Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,282)

Search Parameters:
Keywords = safety performance indicator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5801 KiB  
Article
Sustainable Precursor-Based Titanium Dioxide–Graphene Nanocomposite Electrochemical Sensor for Sensitive Detection of Diuron in Vegetables
by Lisi Wang, Xiaoqing Li, Yijing Ai, Brij Mohan, Hongji Li, Zhisong Lu, Baoli Wang and Wei Sun
Foods 2025, 14(17), 2946; https://doi.org/10.3390/foods14172946 (registering DOI) - 24 Aug 2025
Abstract
The persistent presence of pesticide residues in vegetables raises significant concerns for food safety and public health, highlighting the need for sensing platforms that are efficient, affordable, and environmentally friendly while minimizing analysis time and reagent use. In this study, we developed a [...] Read more.
The persistent presence of pesticide residues in vegetables raises significant concerns for food safety and public health, highlighting the need for sensing platforms that are efficient, affordable, and environmentally friendly while minimizing analysis time and reagent use. In this study, we developed a laser-induced graphene electrode (LIGE) modified with a titanium dioxide–Enteromorpha-derived carbon composite (TiO2@EDC) for the sensitive electrochemical detection of the herbicide diuron in vegetables. This integrated system streamlines material synthesis, electrode fabrication, and electrochemical analysis into a single, practical platform for food safety monitoring. Under optimized conditions, this sensor exhibited a wide linear detection range of 0.01 µM to 1 mM, with a low limit of detection of 2.99 nM (3 S/N) and a limit of quantification of 9.98 nM (10 S/N). Notably, the sensor demonstrated excellent analytical performance in real vegetable samples by accurately quantifying diuron residues in lettuce, indicating its potential for on-site monitoring of pesticide contamination in food matrices to ensure food safety. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

19 pages, 1359 KiB  
Article
Assessment of Fluoride Intake Risk via Infusions of Commercial Leaf Teas Available in Poland Using the Target Hazard Quotient Index Approach
by Agata Małyszek, Ireneusz Zawiślak, Michał Kulus, Adam Watras, Julia Kensy, Agnieszka Kotela, Marzena Styczyńska, Maciej Janeczek, Jacek Matys and Maciej Dobrzyński
Foods 2025, 14(17), 2944; https://doi.org/10.3390/foods14172944 (registering DOI) - 24 Aug 2025
Abstract
The objective of this study was to assess the content of selected elements—fluorine, calcium and inorganic phosphorus—in infusions prepared from selected commercial leaf teas available on the Polish market. A comprehensive analysis was conducted based on tea type and geographical origin. In addition, [...] Read more.
The objective of this study was to assess the content of selected elements—fluorine, calcium and inorganic phosphorus—in infusions prepared from selected commercial leaf teas available on the Polish market. A comprehensive analysis was conducted based on tea type and geographical origin. In addition, the Target Hazard Quotient (THQ) was calculated to estimate the non-carcinogenic health risk associated with fluoride intake from tea consumption. Methods: A total of 98 leaf tea samples were analyzed, including 55 black, 27 green, 9 oolong, and 7 white teas. Standardized brewing protocols were applied. Measured parameters included pH, calcium and inorganic phosphorus content, buffer capacity, and titratable acidity. Fluoride concentrations were determined using an ion-selective electrode. Statistical analysis was performed using non-parametric methods (Kruskal–Wallis ANOVA with DSCF post hoc test), and heatmaps were generated to illustrate the distribution of THQ across different models. Results: Black teas exhibited significantly lower pH values and higher titratable acidity, buffer capacity, and inorganic phosphorus levels compared to other tea types, indicating distinct physicochemical properties. Although all THQ values for fluoride remained well below the safety threshold (THQ < 1), the highest values were observed in elderly individuals with low body weight, particularly women consuming green tea, suggesting increased vulnerability in this subgroup. Conclusions: Among the analyzed samples, black teas demonstrated the most distinct chemical profile, characterized by the lowest pH and the highest acidity, buffer capacity, and fluoride and phosphorus content—especially in teas originating from Africa and Central Asia. While fluoride exposure from leaf tea infusions does not appear to pose a direct health risk, older adults, particularly low-weight women, may be more susceptible to potential non-carcinogenic effects and should moderate their intake of high-fluoride teas. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

27 pages, 3086 KiB  
Article
Trimetazidine–Profen Hybrid Molecules: Synthesis, Chemical Characterization, and Biological Evaluation of Their Racemates
by Diyana Dimitrova, Stanimir Manolov, Iliyan Ivanov, Dimitar Bojilov, Nikol Dimova, Gabriel Marc, Smaranda Oniga and Ovidiu Oniga
Pharmaceuticals 2025, 18(9), 1251; https://doi.org/10.3390/ph18091251 (registering DOI) - 23 Aug 2025
Abstract
Background: Trimetazidine is a clinically established cardioprotective agent with anti-ischemic and antioxidant properties, widely used in the management of coronary artery disease. Combining its metabolic and cytoprotective effects with the potent anti-inflammatory activity of profens presents a promising therapeutic strategy. Methods: Five novel [...] Read more.
Background: Trimetazidine is a clinically established cardioprotective agent with anti-ischemic and antioxidant properties, widely used in the management of coronary artery disease. Combining its metabolic and cytoprotective effects with the potent anti-inflammatory activity of profens presents a promising therapeutic strategy. Methods: Five novel trimetazidine–profen hybrid compounds were synthesized using N,N′-dicyclohexylcarbodiimide-mediated coupling and structurally characterized by NMR and high-resolution mass spectrometry. Their antioxidant activity was evaluated by hydroxyl radical scavenging assays (HRSA), and the anti-inflammatory potential was assessed via the inhibition of albumin denaturation (IAD). Lipophilicity was determined chromatographically. Molecular docking and 100 ns molecular dynamics simulations were performed to investigate the binding modes and stability in human serum albumin (HSA) binding sites. The acute toxicity of the hybrid molecules was predicted in silico using GUSAR software. Results: All synthesized hybrids demonstrated varying degrees of biological activity, with compound 3c exhibiting the most potent antioxidant (HRSA IC₅₀ = 71.13 µg/mL) and anti-inflammatory (IAD IC₅₀ = 108.58 µg/mL) effects. Lipophilicity assays indicated moderate membrane permeability, with compounds 3c and 3d showing favorable profiles. Docking studies revealed stronger binding affinities of S-enantiomers, particularly 3c and 3d, to Sudlow sites II and III in HSA. Molecular dynamics simulations confirmed stable ligand–protein complexes, highlighting compound 3c as maintaining consistent and robust interactions. The toxicity results indicate that most hybrids, particularly compounds 3b3d, exhibit a favorable safety profile compared to the parent trimetazidine. Conclusion: The hybrid trimetazidine–profen compounds synthesized herein, especially compound 3c, demonstrate promising dual antioxidant and anti-inflammatory therapeutic potential. Their stable interaction with serum albumin and balanced physicochemical properties support further development as novel agents for managing ischemic heart disease and associated inflammatory conditions. Full article
(This article belongs to the Special Issue Advances in the Medicinal Synthesis of Bioactive Compounds)
Show Figures

Figure 1

25 pages, 7172 KiB  
Article
Evaluation of Long-Term Skid Resistance in Granite Manufactured Sand Concrete
by Hongjie Li, Biao Shu, Chenglin Du, Yingming Zhuo, Zongxi Chen, Wentao Zhang, Xiaolong Yang, Yuanfeng Chen and Minqiang Pan
Lubricants 2025, 13(9), 375; https://doi.org/10.3390/lubricants13090375 (registering DOI) - 23 Aug 2025
Abstract
The widespread application of granite manufactured sand (GS) concrete in pavement engineering is limited by issues such as suboptimal particle size distribution and an unclear optimal rock powder content. Furthermore, research on the long-term evolution of the skid resistance characteristics of GS concrete [...] Read more.
The widespread application of granite manufactured sand (GS) concrete in pavement engineering is limited by issues such as suboptimal particle size distribution and an unclear optimal rock powder content. Furthermore, research on the long-term evolution of the skid resistance characteristics of GS concrete remains relatively scarce. This knowledge gap makes it difficult to accurately assess the skid resistance performance of GS concrete in practical engineering applications, thereby compromising traffic safety. To address this research gap, this study utilized a self-developed indoor abrasion tester for pavement concrete to assess the skid resistance of GS concrete. Three-dimensional laser scanning was employed to acquire the concrete’s surface texture parameters. Using the friction coefficient and texture parameters as skid resistance evaluation indicators, and combining these with changes in the concrete’s surface morphology, the study explores how effective sand content, stone powder content, and fine aggregate lithology affect the long-term skid resistance of GS concrete pavements and reveals the evolution trends of their long-term skid resistance. Research results show that as the number of wear cycles increases, low and high effective sand content affect the surface friction coefficient of specimens in opposite ways. Specimens with 95% effective sand content exhibit superior skid resistance. Stone powder content influences the friction coefficient in three distinct variation patterns, showing no clear overall trend. Nevertheless, specimens with 5% stone powder content demonstrate better skid resistance. Among different fine aggregate lithologies, GS yields a higher friction coefficient than river sand (RS), while limestone manufactured sand (LS) shows significant friction coefficient fluctuations across different wear cycles. Adding stone powder substantially enhances mortar strength and delays groove collapse edge formation. Moreover, higher effective sand content and proper stone powder content mitigate bleeding, thereby improving mortar performance. Full article
(This article belongs to the Special Issue Tire/Road Interface and Road Surface Textures)
Show Figures

Figure 1

15 pages, 2250 KiB  
Article
Residual Characteristics and Processing Factors of Flubendiamide and Tebufenozide in Rice and Its Processed Products
by Dongju Kim, Eunbeen Oh, Seunghyeon Jo, Hyeonwoo Shin, Youngjin Ham, Junyoung Kim, Mihyun Cho, Moohyeog Im and Keesung Kyung
Foods 2025, 14(17), 2925; https://doi.org/10.3390/foods14172925 - 22 Aug 2025
Viewed by 53
Abstract
This study aimed to evaluate residue changes in flubendiamide and tebufenozide during the processing of whole grain into milled rice, cooked rice, and rice cake, and to calculate their processing factors (PFs). For the processing study, pesticides were applied at three times the [...] Read more.
This study aimed to evaluate residue changes in flubendiamide and tebufenozide during the processing of whole grain into milled rice, cooked rice, and rice cake, and to calculate their processing factors (PFs). For the processing study, pesticides were applied at three times the recommended rate based on Korea’s good agricultural practice (GAP), and processed products were prepared using conventional methods. Residual pesticide analysis was performed using a modified QuEChERS method and LC-MS/MS. The residue analysis method was validated based on parameters including LOQ, linearity, and accuracy at the LOQ, 10LOQ, and MRL levels, with the LOQ set at 0.01 mg/kg for all samples. During milling, which removes the hull, more than 90% of the pesticide residues were eliminated. Additional reductions exceeding 50% were observed during cooking and rice cake processing. All PFs, except for those in the hulls, were less than 1, indicating that processing reduces pesticide levels. Despite the use of threefold the GAP rate, the %ADI values for all processed products remained below 1%, suggesting negligible dietary risk. These findings provide scientific evidence supporting the safety of processed rice products regarding pesticide residues and highlight the importance of considering processing effects in dietary exposure assessments. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

17 pages, 396 KiB  
Article
Neural Network-Based Approaches for Predicting Construction Overruns with Sustainability Considerations
by Kristina Galjanić, Ivan Marović and Tomaš Hanak
Sustainability 2025, 17(16), 7559; https://doi.org/10.3390/su17167559 - 21 Aug 2025
Viewed by 142
Abstract
This research focuses on developing neural network-based models for predicting time and cost overruns in construction projects during the construction phase, incorporating sustainability considerations. Previous studies have identified seven key performance areas that affect the final outcome: productivity, quality, time, cost, safety, team [...] Read more.
This research focuses on developing neural network-based models for predicting time and cost overruns in construction projects during the construction phase, incorporating sustainability considerations. Previous studies have identified seven key performance areas that affect the final outcome: productivity, quality, time, cost, safety, team satisfaction, and client satisfaction. Although the interconnections among these performance areas are recognized, their exact relationships and impacts are not fully understood. Hence, the utilization of a neural networks proves to be highly beneficial in predicting the outcome of future construction projects, as it can learn from data and identify patterns, without requiring a complete understanding of these mutual influences. The neural network was trained and tested on the data collected on five completed construction projects, each analyzed at three distinct stages of execution. A total of 182 experiments were conducted to explore different neural network architectures. The most effective configurations for predicting time and cost overruns were identified and evaluated, demonstrating the potential of neural network-based approaches to support more sustainable and proactive project management. The time overrun prediction model demonstrated high accuracy, achieving a MAPE of 10.93%, RMSE of 0.128, and correlation of 0.979. While the cost overrun model showed a lower predictive accuracy, its MAPE (166.76%), RMSE (0.4179), and correlation (0.936) values indicate potential for further refinement. These findings highlight the applicability of neural network-based approaches in construction project management and their potential to support more proactive and informed decision-making. Full article
Show Figures

Figure 1

14 pages, 1341 KiB  
Article
Optimizing Ovarian Stimulation for IVF in PCOS Patients: A Novel Day 1 GnRH Antagonist Protocol
by Sudarsan Ghosh Dastidar, Biswanath Ghosh Dastidar, Ratna Chattopadhyay and Chandan Chakraborty
J. Clin. Med. 2025, 14(16), 5901; https://doi.org/10.3390/jcm14165901 - 21 Aug 2025
Viewed by 117
Abstract
Objectives: Gonadotropin-releasing hormone (GnRH) antagonist protocols are preferred in polycystic ovary syndrome (PCOS) patients undergoing in vitro fertilization (IVF) as they provide the best combination of flexibility, acceptable outcomes, and safety. Numerous studies have compared outcomes between GnRH agonist long protocol and [...] Read more.
Objectives: Gonadotropin-releasing hormone (GnRH) antagonist protocols are preferred in polycystic ovary syndrome (PCOS) patients undergoing in vitro fertilization (IVF) as they provide the best combination of flexibility, acceptable outcomes, and safety. Numerous studies have compared outcomes between GnRH agonist long protocol and standard flexible antagonist protocol. However, there are scant studies investigating the effectiveness of antagonist administration from day 1 of ovarian stimulation in PCOS patients. Methods: We performed a retrospective cohort study to compare laboratory and clinical outcomes in IVF between standard flexible day 5/day 6 versus day 1 GnRH antagonist protocol in PCOS patients. Results: Our data indicates significantly superior oocyte yield and top-quality embryo proportion in patients with antagonists from day 1. Cumulative clinical pregnancy rates also tended to be superior in this group. Conclusions: Our findings indicate that administration of GnRH antagonists from day 1 of stimulation in PCOS patients undergoing IVF may lead to superior results. Full article
(This article belongs to the Special Issue Polycystic Ovary Syndrome (PCOS): State of the Art: 2nd Edition)
Show Figures

Figure 1

26 pages, 6425 KiB  
Article
Deep Spectrogram Learning for Gunshot Classification: A Comparative Study of CNN Architectures and Time-Frequency Representations
by Pafan Doungpaisan and Peerapol Khunarsa
J. Imaging 2025, 11(8), 281; https://doi.org/10.3390/jimaging11080281 - 21 Aug 2025
Viewed by 204
Abstract
Gunshot sound classification plays a crucial role in public safety, forensic investigations, and intelligent surveillance systems. This study evaluates the performance of deep learning models in classifying firearm sounds by analyzing twelve time–frequency spectrogram representations, including Mel, Bark, MFCC, CQT, Cochleagram, STFT, FFT, [...] Read more.
Gunshot sound classification plays a crucial role in public safety, forensic investigations, and intelligent surveillance systems. This study evaluates the performance of deep learning models in classifying firearm sounds by analyzing twelve time–frequency spectrogram representations, including Mel, Bark, MFCC, CQT, Cochleagram, STFT, FFT, Reassigned, Chroma, Spectral Contrast, and Wavelet. The dataset consists of 2148 gunshot recordings from four firearm types, collected in a semi-controlled outdoor environment under multi-orientation conditions. To leverage advanced computer vision techniques, all spectrograms were converted into RGB images using perceptually informed colormaps. This enabled the application of image processing approaches and fine-tuning of pre-trained Convolutional Neural Networks (CNNs) originally developed for natural image classification. Six CNN architectures—ResNet18, ResNet50, ResNet101, GoogLeNet, Inception-v3, and InceptionResNetV2—were trained on these spectrogram images. Experimental results indicate that CQT, Cochleagram, and Mel spectrograms consistently achieved high classification accuracy, exceeding 94% when paired with deep CNNs such as ResNet101 and InceptionResNetV2. These findings demonstrate that transforming time–frequency features into RGB images not only facilitates the use of image-based processing but also allows deep models to capture rich spectral–temporal patterns, providing a robust framework for accurate firearm sound classification. Full article
(This article belongs to the Section Image and Video Processing)
Show Figures

Figure 1

23 pages, 4182 KiB  
Article
A Long Sequence Time-Series Forecasting Method for Early Warning of Long Landing Risks with QAR Flight Data
by Zeyuan Zhou, Xiaolei Chong, Zhenglei Chen, Jicheng Zhou, Jichao Zhang and Pengshuo Guo
Aerospace 2025, 12(8), 744; https://doi.org/10.3390/aerospace12080744 - 21 Aug 2025
Viewed by 235
Abstract
Long landings can reduce runway utilization and increase the probability of runway incursions and excursions. Previous studies on long landings often lacked support from actual operational data and primarily relied on event-triggering logic established by airlines for parameter exceedance detection and retrospective analysis. [...] Read more.
Long landings can reduce runway utilization and increase the probability of runway incursions and excursions. Previous studies on long landings often lacked support from actual operational data and primarily relied on event-triggering logic established by airlines for parameter exceedance detection and retrospective analysis. In response, a comprehensive risk prediction framework for aircraft long landings, supported by Quick Access Recorder (QAR) data, was constructed. The framework includes a data analysis pipeline, a sequence prediction model, and performance evaluation metrics for accident warning efficiency. Specifically, approximately 3 million rows of real QAR data were collected, and reasonable landing intervals were extracted based on pilots’ correct landing sightlines, attention allocation, and actual visual scenarios at departure heights. Gradient Boosting Decision Trees (GBDT) were employed to develop a method for extracting landing interval feature data, based on monitored parameters and ranges of landing distance. Additionally, the GBDT-Informer long-sequence time series prediction model was developed to forecast landing distance, accompanied by the construction of effective metrics for evaluating prediction performance. The results indicate that the GBDT-Informer model effectively models the temporal dimensions of landing intervals, accurately predicting ground speed (GS), radio altitude (RALT), and landing distance sequences. Compared to other prediction models, the GBDT-Informer model consistently achieved the smallest RMSE, MAE, and MAPE values, demonstrating high prediction accuracy. This predictive framework allows for the analysis of the coupling relationships among multiple parameters in flight data and their interrelations with exceedance anomalies. The findings can be applied in actual flight landings to promptly assess whether landing distances exceed limits, providing quick references for flight crews during landing or go-around decisions, thereby enhancing operational safety margins during the landing phase. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

15 pages, 5445 KiB  
Article
Numerical Study on Chemical Vapor Deposition of Aluminide Coatings
by Shihong Xin, Baiwan Su, Qizheng Li and Chonghang Tang
Coatings 2025, 15(8), 974; https://doi.org/10.3390/coatings15080974 - 21 Aug 2025
Viewed by 183
Abstract
To ensure the mechanical performance of gas turbine hollow blades under high-temperature conditions, the application of aluminide high-temperature protective coatings on the inner gas flow channel surfaces of hollow blades via chemical vapor deposition (CVD) has become a critical measure for enhancing blade [...] Read more.
To ensure the mechanical performance of gas turbine hollow blades under high-temperature conditions, the application of aluminide high-temperature protective coatings on the inner gas flow channel surfaces of hollow blades via chemical vapor deposition (CVD) has become a critical measure for enhancing blade safety. This study employs computational fluid dynamics (CFD) to investigate the flow field within CVD reactors and the influences of deposition processes on the chemical reaction rates at sample surfaces, thereby guiding the optimization of CVD reactor design and deposition parameters. Three distinct CVD reactor configurations are examined to analyze the flow characteristics of precursor gases and the internal flow field distributions. The results demonstrate that Model A, featuring a bottom-positioned outlet and an extended inlet, exhibits a larger stable deposition zone with more uniform flow velocities near the sample surface, thereby indicating the formation of higher-quality aluminide coatings. Based on Model A, CFD simulations are conducted to evaluate the effects of process parameters, including inflow velocity, pressure, and temperature, on aluminide coating deposition. The results show that the surface chemical reaction rate increases with inflow velocity (0.0065–6.5 m/s), but the relative change rate (ratio of reaction rate to flow rate) shows a declining trend. Temperature variations (653–1453 K) induce a trapezoidal-shaped trend in deposition rates: an initial increase (653–1053 K), followed by stabilization (1053–1303 K), and a subsequent decline (>1303 K). The underlying mechanisms for this trend are discussed. Pressure variations (0.5–2 atm) reveal that both excessively low and high pressures reduce surface reaction rates, with optimal performance observed near 1 atm. This study provides a methodology and insights for optimizing CVD reactor designs and process parameters to enhance aluminide coating quality on turbine blades. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

18 pages, 1441 KiB  
Article
Cutinase Production in Komagataella phaffii (Pichia pastoris): Performance Differences Between Host Strains
by Andrea Sabido-Ramos, Montserrat Tagle-Gil, Krystel Estefany León-Montes, José Augusto Castro-Rodríguez and Amelia Farrés
Fermentation 2025, 11(8), 483; https://doi.org/10.3390/fermentation11080483 - 20 Aug 2025
Viewed by 247
Abstract
The Pichia system has been exploited for decades as a host for recombinant protein production, but there is still an information gap regarding problems that may arise with its use. The application of strains based on the methanol-induced alcohol oxidase 1 (AOX1) promoter [...] Read more.
The Pichia system has been exploited for decades as a host for recombinant protein production, but there is still an information gap regarding problems that may arise with its use. The application of strains based on the methanol-induced alcohol oxidase 1 (AOX1) promoter may represent a safety issue, and its performance varies among strains. In this study, the ability of a Komagataella phaffii MutS KM71H strain to produce recombinant cutinases was evaluated and compared to that of the more widely used Mut+ X-33 strain. The effects of the nature of the cutinase (ANCUT1 and ANCUT3, from Aspergillus nidulans), methanol level, and inoculum concentrations were evaluated in shake flasks containing a complex medium. Higher activities and volumetric cutinase productivity were observed at lower induction cell densities (0.5%) for the MutS KM71H aox1::pPICZα-A-ANCUT1 strain, while a higher one (2%) yielded better results in KM71H aox1::pPICZα-A-ANCUT3. The best inoculum and inducer conditions for both strains yielded similar results. The behavior of the different cutinases in the MutS or Mut+ genetic background was opposed: strain KM71H aox1::pPICZα-A-ANCUT3 produced 19% more activity than strain X-33 aox1::pPICZα-A-ANCUT3, while the ANCUT1 containing strain produced significantly higher activity in the X-33 Mut+ strain. These results indicate that MutS strains are viable host options without the complications of rapidly growing methanol strains. The effect of the gene structure being expressed is a phenomenon that needs further exploration. Full article
(This article belongs to the Section Microbial Metabolism, Physiology & Genetics)
Show Figures

Figure 1

21 pages, 21776 KiB  
Article
Seismic Safety Analysis of Nuclear Power Plant Pumping Stations Using the Compact Viscous-Spring Boundary via Maximum Initial Time-Step Method
by Xunqiang Yin, Min Zhao, Weilong Yang, Junkai Zhang and Jianbo Li
Buildings 2025, 15(16), 2951; https://doi.org/10.3390/buildings15162951 - 20 Aug 2025
Viewed by 149
Abstract
Pumping station structures are widely employed to supply circulating cooling water systems in nuclear power plants (NPPs) throughout China. Investigating their seismic performance under complex heterogeneous site conditions and load scenarios is paramount to meeting nuclear safety design requirements. This study proposes and [...] Read more.
Pumping station structures are widely employed to supply circulating cooling water systems in nuclear power plants (NPPs) throughout China. Investigating their seismic performance under complex heterogeneous site conditions and load scenarios is paramount to meeting nuclear safety design requirements. This study proposes and implements a novel, efficient, and accurate viscous-spring boundary methodology within the ANSYS 19.1 finite element software to assess the seismic safety of NPP pumping station structures. The Maximum Initial Time-step (MIT) method, based on Newmark’s integration scheme, is employed for nonlinear analysis under coupled static–dynamic excitation. To account for radiation damping in the infinite foundation, a Compact Viscous-Spring (CVs) element is developed. This element aggregates stiffness and damping contributions to interface nodes defined at the outer border of the soil domain. Implementation leverages of ANSYS User Programmable Features (UPFs), and a comprehensive static–dynamic coupled analysis toolkit is developed using APDL scripting and the GUI. Validation via two examples confirms the method’s accuracy and computational efficiency. Finally, a case study applies the technique to an NPP pumping station under actual complex Chinese site conditions. The results demonstrate the method’s capability to provide objective seismic response and stability indices, enabling a more reliable assessment of seismic safety during a Safety Shutdown Earthquake (SSE). Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 4682 KiB  
Article
Optimal Configuration for Photovoltaic and Energy Storage in Distribution Network Using Comprehensive Evaluation Model
by Rui Gao, Dan Wang, Chengxiong Mao, Bin Liu, Bingzhao Zhu, Jiawei Huang and Shengjun Wu
Energies 2025, 18(16), 4431; https://doi.org/10.3390/en18164431 - 20 Aug 2025
Viewed by 269
Abstract
To enhance the efficiency of renewable energy consumption and reduce reliance on fossil fuels, the study addresses the challenges of distributed photovoltaic and energy storage integration in distribution networks, such as voltage fluctuations, safety risks, and insufficient converter considerations to the distribution network. [...] Read more.
To enhance the efficiency of renewable energy consumption and reduce reliance on fossil fuels, the study addresses the challenges of distributed photovoltaic and energy storage integration in distribution networks, such as voltage fluctuations, safety risks, and insufficient converter considerations to the distribution network. Through a four-dimensional comprehensive evaluation system including grid-strength quantification indicators like the generalized short-circuit ratio, a multi-objective mathematical model-based performance evaluation system using an analytic hierarchy process and criteria importance through the intercriteria correlation method has been established, and an optimization model for the configuration of photovoltaic and energy storage equipment is optimized. The study innovatively proposes a multi-type synchronous control framework enabling dynamic GFL/GFM converter selection at different nodes, overcoming traditional single-control limitations. The simulation results show that the proposed optimal configuration scheme can effectively improve the operating states and reduce the energy consumption of the distribution network. Full article
(This article belongs to the Special Issue Searching for Ways of Optimizing the Attainment and Use of Energy)
Show Figures

Figure 1

17 pages, 5836 KiB  
Article
Mechanical Performance of Square Box-Type Core Mold Hollow Floor Slabs Based on Field Tests and Numerical Simulation
by Ziguang Zhang, Fengyu Chen, Wenjun Yu, Jie Sheng, Lin Wei and Ankang Hu
Buildings 2025, 15(16), 2948; https://doi.org/10.3390/buildings15162948 - 20 Aug 2025
Viewed by 149
Abstract
This study investigates the mechanical performance and failure mechanisms of large-span, cast-in situ hollow-core floor slabs with square-box core molds under vertical loading. A combination of in situ tests and refined numerical simulations was used to investigate the slab’s behavior. An 8 m [...] Read more.
This study investigates the mechanical performance and failure mechanisms of large-span, cast-in situ hollow-core floor slabs with square-box core molds under vertical loading. A combination of in situ tests and refined numerical simulations was used to investigate the slab’s behavior. An 8 m × 8 m hollow slab from the Xinluzhou Industrial Park in Hefei, China, was subjected to five-stage cyclic loading up to 9.0 kN/m2 using a distributed water tank system. Real-time strain monitoring showed that the slab remained within the elastic range, exhibiting a linear strain-load relationship and bidirectional bending stiffness, with less than 5% deviation between the X and Y directions. Finite element analysis, incorporating a concrete plastic damage model and a bilinear steel model, replicated the experimental stress distribution, with errors of less than 6.9% for reinforcement and 8.8% for concrete. The simulation predicted an ultimate load-bearing capacity of 27.2 kN/m2, with initial failure indicated by diagonal cracks at the column capital edges, followed by flexural cracks at the slab mid-span. These findings clarify the bidirectional bending behavior and stress redistribution, characterized by “banded gradient” and “island-shaped” stress zones. This study provides valuable insights and design optimization strategies to improve the structural performance and safety of hollow-core floor slabs in high-rise buildings. Full article
Show Figures

Figure 1

17 pages, 3359 KiB  
Article
Development and Biological Properties of a New Live Attenuated Mumps Vaccine Strain
by Xue Song, Xiumei Ren, Yang Song, Shengbao Yang, Kailang Lu, Yan Zhang and Jiankai Liu
Vaccines 2025, 13(8), 879; https://doi.org/10.3390/vaccines13080879 - 20 Aug 2025
Viewed by 163
Abstract
Background/Objectives: This study aimed to develop a new attenuated live mumps vaccine strain and determine its biological properties and effectiveness. Methods: Plaque purification and amplification were performed in chicken embryo cells. Candidate live attenuated mumps MuV-365 strain sequencing was performed. After [...] Read more.
Background/Objectives: This study aimed to develop a new attenuated live mumps vaccine strain and determine its biological properties and effectiveness. Methods: Plaque purification and amplification were performed in chicken embryo cells. Candidate live attenuated mumps MuV-365 strain sequencing was performed. After evaluating the potential neurotoxicity of the MuV-365 mumps strain, a preclinical safety evaluation of measles–mumps–rubella (MMR) live attenuated vaccine containing the MuV-365 strain was performed to support the registration and application of the MMR vaccine. Finally, mumps neutralization antibody titers and the concentration of anti-serum mumps-specific IgG were determined to evaluate the immunogenicity and efficacy of the MuV-365 strain and MMR vaccine in mice and rhesus monkeys. Results: The plaque of the PL-KUM main seed virus was screened, and strains whose sequences were highly homologous to RIT4385 (JL-5 derived) were selected to amplify. The candidate live attenuated mumps MuV-365 strain was then developed. Safety evaluation results indicated that the MuV-365 strain had no potential neurotoxicity, and the MMR vaccine containing the MuV-365 strain also showed no significant safety hazard. The immunogenicity of MuV-365 strain in BALB/c mice was not inferior to S79 and PL-KUM. After two doses of the MuV-365 strain, the concentration of anti-serum mumps-specific IgG of the MuV-365 strain was significantly higher than that of the S79 strain (p < 0.01). In rhesus monkeys, the MMR vaccine had good immunogenicity against measles and rubella after one dose, while immunogenicity against mumps improved after two doses. Conclusions: The developed MuV-365 strain was genetically stable, with adequate safety and immunogenicity. Full article
Show Figures

Figure 1

Back to TopTop