Corner cases can be defined [...] Read more.
The safe and reliable operation of autonomous vehicles is contingent on comprehensive testing. However, the operational scenarios are inexhaustible. Corner cases, which critically influence autonomous vehicle safety, occur at an extremely low probability and follow a long-tail distribution. Corner cases can be defined as combinations of driving task and scenario elements. These scenarios are characterized by low probability, high risk, and a tendency to reveal functional limitations inherent to autonomous driving systems, triggering anomalous behavior. This study constructs a novel corner case dataset using naturalistic driving data, specifically tailored for autonomous vehicle testing. A scenario marginality quantification method is designed to analyze multi-source naturalistic driving data, enabling efficient extraction of corner cases. Heterogeneous scenarios are systematically transformed, resulting in a dataset characterized by diverse interaction behaviors and standardized formatting. The results indicate that the scenario marginality of the dataset constructed in this study is 2.78 times that of mainstream naturalistic driving datasets, and the scenarios exhibit considerable diversity. The trajectory and velocity fluctuations, quantified at 0.013 m and 0.021 m/s, respectively, are consistent with the kinematic characteristics of real-world driving scenarios. These results collectively demonstrate the dataset’s high marginality, diversity, and applicability. Full article
Show Figures

Figure 1

18 pages, 5052 KiB  
Article
Slope Stability Assessment Using an Optuna-TPE-Optimized CatBoost Model
by Liangcheng Wang, Chengliang Zhang, Wei Wang, Tao Deng, Tao Ma and Pei Shuai
Eng 2025, 6(8), 185; https://doi.org/10.3390/eng6080185 - 4 Aug 2025
Viewed by 91
Abstract
Slope stability assessment is a critical component of engineering safety. Conventional analytical methods frequently struggle to integrate heterogeneous slope data and model intricate failure mechanisms, thereby constraining their efficacy in practical engineering scenarios. To tackle these issues, this study presents a novel slope [...] Read more.
Slope stability assessment is a critical component of engineering safety. Conventional analytical methods frequently struggle to integrate heterogeneous slope data and model intricate failure mechanisms, thereby constraining their efficacy in practical engineering scenarios. To tackle these issues, this study presents a novel slope stability classification model grounded in the Optuna-TPE-CatBoost framework. By leveraging the Tree-structured Parzen Estimator (TPE) within the Optuna framework, the model adaptively optimizes CatBoost hyperparameters, thus enhancing prediction accuracy and robustness. It incorporates six key features—slope height, slope angle, unit weight, cohesion, internal friction angle, and the pore pressure ratio—to establish a comprehensive and intelligent assessment system. Utilizing a dataset of 272 slope cases, the model was trained with k-fold cross-validation and dynamic class imbalance strategies to ensure its generalizability. The optimized model achieved impressive performance metrics: an area under the receiver operating characteristic curve (AUC) of 0.926, an accuracy of 0.901, a recall of 0.874, and an F1-score of 0.881, outperforming benchmark algorithms such as XGBoost, LightGBM, and the unoptimized CatBoost. Validation via engineering case studies confirms that the model accurately evaluates slope stability across diverse scenarios and effectively captures the complex interactions between key parameters. This model offers a reliable and interpretable solution for slope stability assessment under complex failure mechanisms. Full article
Show Figures

Figure 1

14 pages, 18722 KiB  
Article
Safe Autonomous UAV Target-Tracking Under External Disturbance, Through Learned Control Barrier Functions
by Promit Panja, Madan Mohan Rayguru and Sabur Baidya
Robotics 2025, 14(8), 108; https://doi.org/10.3390/robotics14080108 - 3 Aug 2025
Viewed by 201
Abstract
Ensuring the safe operation of Unmanned Aerial Vehicles (UAVs) is crucial for both mission-critical and safety-critical tasks. In scenarios where UAVs must track airborne targets, they need to follow the target’s path while maintaining a safe distance, even in the presence of unmodeled [...] Read more.
Ensuring the safe operation of Unmanned Aerial Vehicles (UAVs) is crucial for both mission-critical and safety-critical tasks. In scenarios where UAVs must track airborne targets, they need to follow the target’s path while maintaining a safe distance, even in the presence of unmodeled dynamics and environmental disturbances. This paper presents a novel collision avoidance strategy for dynamic quadrotor UAVs during target-tracking missions. We propose a safety controller that combines a learning-based Control Barrier Function (CBF) with standard sliding mode feedback. Our approach employs a neural network that learns the true CBF constraint, accounting for wind disturbances, while the sliding mode controller addresses unmodeled dynamics. This unified control law ensures safe leader-following behavior and precise trajectory tracking. By leveraging a learned CBF, the controller offers improved adaptability to complex and unpredictable environments, enhancing both the safety and robustness of the system. The effectiveness of our proposed method is demonstrated through the AirSim platform using the PX4 flight controller. Full article
(This article belongs to the Special Issue Applications of Neural Networks in Robot Control)
21 pages, 6892 KiB  
Article
Nose-Wheel Steering Control via Digital Twin and Multi-Disciplinary Co-Simulation
by Wenjie Chen, Luxi Zhang, Zhizhong Tong and Leilei Liu
Machines 2025, 13(8), 677; https://doi.org/10.3390/machines13080677 - 1 Aug 2025
Viewed by 181
Abstract
The aircraft nose-wheel steering system serves as a critical component for ensuring ground taxiing safety and maneuvering efficiency. However, its dynamic control stability faces significant challenges under complex operational conditions. Existing research predominantly focuses on single-discipline modeling, with insufficient in-depth analysis of the [...] Read more.
The aircraft nose-wheel steering system serves as a critical component for ensuring ground taxiing safety and maneuvering efficiency. However, its dynamic control stability faces significant challenges under complex operational conditions. Existing research predominantly focuses on single-discipline modeling, with insufficient in-depth analysis of the coupling effects between hydraulic system dynamics and mechanical dynamics. Traditional PID controllers exhibit limitations in scenarios involving nonlinear time-varying conditions caused by normal load fluctuations of the landing gear buffer strut during high-speed landing phases, including increased control overshoot and inadequate adaptability to abrupt load variations. These issues severely compromise the stability of high-speed deviation correction and overall aircraft safety. To address these challenges, this study constructs a digital twin model based on real aircraft data and innovatively implements multidisciplinary co-simulation via Simcenter 3D, AMESim 2021.1, and MATLAB R2020a. A fuzzy adaptive PID controller is specifically designed to achieve adaptive adjustment of control parameters. Comparative analysis through co-simulation demonstrates that the proposed mechanical–electrical–hydraulic collaborative control strategy significantly reduces response delay, effectively minimizes control overshoot, and decreases hydraulic pressure-fluctuation amplitude by over 85.2%. This work provides a novel methodology for optimizing steering stability under nonlinear interference scenarios, offering substantial engineering applicability and promotion value. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

26 pages, 2260 KiB  
Review
Transcatheter Aortic Valve Implantation in Cardiogenic Shock: Current Evidence, Clinical Challenges, and Future Directions
by Grigoris V. Karamasis, Christos Kourek, Dimitrios Alexopoulos and John Parissis
J. Clin. Med. 2025, 14(15), 5398; https://doi.org/10.3390/jcm14155398 - 31 Jul 2025
Viewed by 273
Abstract
Cardiogenic shock (CS) in the setting of severe aortic stenosis (AS) presents a critical and high-risk scenario with limited therapeutic options and poor prognosis. Transcatheter aortic valve implantation (TAVI), initially reserved for inoperable or high-risk surgical candidates, is increasingly being considered in patients [...] Read more.
Cardiogenic shock (CS) in the setting of severe aortic stenosis (AS) presents a critical and high-risk scenario with limited therapeutic options and poor prognosis. Transcatheter aortic valve implantation (TAVI), initially reserved for inoperable or high-risk surgical candidates, is increasingly being considered in patients with CS due to improvements in device technology, operator experience, and supportive care. This review synthesizes current evidence from large registries, observational studies, and meta-analyses that support the feasibility, safety, and potential survival benefit of urgent or emergent TAVI in selected CS patients. Procedural success is high, and early intervention appears to confer improved short-term and mid-term outcomes compared to balloon aortic valvuloplasty or medical therapy alone. Critical factors influencing prognosis include lactate levels, left ventricular ejection fraction, renal function, and timing of intervention. The absence of formal guidelines, logistical constraints, and ethical concerns complicate decision-making in this unstable population. A multidisciplinary Heart Team/Shock Team approach is essential to identify appropriate candidates, manage procedural risk, and guide post-intervention care. Further studies and the development of TAVI-specific risk models in CS are anticipated to refine patient selection and therapeutic strategies. TAVI may represent a transformative option for stabilizing hemodynamics and improving outcomes in this otherwise high-mortality group. Full article
(This article belongs to the Special Issue Aortic Valve Implantation: Recent Advances and Future Prospects)
Show Figures

Figure 1

18 pages, 1863 KiB  
Article
A Daily Accumulation Model for Predicting PFOS Residues in Beef Cattle Muscle After Oral Exposure
by Ian Edhlund, Lynn Post and Sara Sklenka
Toxics 2025, 13(8), 649; https://doi.org/10.3390/toxics13080649 - 31 Jul 2025
Viewed by 566
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been found worldwide in water, soil, plants, and animals, including humans. A primary route of exposure for humans and animals to PFAS is through the diet and drinking water. Perfluorooctane sulfonate (PFOS), a long-chain PFAS with a [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) have been found worldwide in water, soil, plants, and animals, including humans. A primary route of exposure for humans and animals to PFAS is through the diet and drinking water. Perfluorooctane sulfonate (PFOS), a long-chain PFAS with a relatively long half-life, has been associated with adverse health effects in humans and laboratory animals. There are few toxicokinetic studies on PFOS in domestic livestock raised for human food consumption, which are critical for assessing human food safety. This work aimed to develop a simple daily accumulation model (DAM) for predicting PFOS residues in edible beef cattle muscle. A one-compartment toxicokinetic model in a spreadsheet format was developed using simple calculations to account for daily PFAS into and out of the animal. The DAM was used to simulate two case studies to predict resultant PFOS residues in edible beef cattle tissues. The results demonstrated that the model can reasonably predict PFOS concentrations in beef cattle muscle in a real-world scenario. The DAM was then used to simulate dietary PFOS exposure in beef cattle throughout a typical lifespan in order to derive a generic bioaccumulation factor. The DAM is expected to work well for other PFAS in beef cattle, PFAS in other livestock species raised for meat, and other chemical contaminants with relatively long half-lives. Full article
Show Figures

Graphical abstract

59 pages, 2417 KiB  
Review
A Critical Review on the Battery System Reliability of Drone Systems
by Tianren Zhao, Yanhui Zhang, Minghao Wang, Wei Feng, Shengxian Cao and Gong Wang
Drones 2025, 9(8), 539; https://doi.org/10.3390/drones9080539 - 31 Jul 2025
Viewed by 459
Abstract
The reliability of unmanned aerial vehicle (UAV) energy storage battery systems is critical for ensuring their safe operation and efficient mission execution, and has the potential to significantly advance applications in logistics, monitoring, and emergency response. This paper reviews theoretical and technical advancements [...] Read more.
The reliability of unmanned aerial vehicle (UAV) energy storage battery systems is critical for ensuring their safe operation and efficient mission execution, and has the potential to significantly advance applications in logistics, monitoring, and emergency response. This paper reviews theoretical and technical advancements in UAV battery reliability, covering definitions and metrics, modeling approaches, state estimation, fault diagnosis, and battery management system (BMS) technologies. Based on international standards, reliability encompasses performance stability, environmental adaptability, and safety redundancy, encompassing metrics such as the capacity retention rate, mean time between failures (MTBF), and thermal runaway warning time. Modeling methods for reliability include mathematical, data-driven, and hybrid models, which are evaluated for accuracy and efficiency under dynamic conditions. State estimation focuses on five key battery parameters and compares neural network, regression, and optimization algorithms in complex flight scenarios. Fault diagnosis involves feature extraction, time-series modeling, and probabilistic inference, with multimodal fusion strategies being proposed for faults like overcharge and thermal runaway. BMS technologies include state monitoring, protection, and optimization, and balancing strategies and the potential of intelligent algorithms are being explored. Challenges in this field include non-unified standards, limited model generalization, and complexity in diagnosing concurrent faults. Future research should prioritize multi-physics-coupled modeling, AI-driven predictive techniques, and cybersecurity to enhance the reliability and intelligence of battery systems in order to support the sustainable development of unmanned systems. Full article
Show Figures

Figure 1

23 pages, 1396 KiB  
Article
Unsupervised Anomaly Detection Method for Electrical Equipment Based on Audio Latent Representation and Parallel Attention Mechanism
by Wei Zhou, Shaoping Zhou, Yikun Cao, Junkang Yang and Hongqing Liu
Appl. Sci. 2025, 15(15), 8474; https://doi.org/10.3390/app15158474 - 30 Jul 2025
Viewed by 230
Abstract
The stable operation of electrical equipment is critical for industrial safety, yet traditional anomaly detection methods often suffer from limitations, such as high resource demands, dependency on expert knowledge, and lack of real-world capabilities. To address these challenges, this article proposes an unsupervised [...] Read more.
The stable operation of electrical equipment is critical for industrial safety, yet traditional anomaly detection methods often suffer from limitations, such as high resource demands, dependency on expert knowledge, and lack of real-world capabilities. To address these challenges, this article proposes an unsupervised anomaly detection method for electrical equipment, utilizing audio latent representation and a parallel attention mechanism. The framework employs an autoencoder to extract low-dimensional features from audio signals and introduces a phase-aware parallel attention block to dynamically weight these features for an improved anomaly sensitivity. With adversarial training and a dual-encoding mechanism, the proposed method demonstrates robust performance in complex scenarios. Using public datasets (MIMII and ToyADMOS) and our collected real-world wind turbine data, it achieves high AUC scores, surpassing the best baselines, which demonstrates our framework design is suitable for industrial applications. Full article
Show Figures

Figure 1

31 pages, 3754 KiB  
Review
Artificial Gametogenesis and In Vitro Spermatogenesis: Emerging Strategies for the Treatment of Male Infertility
by Aris Kaltsas, Maria-Anna Kyrgiafini, Eleftheria Markou, Andreas Koumenis, Zissis Mamuris, Fotios Dimitriadis, Athanasios Zachariou, Michael Chrisofos and Nikolaos Sofikitis
Int. J. Mol. Sci. 2025, 26(15), 7383; https://doi.org/10.3390/ijms26157383 - 30 Jul 2025
Viewed by 478
Abstract
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, [...] Read more.
Male-factor infertility accounts for approxiamately half of all infertility cases globally, yet therapeutic options remain limited for individuals with no retrievable spermatozoa, such as those with non-obstructive azoospermia (NOA). In recent years, artificial gametogenesis has emerged as a promising avenue for fertility restoration, driven by advances in two complementary strategies: organotypic in vitro spermatogenesis (IVS), which aims to complete spermatogenesis ex vivo using native testicular tissue, and in vitro gametogenesis (IVG), which seeks to generate male gametes de novo from pluripotent or reprogrammed somatic stem cells. To evaluate the current landscape and future potential of these approaches, a narrative, semi-systematic literature search was conducted in PubMed and Scopus for the period January 2010 to February 2025. Additionally, landmark studies published prior to 2010 that contributed foundational knowledge in spermatogenesis and testicular tissue modeling were reviewed to provide historical context. This narrative review synthesizes multidisciplinary evidence from cell biology, tissue engineering, and translational medicine to benchmark IVS and IVG technologies against species-specific developmental milestones, ranging from rodent models to non-human primates and emerging human systems. Key challenges—such as the reconstitution of the blood–testis barrier, stage-specific endocrine signaling, and epigenetic reprogramming—are discussed alongside critical performance metrics of various platforms, including air–liquid interface slice cultures, three-dimensional organoids, microfluidic “testis-on-chip” devices, and stem cell-derived gametogenic protocols. Particular attention is given to clinical applicability in contexts such as NOA, oncofertility preservation in prepubertal patients, genetic syndromes, and reprocutive scenarios involving same-sex or unpartnered individuals. Safety, regulatory, and ethical considerations are critically appraised, and a translational framework is outlined that emphasizes biomimetic scaffold design, multi-omics-guided media optimization, and rigorous genomic and epigenomic quality control. While the generation of functionally mature sperm in vitro remains unachieved, converging progress in animal models and early human systems suggests that clinically revelant IVS and IVG applications are approaching feasibility, offering a paradigm shift in reproductive medicine. Full article
Show Figures

Figure 1

17 pages, 5455 KiB  
Article
A Hybrid Deep Learning Architecture for Enhanced Vertical Wind and FBAR Estimation in Airborne Radar Systems
by Fusheng Hou and Guanghui Sun
Aerospace 2025, 12(8), 679; https://doi.org/10.3390/aerospace12080679 - 30 Jul 2025
Viewed by 237
Abstract
Accurate prediction of the F-factor averaged over one kilometer (FBAR), a critical wind shear metric, is essential for aviation safety. A central F-factor is used to compute FBAR. i.e., compute the value of FBAR at a point using a spatial [...] Read more.
Accurate prediction of the F-factor averaged over one kilometer (FBAR), a critical wind shear metric, is essential for aviation safety. A central F-factor is used to compute FBAR. i.e., compute the value of FBAR at a point using a spatial interval beginning 500 m prior to the point and ending 500 m beyond the point. Traditional FBAR estimation using the Vicroy method suffers from limited vertical wind speed (W,h) accuracy, particularly in complex, non-idealized atmospheric conditions. This foundational study proposes a hybrid CNN-BiLSTM-Attention deep learning architecture that integrates spatial feature extraction, sequential dependency modeling, and attention mechanisms to address this limitation. The model was trained and evaluated on data generated by the industry-standard Airborne Doppler Weather Radar Simulation (ADWRS) system, using the DFW microburst case (C1-11) as a benchmark hazardous scenario. Following safety assurance principles aligned with SAE AS6983, the proposed model achieved a W,h estimation RMSE (root-mean-squared deviation) of 0.623 m s1 (vs. Vicroy’s 14.312 m s1) and a correlation of 0.974 on 14,524 test points. This subsequently improved FBAR prediction RMSE by 98.5% (0.0591 vs. 4.0535) and MAE (Mean Absolute Error) by 96.1% (0.0434 vs. 1.1101) compared to Vicroy-derived values. The model demonstrated a 65.3% probability of detection for hazardous downdrafts with a low 1.7% false alarm rate. These results, obtained in a controlled and certifiable simulation environment, highlight deep learning’s potential to enhance the reliability of airborne wind shear detection for civil aircraft, paving the way for next-generation intelligent weather avoidance systems. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

15 pages, 501 KiB  
Review
Pseudovirus as an Emerging Reference Material in Molecular Diagnostics: Advancement and Perspective
by Leiqi Zheng and Sihong Xu
Curr. Issues Mol. Biol. 2025, 47(8), 596; https://doi.org/10.3390/cimb47080596 - 29 Jul 2025
Viewed by 352
Abstract
In recent years, the persistent emergence of novel infectious pathogens (epitomized by the global coronavirus disease-2019 (COVID-2019) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) has propelled nucleic acid testing (NAT) into an unprecedented phase of rapid development. As a key [...] Read more.
In recent years, the persistent emergence of novel infectious pathogens (epitomized by the global coronavirus disease-2019 (COVID-2019) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) has propelled nucleic acid testing (NAT) into an unprecedented phase of rapid development. As a key technology in modern molecular diagnostics, NAT achieves precise pathogen identification through specific nucleic acid sequence recognition, establishing itself as an indispensable diagnostic tool across diverse scenarios, including public health surveillance, clinical decision-making, and food safety control. The reliability of NAT systems fundamentally depends on reference materials (RMs) that authentically mimic the biological characteristics of natural viruses. This critical requirement reveals significant limitations of current RMs in the NAT area: naked nucleic acids lack the structural authenticity of viral particles and exhibit restricted applicability due to stability deficiencies, while inactivated viruses have biosafety risks and inter-batch heterogeneity. Notably, pseudovirus has emerged as a novel RM that integrates non-replicative viral vectors with target nucleic acid sequences. Demonstrating superior performance in mimicking authentic viral structure, biosafety, and stability compared to conventional RMs, the pseudovirus has garnered substantial attention. In this comprehensive review, we critically summarize the engineering strategies of pseudovirus platforms and their emerging role in ensuring the reliability of NAT systems. We also discuss future prospects for standardized pseudovirus RMs, addressing key challenges in scalability, stability, and clinical validation, aiming to provide guidance for optimizing pseudovirus design and practical implementation, thereby facilitating the continuous improvement and innovation of NAT technologies. Full article
(This article belongs to the Special Issue Molecular Research on Virus-Related Infectious Disease)
Show Figures

Figure 1

15 pages, 1551 KiB  
Article
Migration Safety of Perfluoroalkyl Substances from Sugarcane Pulp Tableware: Residue Analysis and Takeout Simulation Study
by Ling Chen, Changying Hu and Zhiwei Wang
Molecules 2025, 30(15), 3166; https://doi.org/10.3390/molecules30153166 - 29 Jul 2025
Viewed by 276
Abstract
The rapid growth of plant-based biodegradable tableware, driven by plastic restrictions, necessitates rigorous safety assessments of potential chemical contaminants like per- and polyfluoroalkyl substances (PFASs). This study comprehensively evaluated PFAS contamination risks in commercial sugarcane pulp tableware, focusing on the residues of five [...] Read more.
The rapid growth of plant-based biodegradable tableware, driven by plastic restrictions, necessitates rigorous safety assessments of potential chemical contaminants like per- and polyfluoroalkyl substances (PFASs). This study comprehensively evaluated PFAS contamination risks in commercial sugarcane pulp tableware, focusing on the residues of five target PFASs (PFOA, PFOS, PFNA, PFHxA, PFPeA) and their migration behavior under simulated use and takeout conditions. An analysis of 22 samples revealed elevated levels of total fluorine (TF: 33.7–163.6 mg/kg) exceeding the EU limit (50 mg/kg) in 31% of products. While sporadic PFOA residues surpassed the EU single compound limit (0.025 mg/kg) in 9% of samples (16.1–25.5 μg/kg), the levels of extractable organic fluorine (EOF: 4.9–17.4 mg/kg) and the low EOF/TF ratio (3.19–10.4%) indicated inorganic fluorides as the primary TF source. Critically, the migration of all target PFASs into food simulants (water, 4% acetic acid, 50% ethanol, 95% ethanol) under standardized use conditions was minimal (PFOA: 0.52–0.70 μg/kg; PFPeA: 0.54–0.63 μg/kg; others < LOQ). Even under aggressive simulated takeout scenarios (50 °C oscillation for 12 h + 12 h storage at 25 °C), PFOA migration reached only 0.99 ± 0.01 μg/kg in 95% ethanol. All migrated levels were substantially (>15-fold) below typical safety thresholds (e.g., 0.01 mg/kg). These findings demonstrate that, despite concerning residue levels in some products pointing to manufacturing contamination sources, migration during typical and even extended use scenarios poses negligible immediate consumer risk. This study underscores the need for stricter quality control targeting PFOA and inorganic fluoride inputs in sugarcane pulp tableware production. Full article
Show Figures

Figure 1

32 pages, 6323 KiB  
Article
Design, Implementation and Evaluation of an Immersive Teleoperation Interface for Human-Centered Autonomous Driving
by Irene Bouzón, Jimena Pascual, Cayetana Costales, Aser Crespo, Covadonga Cima and David Melendi
Sensors 2025, 25(15), 4679; https://doi.org/10.3390/s25154679 - 29 Jul 2025
Viewed by 359
Abstract
As autonomous driving technologies advance, the need for human-in-the-loop systems becomes increasingly critical to ensure safety, adaptability, and public confidence. This paper presents the design and evaluation of a context-aware immersive teleoperation interface that integrates real-time simulation, virtual reality, and multimodal feedback to [...] Read more.
As autonomous driving technologies advance, the need for human-in-the-loop systems becomes increasingly critical to ensure safety, adaptability, and public confidence. This paper presents the design and evaluation of a context-aware immersive teleoperation interface that integrates real-time simulation, virtual reality, and multimodal feedback to support remote interventions in emergency scenarios. Built on a modular ROS2 architecture, the system allows seamless transition between simulated and physical platforms, enabling safe and reproducible testing. The experimental results show a high task success rate and user satisfaction, highlighting the importance of intuitive controls, gesture recognition accuracy, and low-latency feedback. Our findings contribute to the understanding of human-robot interaction (HRI) in immersive teleoperation contexts and provide insights into the role of multisensory feedback and control modalities in building trust and situational awareness for remote operators. Ultimately, this approach is intended to support the broader acceptability of autonomous driving technologies by enhancing human supervision, control, and confidence. Full article
(This article belongs to the Special Issue Human-Centred Smart Manufacturing - Industry 5.0)
Show Figures

Figure 1

Back to TopTop