Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,260)

Search Parameters:
Keywords = safety analytics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1147 KiB  
Review
Recent Advances in Developing Cell-Free Protein Synthesis Biosensors for Medical Diagnostics and Environmental Monitoring
by Tyler P. Green, Joseph P. Talley and Bradley C. Bundy
Biosensors 2025, 15(8), 499; https://doi.org/10.3390/bios15080499 (registering DOI) - 3 Aug 2025
Abstract
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, [...] Read more.
Cell-free biosensors harness the selectivity of cellular machinery without living cells’ constraints, offering advantages in environmental monitoring, medical diagnostics, and biotechnological applications. This review examines recent advances in cell-free biosensor development, highlighting their ability to detect diverse analytes including heavy metals, organic pollutants, pathogens, and clinical biomarkers with high sensitivity and specificity. We analyze technological innovations in cell-free protein synthesis optimization, preservation strategies, and field deployment methods that have enhanced sensitivity, and practical applicability. The integration of synthetic biology approaches has enabled complex signal processing, multiplexed detection, and novel sensor designs including riboswitches, split reporter systems, and metabolic sensing modules. Emerging materials such as supported lipid bilayers, hydrogels, and artificial cells are expanding biosensor capabilities through microcompartmentalization and electronic integration. Despite significant progress, challenges remain in standardization, sample interference mitigation, and cost reduction. Future opportunities include smartphone integration, enhanced preservation methods, and hybrid sensing platforms. Cell-free biosensors hold particular promise for point-of-care diagnostics in resource-limited settings, environmental monitoring applications, and food safety testing, representing essential tools for addressing global challenges in healthcare, environmental protection, and biosecurity. Full article
Show Figures

Figure 1

16 pages, 2640 KiB  
Article
Reactive Aerosol Jet Printing of Ag Nanoparticles: A New Tool for SERS Substrate Preparation
by Eugenio Gibertini, Lydia Federica Gervasini, Jody Albertazzi, Lorenzo Maria Facchetti, Matteo Tommasini, Valentina Busini and Luca Magagnin
Coatings 2025, 15(8), 900; https://doi.org/10.3390/coatings15080900 (registering DOI) - 1 Aug 2025
Viewed by 25
Abstract
The detection of trace chemicals at low and ultra-low concentrations is critical for applications in environmental monitoring, medical diagnostics, food safety and other fields. Conventional detection techniques often lack the required sensitivity, specificity, or cost-effectiveness, making real-time, in situ analysis challenging. Surface-enhanced Raman [...] Read more.
The detection of trace chemicals at low and ultra-low concentrations is critical for applications in environmental monitoring, medical diagnostics, food safety and other fields. Conventional detection techniques often lack the required sensitivity, specificity, or cost-effectiveness, making real-time, in situ analysis challenging. Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical tool, offering improved sensitivity through the enhancement of Raman scattering by plasmonic nanostructures. While noble metals such as Ag and Au are currently the reference choices for SERS substrates, fabrication methods should balance enhancement efficiency, reproducibility and scalability. In this study, we propose a novel approach for SERS substrate fabrication using reactive Aerosol Jet Printing (r-AJP) as an innovative additive manufacturing technique. The r-AJP process enables in-flight Ag seed reduction and nucleation of Ag nanoparticles (NPs) by mixing silver nitrate and ascorbic acid aerosols before deposition, as suggested by computational fluid dynamics (CFD) simulations. The resulting coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses, revealing the formation of nanoporous crystalline Ag agglomerates partially covered by residual matter. The as-prepared SERS substrates exhibited remarkable SERS activity, demonstrating a high enhancement factor (106) for rhodamine (R6G) detection. Our findings highlight the potential of r-AJP as a scalable and cost-effective fabrication strategy for next-generation SERS sensors, paving the way for the development of a new additive manufacturing tool for noble metal material deposition. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
17 pages, 3738 KiB  
Article
Beyond Spheres: Evaluating Gold Nano-Flowers and Gold Nano-Stars for Enhanced Aflatoxin B1 Detection in Lateral Flow Immunoassays
by Vinayak Sharma, Bilal Javed, Hugh J. Byrne and Furong Tian
Biosensors 2025, 15(8), 495; https://doi.org/10.3390/bios15080495 (registering DOI) - 1 Aug 2025
Viewed by 29
Abstract
The lateral flow immunoassay (LFIA) is a widely utilized, rapid diagnostic technique characterized by its short analysis duration, cost efficiency, visual result interpretation, portability and suitability for point-of-care applications. However, conventional LFIAs have limited sensitivity, a challenge that can be overcome by the [...] Read more.
The lateral flow immunoassay (LFIA) is a widely utilized, rapid diagnostic technique characterized by its short analysis duration, cost efficiency, visual result interpretation, portability and suitability for point-of-care applications. However, conventional LFIAs have limited sensitivity, a challenge that can be overcome by the introduction of gold nanoparticles, which provide enhanced sensitivity and selectivity (compared, for example, to latex beads or carbon nanoparticles) for the detection of target analytes, due to their optical properties, chemical stability and ease of functionalization. In this work, gold nanoparticle-based LFIAs are developed for the detection of aflatoxin B1, and the relative performance of different morphology particles is evaluated. LFIA using gold nano-labels allowed for aflatoxin B1 detection over a range of 0.01 ng/mL–100 ng/mL. Compared to spherical gold nanoparticles and gold nano-flowers, star-shaped gold nanoparticles show increased antibody binding efficiency of 86% due to their greater surface area. Gold nano-stars demonstrated the highest sensitivity, achieving a limit of detection of 0.01ng/mL, surpassing the performance of both spherical gold nanoparticles and gold nano-flowers. The use of star-shaped particles as nano-labels has demonstrated a five-fold improvement in sensitivity, underscoring the potential of integrating diverse nanostructures into LFIA for significantly improving analyte detection. Moreover, the robustness and feasibility of gold nano-stars employed as labels in LFIA was assessed in detecting aflatoxin B1 in a wheat matrix. Improved sensitivity with gold nano-stars holds promise for applications in food safety monitoring, public health diagnostics and rapid point-of-care diagnostics. This work opens the pathway for further development of LFIA utilizing novel nanostructures to achieve unparallel precision in diagnostics and sensing. Full article
Show Figures

Figure 1

23 pages, 2227 KiB  
Article
Assessing the Systemic Impact of Heat Stress on Human Reliability in Mining Through FRAM and Hybrid Decision Models
by Ana Carolina Russo
Mining 2025, 5(3), 50; https://doi.org/10.3390/mining5030050 (registering DOI) - 1 Aug 2025
Viewed by 40
Abstract
Occupational heat stress represents an increasing challenge to safety and operational performance in underground mining, where elevated temperatures, humidity, and limited ventilation are common. This study proposes an integrated framework to analyze the systemic impact of heat stress on human reliability in mining [...] Read more.
Occupational heat stress represents an increasing challenge to safety and operational performance in underground mining, where elevated temperatures, humidity, and limited ventilation are common. This study proposes an integrated framework to analyze the systemic impact of heat stress on human reliability in mining operations. We conducted a systematic literature review to identify empirical studies addressing thermal exposure, extracting key operational functions for modeling. These functions were structured using the Functional Resonance Analysis Method (FRAM) to reveal interdependencies and performance variability. Human reliability was evaluated using Fuzzy CREAM, which quantified the degree of contextual control associated with each function. Finally, we applied the Gaussian Analytic Hierarchy Process (AHP) to prioritize functions based on thermal impact, contextual reliability, and systemic connectivity. The results showed that functions involving subjective or complex judgment, such as assessing thermal stress or identifying psychophysiological indicators, exhibited lower reliability and higher vulnerability. In contrast, monitoring and control functions based on standardized procedures were more stable and resilient. This combined approach identified critical points of systemic fragility and offers a robust decision-support tool for prioritizing thermal risk mitigation. The findings contribute to advancing the scientific understanding of heat stress impacts in mining and support the development of targeted interventions to enhance human performance and safety in extreme environments. Full article
(This article belongs to the Topic Innovative Strategies to Mitigate the Impact of Mining)
Show Figures

Figure 1

18 pages, 723 KiB  
Article
A Machine Learning-Based Model for Predicting High Deficiency Risk Ships in Port State Control: A Case Study of the Port of Singapore
by Ming-Cheng Tsou
J. Mar. Sci. Eng. 2025, 13(8), 1485; https://doi.org/10.3390/jmse13081485 - 31 Jul 2025
Viewed by 94
Abstract
This study developed a model to predict ships with high deficiency risk under Port State Control (PSC) through machine learning techniques, particularly the Random Forest algorithm. The study utilized actual ship inspection data from the Port of Singapore, comprehensively considering various operational and [...] Read more.
This study developed a model to predict ships with high deficiency risk under Port State Control (PSC) through machine learning techniques, particularly the Random Forest algorithm. The study utilized actual ship inspection data from the Port of Singapore, comprehensively considering various operational and safety indicators of ships, including but not limited to flag state, ship age, past deficiencies, and detention history. By analyzing these factors in depth, this research enhances the efficiency and accuracy of PSC inspections, provides decision support for port authorities, and offers strategic guidance for shipping companies to comply with international safety standards. During the research process, I first conducted detailed data preprocessing, including data cleaning and feature selection, to ensure the effectiveness of model training. Using the Random Forest algorithm, I identified key factors influencing the detention risk of ships and established a risk prediction model accordingly. The model validation results indicated that factors such as ship age, tonnage, company performance, and flag state significantly affect whether a ship exhibits a high deficiency rate. In addition, this study explored the potential and limitations of applying the Random Forest model in predicting high deficiency risk under PSC, and proposed future research directions, including further model optimization and the development of real-time prediction systems. By achieving these goals, I hope to provide valuable experience for other global shipping hubs, promote higher international maritime safety standards, and contribute to the sustainable development of the global shipping industry. This research not only highlights the importance of machine learning in the maritime domain but also demonstrates the potential of data-driven decision-making in improving ship safety management and port inspection efficiency. It is hoped that this study will inspire more maritime practitioners and researchers to explore advanced data analytics techniques to address the increasingly complex challenges of global shipping. Full article
(This article belongs to the Topic Digital Technologies in Supply Chain Risk Management)
18 pages, 1738 KiB  
Article
Extreme Wind Speed Prediction Based on a Typhoon Straight-Line Path Model and the Monte Carlo Simulation Method: A Case for Guangzhou
by Zhike Lu, Xinrui Zhang, Junling Hong and Wanhai Xu
Appl. Sci. 2025, 15(15), 8486; https://doi.org/10.3390/app15158486 (registering DOI) - 31 Jul 2025
Viewed by 97
Abstract
The southeastern coastal region of China has long been affected by typhoon disasters, which pose significant threats to the safety of offshore structures. Therefore, predicting extreme wind speeds corresponding to various return periods on the basis of limited typhoon samples is particularly important [...] Read more.
The southeastern coastal region of China has long been affected by typhoon disasters, which pose significant threats to the safety of offshore structures. Therefore, predicting extreme wind speeds corresponding to various return periods on the basis of limited typhoon samples is particularly important for wind-resistant design. This study systematically predicts extreme typhoon wind speeds for various return periods and quantitatively assesses the sensitivity of key parameters by employing a Monte Carlo stochastic simulation framework integrated with a typhoon straight-line trajectory model and the Yan Meng wind field model. Focusing on Guangzhou (23.13° N, 113.28 °E), a representative coastal city in southeastern China, this research establishes a modular analytical framework that provides generalizable solutions for typhoon disaster assessment in coastal regions. The probabilistic wind load data generated by this framework significantly increases the cost-effectiveness and safety of wind-resistant structural design. Full article
(This article belongs to the Special Issue Transportation and Infrastructures Under Extreme Weather Conditions)
Show Figures

Figure 1

14 pages, 2802 KiB  
Article
Quasi-Bound States in the Continuum-Enabled Wideband Terahertz Molecular Fingerprint Sensing Using Graphene Metasurfaces
by Jing Zhao and Jiaxian Wang
Nanomaterials 2025, 15(15), 1178; https://doi.org/10.3390/nano15151178 - 30 Jul 2025
Viewed by 138
Abstract
The unique molecular fingerprint spectral characteristics in the terahertz (THz) band provide distinct advantages for non-destructive and rapid biomolecular detection. However, conventional THz metasurface biosensors still face significant challenges in achieving highly sensitive and precise detection. This study proposes a sensing platform based [...] Read more.
The unique molecular fingerprint spectral characteristics in the terahertz (THz) band provide distinct advantages for non-destructive and rapid biomolecular detection. However, conventional THz metasurface biosensors still face significant challenges in achieving highly sensitive and precise detection. This study proposes a sensing platform based on quasi-bound states in the continuum (Quasi-BIC), which enhances molecular fingerprint recognition through resonance amplification. We designed a symmetric graphene double-split square ring metasurface structure. By modulating the Fermi level of graphene, this system generated continuously tunable Quasi-BIC resonance peaks across a broad THz spectral range, achieving precise spectral overlap with the characteristic absorption lines of lactose (1.19 THz and 1.37 THz) and tyrosine (0.958 THz). The results demonstrated a remarkable 763-fold enhancement in absorption peak intensity through envelope analysis for analytes with 0.1 μm thickness, compared to conventional bare substrate detection. This terahertz BIC metasurface sensor demonstrates high detection sensitivity, holding significant application value in fields such as biomedical diagnosis, food safety, and pharmaceutical testing. Full article
(This article belongs to the Special Issue Advanced Low-Dimensional Materials for Sensing Applications)
Show Figures

Figure 1

22 pages, 1248 KiB  
Review
Navigating the Global Regulatory Landscape for Exosome-Based Therapeutics: Challenges, Strategies, and Future Directions
by Nagendra Verma and Swati Arora
Pharmaceutics 2025, 17(8), 990; https://doi.org/10.3390/pharmaceutics17080990 - 30 Jul 2025
Viewed by 290
Abstract
Extracellular vesicle (EV)-based therapies have attracted considerable attention as a novel class of biologics with broad clinical potential. However, their clinical translation is impeded by the fragmented and rapidly evolving regulatory landscape, with significant disparities between the United States, European Union, and key [...] Read more.
Extracellular vesicle (EV)-based therapies have attracted considerable attention as a novel class of biologics with broad clinical potential. However, their clinical translation is impeded by the fragmented and rapidly evolving regulatory landscape, with significant disparities between the United States, European Union, and key Asian jurisdictions. In this review, we systematically analyze regional guidelines and strategic frameworks governing EV therapeutics, emphasizing critical hurdles in quality control, safety evaluation, and efficacy demonstration. We further explore the implications of EVs’ heterogeneity on product characterization and the emerging direct-to-consumer market for EVs and secretome preparations. Drawing on these insights, in this review, we aim to provide a roadmap for harmonizing regulatory requirements, advancing standardized analytical approaches, and fostering ongoing collaboration among regulatory authorities, industry stakeholders, and academic investigators. Such coordinated efforts are essential to safeguard patient welfare, ensure product consistency, and accelerate the responsible integration of EV-based interventions into clinical practice. Full article
Show Figures

Graphical abstract

17 pages, 1207 KiB  
Article
Assessing Critical Risk Factors to Sustainable Housing in Urban Areas: Based on the NK-SNA Model
by Guangyu Sun and Hui Zeng
Sustainability 2025, 17(15), 6918; https://doi.org/10.3390/su17156918 - 30 Jul 2025
Viewed by 178
Abstract
Housing sustainability is a cornerstone element of sustainable economic and social development. This is particularly true for China, where high-rise residential buildings are the primary form of housing. In recent years, China has experienced frequent housing-related accidents, resulting in a significant loss of [...] Read more.
Housing sustainability is a cornerstone element of sustainable economic and social development. This is particularly true for China, where high-rise residential buildings are the primary form of housing. In recent years, China has experienced frequent housing-related accidents, resulting in a significant loss of life and property damage. This study aims to identify the key factors influencing housing sustainability and provide a basis for the prevention and control of housing-related safety risks. This study has developed a housing sustainability evaluation indicator system comprising three primary indicators and 16 secondary indicators. This system is based on an analysis of the causes of over 500 typical housing accidents that occurred in China over the past 10 years, employing research methods such as literature reviews and expert consultations, and drawing on the analytical frameworks of risk management theory and system safety theory. Subsequently, the NK-SNA model, which significantly outperforms traditional models in terms of adaptive learning and optimization, as well as the explicit modeling of complex nonlinear relationships, was used to identify the key risk factors affecting housing sustainability. The empirical results indicate that the risk coupling value is correlated with the number of risk coupling factors; the greater the number of risk coupling factors, the larger the coupling value. Human misconduct is prone to forming two-factor risk coupling with housing, and the physical risk factors are prone to coupling with other factors. The environmental factors easily trigger ‘physical–environmental’ two-factor risk coupling. The key factors influencing housing sustainability are poor supervision, building facilities, the main structure, the housing height, foundation settlement, and natural disasters. On this basis, recommendations are made to make full use of modern information technologies such as the Internet of Things, big data, and artificial intelligence to strengthen the supervision of housing safety and avoid multi-factor coupling, and to improve upon early warnings of natural disasters and the design of emergency response programs to control the coupling between physical and environmental factors. Full article
Show Figures

Figure 1

41 pages, 11320 KiB  
Review
Electrochemical Biosensors Driving Model Transformation for Food Testing
by Xinxin Wu, Zhecong Yuan, Shujie Gao, Xinai Zhang, Hany S. El-Mesery, Wenjie Lu, Xiaoli Dai and Rongjin Xu
Foods 2025, 14(15), 2669; https://doi.org/10.3390/foods14152669 - 29 Jul 2025
Viewed by 266
Abstract
Electrochemical biosensors are revolutionizing food testing by addressing critical limitations of conventional strategies that suffer from cost, complexity, and field-deployment challenges. Emerging fluorescence and Raman techniques, while promising, face intrinsic drawbacks like photobleaching and matrix interference in opaque or heterogeneous samples. In contrast, [...] Read more.
Electrochemical biosensors are revolutionizing food testing by addressing critical limitations of conventional strategies that suffer from cost, complexity, and field-deployment challenges. Emerging fluorescence and Raman techniques, while promising, face intrinsic drawbacks like photobleaching and matrix interference in opaque or heterogeneous samples. In contrast, electrochemical biosensors leverage electrical signals to bypass optical constraints, enabling rapid, cost-effective, and pretreatment-free analysis of turbid food matrices. This review highlights their operational mechanisms, emphasizing nano-enhanced signal amplification (e.g., Au nanoparticles and graphene) and biorecognition elements (antibodies, aptamers, and molecularly imprinted polymers) for ultrasensitive assay of contaminants, additives, and adulterants. By integrating portability, scalability, and real-time capabilities, electrochemical biosensors align with global food safety regulations and sustainability goals. Challenges in standardization, multiplexed analysis, and long-term stability are discussed, alongside future directions toward AI-driven analytics, biodegradable sensors, and blockchain-enabled traceability, ultimately fostering precision-driven, next-generation food safety and quality testing. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

23 pages, 794 KiB  
Article
Assessing Safety Professional Job Descriptions Using Integrated Multi-Criteria Analysis
by Mohamed Zytoon and Mohammed Alamoudi
Safety 2025, 11(3), 72; https://doi.org/10.3390/safety11030072 (registering DOI) - 29 Jul 2025
Viewed by 196
Abstract
Introduction: Poorly designed safety job descriptions may have a negative impact on occupational safety and health (OSH) performance. Firstly, they limit the chances of hiring highly qualified safety professionals who are vital to the success of OSH management systems in organizations. Secondly, the [...] Read more.
Introduction: Poorly designed safety job descriptions may have a negative impact on occupational safety and health (OSH) performance. Firstly, they limit the chances of hiring highly qualified safety professionals who are vital to the success of OSH management systems in organizations. Secondly, the relationship between the presence of qualified safety professionals and the safety culture (and performance) in an organization is reciprocal. Thirdly, the low quality of job descriptions limits exploring the proper competencies needed by safety professionals before they are hired. The safety professional is thus uncertain of what level of education or training and which skills they should attain. Objectives: The main goal of the study is to integrate the analytic hierarchy process (AHP) and the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) with importance–performance analysis (IPA) to evaluate job descriptions in multiple sectors. Results: The results of the study indicate that it is vital to clearly define job levels, the overall mission, key responsibilities, time-consuming tasks, required education/certifications, and necessary personal abilities in safety job descriptions. This clarity enhances recruitment, fairness, performance management, and succession planning. The organization can then attract and retain top talent, improve performance, foster a strong safety culture, create realistic job expectations, increase employee satisfaction and productivity, and ensure that competent individuals are hired, ultimately leading to a safer and more productive workplace. Conclusion: The outcomes of this study provide a robust framework that can and should be used as a guideline to professionalize job description development and enhance talent acquisition strategies. Full article
Show Figures

Figure 1

15 pages, 1247 KiB  
Article
Prioritizing Critical Factors Affecting Occupational Safety in High-Rise Construction: A Hybrid EFA-AHP Approach
by Hai Chien Pham, Si Van-Tien Tran and Ung-Kyun Lee
Buildings 2025, 15(15), 2677; https://doi.org/10.3390/buildings15152677 - 29 Jul 2025
Viewed by 192
Abstract
High-rise construction presents heightened safety risks due to vertical complexity, spatial constraints, and workforce variability. Conventional safety management often proves insufficient, especially in rapidly urbanizing or resource-limited settings. This study proposes a hybrid methodological framework to systematically identify and prioritize the critical factors [...] Read more.
High-rise construction presents heightened safety risks due to vertical complexity, spatial constraints, and workforce variability. Conventional safety management often proves insufficient, especially in rapidly urbanizing or resource-limited settings. This study proposes a hybrid methodological framework to systematically identify and prioritize the critical factors influencing occupational safety in Vietnamese high-rise construction projects. Based on 181 valid survey responses from construction professionals, 23 observed variables were developed through extensive literature review and expert consultation. Exploratory Factor Analysis (EFA) was employed to empirically group 23 validated indicators into five key latent dimensions: (1) Safety Training and Inspection, (2) Employer’s Knowledge and Responsibility, (3) Worker’s Competence and Compliance, (4) Working Conditions and Environment, and (5) Safety Equipment and Signage. These dimensions were then structured into an Analytic Hierarchy Process (AHP) model, with pairwise comparisons conducted by industry experts to calculate consistency ratios and derive factor weights across three high-rise project case studies. The findings provide actionable insights for construction managers, safety professionals, and policymakers in developing and underdeveloped countries, supporting data-driven decision-making for safer and more sustainable urban development. Full article
(This article belongs to the Special Issue Safety Management and Occupational Health in Construction)
Show Figures

Figure 1

7 pages, 197 KiB  
Communication
Enhancing Medical Education Through Statistics: Bridging Quantitative Literacy and Sports Supplementation Research for Improved Clinical Practice
by Alexander A. Huang and Samuel Y. Huang
Nutrients 2025, 17(15), 2463; https://doi.org/10.3390/nu17152463 - 28 Jul 2025
Viewed by 152
Abstract
In modern medical education, a robust understanding of statistics is essential for fostering critical thinking, informed clinical decision-making, and effective communication. This paper explores the synergistic value of early and continued statistical education for medical students and residents, particularly in relation to the [...] Read more.
In modern medical education, a robust understanding of statistics is essential for fostering critical thinking, informed clinical decision-making, and effective communication. This paper explores the synergistic value of early and continued statistical education for medical students and residents, particularly in relation to the expanding field of sports supplementation and its impact on athletic performance. Early exposure to statistical principles enhances students’ ability to interpret clinical research, avoid cognitive biases, and engage in evidence-based practice. Continued statistical learning throughout residency further refines these competencies, enabling more sophisticated analysis and application of emerging data. The paper also addresses key challenges in integrating statistics into medical curricula—such as limited curricular space, student disengagement, and resource constraints—and proposes solutions including interactive learning, case-based teaching, and the use of public datasets. A unique emphasis is placed on connecting statistical literacy to the interpretation of research in sports science, particularly regarding the efficacy, safety, and ethical considerations of sports supplements. By linking statistical education to a dynamic and relatable domain like sports performance, educators can not only enrich learning outcomes but also foster lasting interest and competence in quantitative reasoning. This integrated approach holds promise for producing more analytically proficient and clinically capable physicians. Full article
(This article belongs to the Special Issue The Role of Sports Supplements in Sport Performance)
21 pages, 5017 KiB  
Article
Vessel Trajectory Prediction with Deep Learning: Temporal Modeling and Operational Implications
by Nicos Evmides, Michalis P. Michaelides and Herodotos Herodotou
J. Mar. Sci. Eng. 2025, 13(8), 1439; https://doi.org/10.3390/jmse13081439 - 28 Jul 2025
Viewed by 158
Abstract
Vessel trajectory prediction is fundamental to maritime navigation, safety, and operational efficiency, particularly as the industry increasingly relies on digital solutions and real-time data analytics. This study addresses the challenge of forecasting vessel movements using historical Automatic Identification System (AIS) data, with a [...] Read more.
Vessel trajectory prediction is fundamental to maritime navigation, safety, and operational efficiency, particularly as the industry increasingly relies on digital solutions and real-time data analytics. This study addresses the challenge of forecasting vessel movements using historical Automatic Identification System (AIS) data, with a focus on understanding the temporal behavior of deep learning models under different input and prediction horizons. To this end, a robust data pre-processing pipeline was developed to ensure temporal consistency, filter anomalous records, and segment continuous vessel trajectories. Using a curated dataset from the eastern Mediterranean, three deep recurrent neural network architectures, namely LSTM, Bi-LSTM, and Bi-GRU, were evaluated for short- and long-term trajectory prediction. Empirical results demonstrate that Bi-LSTM consistently achieves higher accuracy across both horizons, with performance gradually degrading under extended forecast windows. The analysis also reveals key insights into the trade-offs between model complexity, horizon-specific robustness, and predictive stability. This work contributes to maritime informatics by offering a comparative evaluation of recurrent architectures and providing a structured and empirical foundation for selecting and deploying trajectory forecasting models in operational contexts. Full article
(This article belongs to the Special Issue Maritime Transport and Port Management)
Show Figures

Figure 1

25 pages, 1903 KiB  
Article
Pesticide Residues in Fruits and Vegetables from Cape Verde: A Multi-Year Monitoring and Dietary Risk Assessment Study
by Andrea Acosta-Dacal, Ricardo Díaz-Díaz, Pablo Alonso-González, María del Mar Bernal-Suárez, Eva Parga-Dans, Lluis Serra-Majem, Adriana Ortiz-Andrellucchi, Manuel Zumbado, Edson Santos, Verena Furtado, Miriam Livramento, Dalila Silva and Octavio P. Luzardo
Foods 2025, 14(15), 2639; https://doi.org/10.3390/foods14152639 - 28 Jul 2025
Viewed by 277
Abstract
Food safety concerns related to pesticide residues in fruits and vegetables have increased globally, particularly in regions where monitoring programs are scarce or inconsistent. This study provides the first multi-year evaluation of pesticide contamination and associated dietary risks in Cape Verde, an African [...] Read more.
Food safety concerns related to pesticide residues in fruits and vegetables have increased globally, particularly in regions where monitoring programs are scarce or inconsistent. This study provides the first multi-year evaluation of pesticide contamination and associated dietary risks in Cape Verde, an African island nation increasingly reliant on imported produce. A total of 570 samples of fruits and vegetables—both locally produced and imported—were collected from major markets across the country between 2017 and 2020 and analyzed using validated multiresidue methods based on gas chromatography coupled to Ion Trap mass spectrometry (GC-IT-MS/MS), and both gas and liquid chromatography coupled to triple quadrupole tandem mass spectrometry (GC-QqQ-MS/MS and LC-QqQ-MS/MS). Residues were detected in 63.9% of fruits and 13.2% of vegetables, with imported fruits showing the highest contamination levels and diversity of compounds. Although only one sample exceeded the maximum residue limits (MRLs) set by the European Union, 80 different active substances were quantified—many of them not authorized under the current EU pesticide residue legislation. Dietary exposure was estimated using median residue levels and real consumption data from the national nutrition survey (ENCAVE 2019), enabling a refined risk assessment based on actual consumption patterns. The cumulative hazard index for the adult population was 0.416, below the toxicological threshold of concern. However, when adjusted for children aged 6–11 years—taking into account body weight and relative consumption—the cumulative index approached 1.0, suggesting a potential health risk for this vulnerable group. A limited number of compounds, including omethoate, oxamyl, imazalil, and dithiocarbamates, accounted for most of the risk. Many are banned or heavily restricted in the EU, highlighting regulatory asymmetries in global food trade. These findings underscore the urgent need for strengthened residue monitoring in Cape Verde, particularly for imported products, and support the adoption of risk-based food safety policies that consider population-specific vulnerabilities and mixture effects. The methodological framework used here can serve as a model for other low-resource countries seeking to integrate analytical data with dietary exposure in a One Health context. Full article
(This article belongs to the Special Issue Risk Assessment of Hazardous Pollutants in Foods)
Show Figures

Figure 1

Back to TopTop