Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (510)

Search Parameters:
Keywords = safe restoration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3011 KiB  
Article
Ameliorative Effects of Soybean Powder Fermented by Bacillus subtilis on Constipation Induced by Loperamide in Rats
by Gi Soo Lee, Su Kang Kim, Ju Yeon Ban and Chung-Hun Oh
Int. J. Mol. Sci. 2025, 26(15), 7615; https://doi.org/10.3390/ijms26157615 - 6 Aug 2025
Abstract
Constipation is a prevalent gastrointestinal disorder that significantly impairs quality of life. While pharmacological agents such as loperamide are widely used to induce constipation in experimental models, there is increasing interest in natural alternatives for alleviating intestinal dysfunction. In this study, we investigated [...] Read more.
Constipation is a prevalent gastrointestinal disorder that significantly impairs quality of life. While pharmacological agents such as loperamide are widely used to induce constipation in experimental models, there is increasing interest in natural alternatives for alleviating intestinal dysfunction. In this study, we investigated the laxative effects of soybean powder fermented by Bacillus subtilis DKU_09 in a loperamide-induced rat model of constipation. The probiotic strain was isolated from cheonggukjang, a traditional Korean fermented soybean paste, and its identity was confirmed through 16S rRNA sequencing. Fermented soybean powder was characterized morphologically via scanning electron microscopy and chemically via HPLC to assess its isoflavone content. Rats were administered loperamide (5 mg/kg) for four days to induce constipation and were then treated with fermented soybean powder at doses of 100, 200, or 300 mg/kg. No pharmacological laxatives (e.g., PEG) were used as a positive control; instead, values from the treatment groups were compared with those from the loperamide-only constipation group. Key outcomes of fecal output, water content, colonic fecal retention, and gastrointestinal transit ratio were measured. The fermented product significantly improved stool frequency and moisture content, reduced colonic fecal retention, and restored gastrointestinal transit in a dose-dependent manner. Notably, the 300 mg/kg group demonstrated nearly complete recovery of fecal parameters without affecting body weight. Statistical analysis was performed using one-way ANOVA followed by Tukey’s post hoc test. These findings suggest that Bacillus subtilis-fermented soybean powder exerts synergistic laxative effects through the combined action of probiotic viability and fermentation-enhanced bioactive compounds such as aglycone isoflavones. This study supports the potential use of fermented soybean-based nutraceuticals as a natural and safe intervention for constipation and gastrointestinal dysregulation. Full article
(This article belongs to the Special Issue Functions and Applications of Natural Products)
Show Figures

Figure 1

22 pages, 1078 KiB  
Review
The Cannabinoid Pharmacology of Bone Healing: Developments in Fusion Medicine
by Gabriel Urreola, Michael Le, Alan Harris, Jose A. Castillo, Augustine M. Saiz, Hania Shahzad, Allan R. Martin, Kee D. Kim, Safdar Khan and Richard Price
Biomedicines 2025, 13(8), 1891; https://doi.org/10.3390/biomedicines13081891 - 3 Aug 2025
Viewed by 404
Abstract
Background/Objectives: Cannabinoid use is rising among patients undergoing spinal fusion, yet its influence on bone healing is poorly defined. The endocannabinoid system (ECS)—through cannabinoid receptors 1 (CB1) and 2 (CB2)—modulates skeletal metabolism. We reviewed preclinical, mechanistic and clinical evidence to clarify how individual [...] Read more.
Background/Objectives: Cannabinoid use is rising among patients undergoing spinal fusion, yet its influence on bone healing is poorly defined. The endocannabinoid system (ECS)—through cannabinoid receptors 1 (CB1) and 2 (CB2)—modulates skeletal metabolism. We reviewed preclinical, mechanistic and clinical evidence to clarify how individual cannabinoids affect fracture repair and spinal arthrodesis. Methods: PubMed, Web of Science and Scopus were searched from inception to 31 May 2025 with the terms “cannabinoid”, “CB1”, “CB2”, “spinal fusion”, “fracture”, “osteoblast” and “osteoclast”. Animal studies, in vitro experiments and clinical reports that reported bone outcomes were eligible. Results: CB2 signaling was uniformly osteogenic. CB2-knockout mice developed high-turnover osteoporosis, whereas CB2 agonists (HU-308, JWH-133, HU-433, JWH-015) restored trabecular volume, enhanced osteoblast activity and strengthened fracture callus. Cannabidiol (CBD), a non-psychoactive phytocannabinoid with CB2 bias, accelerated early posterolateral fusion in rats and reduced the RANKL/OPG ratio without compromising final union. In contrast, sustained or high-dose Δ9-tetrahydrocannabinol (THC) activation of CB1 slowed chondrocyte hypertrophy, decreased mesenchymal-stromal-cell mineralization and correlated clinically with 6–10% lower bone-mineral density and a 1.8–3.6-fold higher pseudarthrosis or revision risk. Short-course or low-dose THC appeared skeletal neutral. Responses varied with sex, age and genetic background; no prospective trials defined safe perioperative dosing thresholds. Conclusions: CB2 activation and CBD consistently favor bone repair, whereas chronic high-THC exposure poses a modifiable risk for nonunion in spine surgery. Prospective, receptor-specific trials stratified by THC/CBD ratio, patient sex and ECS genotype are needed to establish evidence-based cannabinoid use in spinal fusion. Full article
(This article belongs to the Topic Cannabis, Cannabinoids and Its Derivatives)
Show Figures

Figure 1

17 pages, 3105 KiB  
Article
Cell Viability of Wharton’s Jelly-Derived Mesenchymal Stem Cells (WJ-MSCs) on 3D-Printed Resins for Temporary Dental Restorations
by Mónica Antonio-Flores, Andrés Eliú Castell-Rodríguez, Gabriela Piñón-Zárate, Beatriz Hernández-Téllez, Abigailt Flores-Ledesma, Enrique Pérez-Martínez, Carolina Sámano-Valencia, Gerardo Quiroz-Petersen and Katia Jarquín-Yáñez
J. Compos. Sci. 2025, 9(8), 404; https://doi.org/10.3390/jcs9080404 - 1 Aug 2025
Viewed by 434
Abstract
There is insufficient evidence regarding the cytotoxicity of restorative 3D-printing resins, used as part of the digital workflow in dentistry. This study presents a novel comparative evaluation of cell viability and adhesion using human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs), a less commonly [...] Read more.
There is insufficient evidence regarding the cytotoxicity of restorative 3D-printing resins, used as part of the digital workflow in dentistry. This study presents a novel comparative evaluation of cell viability and adhesion using human Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs), a less commonly used but clinically relevant cell line in dental biomaterials research. The aim of this study was to evaluate the cell viability of WJ-MSCs seeded on 3D-printed resins intended for temporary restorations. Resin discs of three commercial 3D-printing resins (NextDent C&B, Leaf Dental C&B, and UNIZ Temp) and a conventional self-curing acrylic resin (NicTone) were used. WJ-MSCs were cultured on the specimens for 1, 4, and 10 days. Cell viability was assessed using the PrestoBlue assay, Live/Dead immunofluorescence staining, and 7AAD/Annexin V staining. Cell adhesion was evaluated using scanning electron microscopy. Direct exposure to the 3D-printed resins and the self-curing acrylic caused slight reductions in cell viability compared to the control group in both microscopic analyses. 7AAD/Annexin V showed the highest percentage of viable WBCs for the conventional acrylic (34%), followed by UNIZ (35%), NextDent (42%), and Leaf Dental (36%) (ANOVA p < 0.05 Tukey’s post-hoc test p < 0.05). These findings suggest that 3D-printed resins could be considered safe for use in temporary restorations. Full article
(This article belongs to the Section Biocomposites)
Show Figures

Figure 1

17 pages, 3197 KiB  
Article
Transforaminal Lumbar Interbody Fusion (TLIF) with Expandable Banana-Shaped Interbody Spacers—Institutional 5-Year Experience
by Martin N. Stienen, Lorenzo Bertulli, Gregor Fischer, Linda Bättig, Yesim Yildiz, Laurin Feuerstein, Francis Kissling, Thomas Schöfl, Felix C. Stengel, Daniele Gianoli, Stefan Motov, Ethan Schonfeld, Anand Veeravagu, Benjamin Martens and Nader Hejrati
J. Clin. Med. 2025, 14(15), 5402; https://doi.org/10.3390/jcm14155402 - 31 Jul 2025
Viewed by 149
Abstract
Background: Transforaminal lumbar interbody fusion (TLIF) with static cages is a frequently performed procedure. Larger series focusing on the use of expandable TLIF spacers are less common. Methods: This retrospective, single-center observational cohort study reviewed consecutive patients treated by TLIF using expandable titanium [...] Read more.
Background: Transforaminal lumbar interbody fusion (TLIF) with static cages is a frequently performed procedure. Larger series focusing on the use of expandable TLIF spacers are less common. Methods: This retrospective, single-center observational cohort study reviewed consecutive patients treated by TLIF using expandable titanium interbody implants (ALTERA™, Globus Medical Inc., Audubon, PA, USA) for degenerative pathologies from L2-S1 between 11/2018 and 09/2023. Surgical parameters, adverse events, radiological outcomes (fusion rate, segmental lordosis, spinopelvic parameters), and clinical outcomes were analyzed through a mean postoperative follow-up of 12 months. Results: This study identified 270 patients (mean age 65 years, 50.4% female) who underwent TLIF with expandable interbody spacers at 324 levels. Clinical outcomes were good or excellent in 74.1% of patients at 3 months and 71.8% at 12 months. Radiographic fusion was achieved in 73.1% of assessable segments at 12 months. Segmental lordosis increased significantly from 17.8° preoperatively to 20.0° at 12 months (p < 0.001). Adverse event (AE) rates were acceptable across all timepoints, with no device failures or device-associated complications observed. Conclusions: This study demonstrates that TLIF with expandable titanium interbody implants was safe, associated with high fusion rates, and enabled significant restoration of segmental lordosis that was maintained during follow-up. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

15 pages, 1360 KiB  
Systematic Review
Prebiotics Improve Blood Pressure Control by Modulating Gut Microbiome Composition and Function: A Systematic Review and Meta-Analysis
by Abdulwhab Shremo Msdi, Elisabeth M. Wang and Kevin W. Garey
Nutrients 2025, 17(15), 2502; https://doi.org/10.3390/nu17152502 - 30 Jul 2025
Viewed by 410
Abstract
Background: Ingestion of dietary fibers (DFs) is a safe and accessible intervention associated with reductions in blood pressure (BP) and cardiovascular mortality. However, the mechanisms underlying the antihypertensive effects of DFs remain poorly defined. This systematic review and meta-analysis evaluates how DFs influence [...] Read more.
Background: Ingestion of dietary fibers (DFs) is a safe and accessible intervention associated with reductions in blood pressure (BP) and cardiovascular mortality. However, the mechanisms underlying the antihypertensive effects of DFs remain poorly defined. This systematic review and meta-analysis evaluates how DFs influence BP regulation by modulating gut microbial composition and enhancing short-chain fatty acid (SCFA) production. Methods: MEDLINE and EMBASE were systematically searched for interventional studies published between January 2014 and December 2024. Eligible studies assessed the effects of DFs or other prebiotics on systolic BP (SBP) and diastolic BP (DBP) in addition to changes in gut microbial or SCFA composition. Results: Of the 3010 records screened, nineteen studies met the inclusion criteria (seven human, twelve animal). A random-effects meta-analysis was conducted on six human trials reporting post-intervention BP values. Prebiotics were the primary intervention. In hypertensive cohorts, prebiotics significantly reduced SBP (−8.5 mmHg; 95% CI: −13.9, −3.1) and DBP (−5.2 mmHg; 95% CI: −8.5, −2.0). A pooled analysis of hypertensive and non-hypertensive patients showed non-significant reductions in SBP (−4.5 mmHg; 95% CI: −9.3, 0.3) and DBP (−2.5 mmHg; 95% CI: −5.4, 0.4). Animal studies consistently showed BP-lowering effects across diverse etiologies. Prebiotic interventions restored bacterial genera known to metabolize DFs to SCFAs (e.g., Bifidobacteria, Akkermansia, and Coprococcus) and increased SCFA levels. Mechanistically, SCFAs act along gut–organ axes to modulate immune, vascular, and neurohormonal pathways involved in BP regulation. Conclusions: Prebiotic supplementation is a promising strategy to reestablish BP homeostasis in hypertensive patients. Benefits are likely mediated through modulation of the gut microbiota and enhanced SCFA production. Full article
(This article belongs to the Special Issue Probiotics and Prebiotics: Past, Present and Future)
Show Figures

Graphical abstract

15 pages, 2884 KiB  
Article
Strategies for Offline Adaptive Biology-Guided Radiotherapy (BgRT) on a PET-Linac Platform
by Bin Cai, Thomas I. Banks, Chenyang Shen, Rameshwar Prasad, Girish Bal, Mu-Han Lin, Andrew Godley, Arnold Pompos, Aurelie Garant, Kenneth Westover, Tu Dan, Steve Jiang, David Sher, Orhan K. Oz, Robert Timmerman and Shahed N. Badiyan
Cancers 2025, 17(15), 2470; https://doi.org/10.3390/cancers17152470 - 25 Jul 2025
Viewed by 394
Abstract
Background/Objectives: This study aims to present a structured clinical workflow for offline adaptive Biology-guided Radiotherapy (BgRT) using the RefleXion X1 PET-linac system, addressing challenges introduced by inter-treatment anatomical and biological changes. Methods: We propose a decision tree offline adaptation framework based [...] Read more.
Background/Objectives: This study aims to present a structured clinical workflow for offline adaptive Biology-guided Radiotherapy (BgRT) using the RefleXion X1 PET-linac system, addressing challenges introduced by inter-treatment anatomical and biological changes. Methods: We propose a decision tree offline adaptation framework based on real-time assessments of Activity Concentration (AC), Normalized Target Signal (NTS), and bounded dose-volume histogram (bDVH%) metrics. Three offline strategies were developed: (1) preemptive adaptation for minor changes, (2) partial re-simulation for moderate changes, and (3) full re-simulation for major anatomical or metabolic alterations. Two clinical cases demonstrating strategies 1 and 2 are presented. Results: The preemptive adaptation strategy was applied in a case with early tumor shrinkage, maintaining delivery parameters within acceptable limits while updating contours and dose distribution. In the partial re-Simulation case, significant changes in PET signal necessitated a same-day PET functional modeling session and plan re-optimization, effectively restoring safe deliverability. Both cases showed reduced target volumes and improved OAR sparing without additional patient visits or tracer injections. Conclusions: Offline adaptive workflows for BgRT provide practical solutions to address inter-fractional changes in tumor structure and function. These strategies can help maintain the safety and accuracy of BgRT delivery and support clinical adoption of PET-guided radiotherapy, paving the way for future online adaptive capabilities. Full article
Show Figures

Figure 1

19 pages, 3207 KiB  
Article
Evaluation of Various Thiourea Derivatives as Reducing Agents in Two-Component Methacrylate-Based Materials
by Coralie Ohl, Estelle Thetiot, Laurence Charles, Yohann Catel, Pascal Fässler and Jacques Lalevée
Polymers 2025, 17(15), 2017; https://doi.org/10.3390/polym17152017 - 23 Jul 2025
Viewed by 337
Abstract
Two-component dental materials are commonly used by the dentist for various applications (cementation of indirect restorations, filling of a cavity without layering, etc.). These materials are cured by redox polymerization. The (hydro)peroxide/thiourea/copper salt redox initiator system is well established and can be found [...] Read more.
Two-component dental materials are commonly used by the dentist for various applications (cementation of indirect restorations, filling of a cavity without layering, etc.). These materials are cured by redox polymerization. The (hydro)peroxide/thiourea/copper salt redox initiator system is well established and can be found in a wide range of commercially available dental materials. The thiourea is a key component of the initiator system. This study explores the influence of the nature of the thiourea reducing agent on the reactivity and efficiency of redox initiator systems. In this work, six different thiourea structures were investigated, in combination with copper(II) acetylacetonate and cumene hydroperoxide (CHP), to understand their impact on polymerization kinetics and mechanical properties of methacrylate-based materials. Various experimental techniques, including mass spectrometry (MS) and spectroscopic analyses, were employed to elucidate the underlying mechanisms governing these redox systems. The results highlight that thiourea plays a dual role, acting both as a reducing agent and as a ligand in copper complexes, affecting radical generation and polymerization efficiency. Structural modifications of thiourea significantly influence the initiation process, demonstrating that reactivity is governed by a combination of factors rather than a single property. Self-cure dental flowable composites exhibiting excellent flexural strength (>100 MPa) and modulus (>6000 MPa) were obtained using hexanoyl thiourea, N-benzoylthiourea, or 1-(pyridin-2-yl)thiourea as a reducing agent. The adjustment of the Cu(acac)2 enables to properly set the working time in the range of 100 to 200 s. These findings provide valuable insights into the design of the next generation of redox initiating systems for mild and safe polymerization conditions. Full article
(This article belongs to the Special Issue Advanced Polymer Materials: Synthesis, Structure, and Properties)
Show Figures

Graphical abstract

13 pages, 4489 KiB  
Article
Fatigue Resistance of Customized Implant-Supported Restorations
by Ulysses Lenz, Renan Brandenburg dos Santos, Megha Satpathy, Jason A. Griggs and Alvaro Della Bona
Materials 2025, 18(14), 3420; https://doi.org/10.3390/ma18143420 - 21 Jul 2025
Viewed by 319
Abstract
The design of custom abutments (CA) can affect the mechanical reliability of implant-supported restorations. The purpose of the study was to evaluate the influence of design parameters on the fatigue limit of CA and to compare optimized custom designs with the reference abutment [...] Read more.
The design of custom abutments (CA) can affect the mechanical reliability of implant-supported restorations. The purpose of the study was to evaluate the influence of design parameters on the fatigue limit of CA and to compare optimized custom designs with the reference abutment (RA). A morse-tapered dental implant, an anatomical abutment, and a connector screw were digitalized using microcomputed tomography. A cone beam computed tomography scan was obtained from one of the authors to virtually place the implant-abutment assembly in the upper central incisor. Ten design parameters were selected according to the structural geometry of the RA and the implant planning. A reverse-engineered RA model was created in SOLIDWORKS and was modified considering a Taguchi orthogonal array to generate 36 CAs with ±20% dimensional variations. Finite element analysis was conducted in ABAQUS, and fatigue limits were estimated using Fe-safe. ANOVA (α = 0.1) identified the most influential parameters. Von Mises stress values ranged from 229 MPa to 302 MPa, and 94.4% of the CAs had a higher fatigue limit than the RA. Three parameters significantly affected the fatigue performance of the implant system. The design process of custom abutments includes critical design parameters that can be optimized for longer lifetimes of implant-abutment restorations. Full article
(This article belongs to the Special Issue Innovations in Digital Dentistry: Novel Materials and Technologies)
Show Figures

Figure 1

25 pages, 7475 KiB  
Article
Human Dialyzable Leukocyte Extract Enhances Albendazole Efficacy and Promotes Th1/Th2-Biased Lymphocyte and Antibody Responses in Peritoneal Cavity of Murine Model of Mesocestoides vogae Infection
by Gabriela Hrčková, Dagmar Mudroňová, Katarína Reiterová, Serena Cavallero and Ilaria Bellini
Int. J. Mol. Sci. 2025, 26(14), 6994; https://doi.org/10.3390/ijms26146994 - 21 Jul 2025
Viewed by 273
Abstract
Human leukocyte extract (HLE), a non-immunogenic dialyzable leukocyte preparation (<10 kDa), may serve as a safe adjuvant in immunotherapy. We investigated the effects of albendazole (ABZ), HLE, and their combination in Mesocestoides vogae infected mice, focusing on lymphoid cells in the peritoneal cavity, [...] Read more.
Human leukocyte extract (HLE), a non-immunogenic dialyzable leukocyte preparation (<10 kDa), may serve as a safe adjuvant in immunotherapy. We investigated the effects of albendazole (ABZ), HLE, and their combination in Mesocestoides vogae infected mice, focusing on lymphoid cells in the peritoneal cavity, the site of larval proliferation and parasite-induced immunosuppression. Peritoneal lymphoid cells were analysed by flow cytometry and qPCR. Cells proliferative responses to ConA, LPS, and parasite excretory/secretory (E/S) antigens, cytokine production (ELISA), IgM and IgG isotypes in exudates and parasite antigen recognition (Western blot) were assessed. Efficacy was measured by larval burden and 14-3-3 gene expression in larvae. HLE combined with ABZ enhanced larval clearance and suppressed 14-3-3 gene expression in larvae. HLE and combination therapy increased CD3+ T cell frequencies, especially CD3+high, reduced regulatory CD3+/IL-10 Tregs and expression of Foxp3+. All treatments diminished CD19+/IL-10+ Bregs, correlating with lower CD9 and Atf3 mRNA levels compared to infected mice. Transcription factors T-bet expression was strongly upregulated, while GATA3 was moderately elevated. IFN-γ production and T/B cell proliferation were restored after HLE and combination therapy, partially, even in the presence of E/S antigens. IgM and total IgG levels against parasite antigens declined, while Th1-associated IgG2a increased in ABZ+HLE and HLE-treated groups. Albendazole failed to reverse the immunosuppressive Treg-type immunity but was more effective in reducing Breg populations and their functions. HLE enhanced ABZ efficacy by restoring Th1 responsiveness, reducing Treg/Breg activity, and modulating antibody profiles. It represents a promising immunomodulatory adjuvant in the treatment of the infections associated with Th2/Treg-driven immunosuppression. Full article
(This article belongs to the Special Issue Molecular Research on Parasitic Infection)
Show Figures

Figure 1

22 pages, 2224 KiB  
Article
Development and Evaluation of an Anti-Inflammatory Emulsion: Skin Penetration, Physicochemical Properties, and Fibroblast Viability Assessment
by Jolita Stabrauskiene, Agnė Mazurkevičiūtė, Daiva Majiene, Rima Balanaskiene and Jurga Bernatoniene
Pharmaceutics 2025, 17(7), 933; https://doi.org/10.3390/pharmaceutics17070933 - 19 Jul 2025
Viewed by 476
Abstract
Background/Objectives. Chronic inflammatory skin disorders, such as atopic dermatitis and psoriasis, require safe and effective topical treatments. This study aimed to develop and evaluate a novel anti-inflammatory emulsion enriched with menthol, capsaicin, amino acids (glycine, arginine, histidine), and boswellic acid. Methods. Three formulations [...] Read more.
Background/Objectives. Chronic inflammatory skin disorders, such as atopic dermatitis and psoriasis, require safe and effective topical treatments. This study aimed to develop and evaluate a novel anti-inflammatory emulsion enriched with menthol, capsaicin, amino acids (glycine, arginine, histidine), and boswellic acid. Methods. Three formulations were prepared: a control (E1), a partial (E2), and a comprehensive formulation (E3). Physicochemical analyses included texture profiling, rheological behavior, pH stability, moisture content, and particle size distribution. Results. E3 demonstrated superior colloidal stability, optimal pH (5.75–6.25), and homogenous droplet size (<1 µm), indicating favorable dermal delivery potential. Ex vivo permeation studies revealed effective skin penetration of menthol and amino acids, with boswellic acid remaining primarily in the epidermis, suggesting localized action. Under oxidative stress conditions, E3 significantly improved fibroblast viability, indicating synergistic cytoprotective effects of combined active ingredients. While individual compounds showed limited or dose-dependent efficacy, their combination restored cell viability to near-control levels. Conclusions. These findings support the potential of this multi-component emulsion as a promising candidate for the topical management of inflammatory skin conditions. Full article
(This article belongs to the Section Physical Pharmacy and Formulation)
Show Figures

Figure 1

26 pages, 6375 KiB  
Article
Photoprotective Effects of Quercetin and Hesperidin in Polymorphous Light Eruption: A Comparative Study with Alpha-Glucosylrutin
by Yoon-Seo Choi, Sang-Hoon Park, Inhee Jung, Eun-Ju Park, Wonki Hong, Jin-Hee Shin, Won-Sang Seo and Jongsung Lee
Curr. Issues Mol. Biol. 2025, 47(7), 567; https://doi.org/10.3390/cimb47070567 - 19 Jul 2025
Viewed by 528
Abstract
Polymorphous Light Eruption (PLE) is a prevalent UV-induced photodermatosis characterized by abnormal immune responses, oxidative stress, and cutaneous inflammation. Alpha-glucosylrutin (AGR), a chemically modified flavonoid widely used for its antioxidant and photoprotective effects, has shown clinical efficacy; however, its synthetic origin and classification [...] Read more.
Polymorphous Light Eruption (PLE) is a prevalent UV-induced photodermatosis characterized by abnormal immune responses, oxidative stress, and cutaneous inflammation. Alpha-glucosylrutin (AGR), a chemically modified flavonoid widely used for its antioxidant and photoprotective effects, has shown clinical efficacy; however, its synthetic origin and classification as a potential skin sensitizer and aquatic toxin raise safety and environmental concerns. These limitations underscore the need for safer, naturally derived alternatives. In this study, we investigated the comparative efficacy of quercetin (QC) and hesperidin (HPN)—two plant-based flavonoids—against AGR in in vitro and ex vivo models of sun-induced skin damage. An optimized QC:HPN 8:1 (w/w) complex significantly restored antioxidant enzyme activities (SOD: 4.11 ± 0.32 mU/mg; CAT: 1.88 ± 0.04 mU/mg) and suppressed inflammatory cytokine production (IL-6: 155.95 ± 3.17 pg/mL; TNF-α: 62.34 ± 0.72 pg/mL) more effectively than AGR. β-hexosaminidase secretion, a marker of allergic response, was reduced to 99.02 ± 1.45% with QC:HPN 8:1, compared to 121.33 ± 1.15% with AGR. QC alone exhibited dose-dependent cytotoxicity at ≥10 μg/mL, whereas HPN maintained >94% cell viability at all tested concentrations. These findings highlight the QC:HPN 8:1 complex as a safe, natural, and effective alternative to synthetic AGR for preventing and managing PLE and UV-induced dermal inflammation. Further research should focus on clinical validation and formulation development for topical use. Full article
(This article belongs to the Special Issue Molecular Research in Bioactivity of Natural Products, 3rd Edition)
Show Figures

Figure 1

14 pages, 633 KiB  
Article
Efficacy of Small Incision Cataract Surgery: A Multicenter Retrospective Study of Visual Outcomes in Coastal Ecuador
by Roberto Ernesto Alcívar-Viteri, Verónica Dolores Moreira-Pico, Carlos Iván Gómez-Cedeño, Julia Patricia Duran-Ospina, Aline Siteneski and Karime Montes-Escobar
Vision 2025, 9(3), 60; https://doi.org/10.3390/vision9030060 - 15 Jul 2025
Viewed by 555
Abstract
Cataracts remain one of the leading causes of reversible blindness in low- and middle-income countries such as Ecuador. This study assessed the efficacy of Small Incision Cataract Surgery (SICS) and analyzed sociodemographic and clinical factors associated with postoperative visual outcomes. A retrospective multicenter [...] Read more.
Cataracts remain one of the leading causes of reversible blindness in low- and middle-income countries such as Ecuador. This study assessed the efficacy of Small Incision Cataract Surgery (SICS) and analyzed sociodemographic and clinical factors associated with postoperative visual outcomes. A retrospective multicenter analysis was conducted across six ophthalmology clinics along the Ecuadorian coast between 2023 and 2024, including 558 patients aged 30 years or older. Postoperative visual acuity, measured using the LogMAR scale, improved significantly (mean improvement of 0.525 LogMAR units in the right eye (OD) and 0.489 LogMAR units in the left eye; p < 0.001). Ages between 60 and 69 years were associated with better outcomes in the right eye, while male sex was a protective factor against poor visual acuity in the left eye. Although diabetes mellitus and hypertension were prevalent, neither condition showed a significant association with postoperative visual outcomes. The findings confirm that SICS is a safe, effective, and cost-efficient surgical approach for restoring vision in resource-limited settings, supporting its inclusion in national public health strategies to reduce avoidable blindness in developing countries. Full article
Show Figures

Figure 1

12 pages, 677 KiB  
Systematic Review
Quality of Life Outcomes Following Total Temporomandibular Joint Replacement: A Systematic Review of Long-Term Efficacy, Functional Improvements, and Complication Rates Across Prosthesis Types
by Luis Eduardo Almeida, Samuel Zammuto and Louis G. Mercuri
J. Clin. Med. 2025, 14(14), 4859; https://doi.org/10.3390/jcm14144859 - 9 Jul 2025
Viewed by 526
Abstract
Introduction: Total temporomandibular joint replacement (TMJR) is a well-established surgical solution for patients with severe TMJ disorders. It aims to relieve chronic pain, restore jaw mobility, and significantly enhance quality of life. This systematic review evaluates QoL outcomes following TMJR, analyzes complication profiles, [...] Read more.
Introduction: Total temporomandibular joint replacement (TMJR) is a well-established surgical solution for patients with severe TMJ disorders. It aims to relieve chronic pain, restore jaw mobility, and significantly enhance quality of life. This systematic review evaluates QoL outcomes following TMJR, analyzes complication profiles, compares custom versus stock prostheses, explores pediatric applications, and highlights technological innovations shaping the future of TMJ reconstruction. Methods: A systematic search of PubMed, Embase, and the Cochrane Library was conducted throughout April 2025 in accordance with PRISMA 2020 guidelines. Sixty-four studies were included, comprising 2387 patients. Results: Primary outcomes assessed were QoL improvement, pain reduction, and functional gains such as maximum interincisal opening (MIO). Secondary outcomes included complication rates and technological integration. TMJR consistently led to significant pain reduction (75–87%), average MIO increases of 26–36 mm, and measurable QoL improvements across physical, social, and psychological domains. Custom prostheses were particularly beneficial in anatomically complex or revision cases, while stock devices generally performed well for standard anatomical conditions. Pediatric TMJR demonstrated functional and airway benefits with no clear evidence of growth inhibition over short- to medium-term follow-up. Complications such as heterotopic ossification (~20%, reduced to <5% with fat grafting), infection (3–4.9%), and chronic postoperative pain (~20–30%) were reported but were largely preventable or manageable. Recent advancements, including CAD/CAM planning, 3D-printed prostheses, augmented-reality-assisted surgery, and biofilm-resistant materials, are enhancing personalization, precision, and implant longevity. Conclusions: TMJR is a safe and transformative treatment that consistently improves QoL in patients with end-stage TMJ disease. Future directions include long-term registry tracking, growth-accommodating prosthesis design, and biologically integrated smart implants. Full article
Show Figures

Figure 1

23 pages, 8000 KiB  
Article
Optimal Operation Strategy of Ship Power System Under Battle Damage for Enhancing Survivability in Long-Term Missions
by Chunhan Bai, Yun Tan, Fanrong Wei and Xiangning Lin
Energies 2025, 18(14), 3615; https://doi.org/10.3390/en18143615 - 9 Jul 2025
Viewed by 234
Abstract
After a ship suffers an external strike, the system is often in a poor state of battle damage. Currently, the support capacity of the system in all aspects decreases dramatically, the operation interval narrows, and it is not easy to ensure the completion [...] Read more.
After a ship suffers an external strike, the system is often in a poor state of battle damage. Currently, the support capacity of the system in all aspects decreases dramatically, the operation interval narrows, and it is not easy to ensure the completion of the long-term mission chain, especially when it involves impact loads, which is more significant. Given this, this paper proposes a restoration strategy for the power system of battle-damaged ships based on the long-term mission chain. First, the Ship Power System (SPS) is modelled and analyzed to obtain the multi-case operating characteristics of various types of loads, including impact loads under the mission chain. Second, the frequency and power support capability of energy storage is mined and quantified, and the limitations of its frequency support, power interaction, and other multi-operating states are characterized, based on which the multi-operating state switching strategy of the system containing energy storage is formed, to enhance the active support capability of the system. Subsequently, a frequency response model of the system is established. This model takes into account the support provided by energy storage, analyzes the dynamic evolution of system frequency under the disturbance of directly connected impact loads. Based on this analysis, the safe operating boundary of the system is identified. Finally, a two-stage SPS optimization model is proposed based on the above, and the effectiveness and superiority of this paper’s strategy are verified through simulation analysis of typical scenarios and comparison of multiple strategies. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

12 pages, 1075 KiB  
Perspective
Strategy for Mitigating the Worldwide Burden of Gastroesophageal Reflux Disease—A European Medical Association Position Paper Endorsing Innovation in Laparoscopic Surgery for Sustainable Management
by Luigi Bonavina, Guglielmo Trovato, Rosario Caruso, Prisco Piscitelli, Alberto Aiolfi, Rosario Squatrito, Roberto Penagini, Davide Bona, Giovanni Dapri and Jerome R. Lechien
Therapeutics 2025, 2(3), 12; https://doi.org/10.3390/therapeutics2030012 - 3 Jul 2025
Viewed by 394
Abstract
Background and Aims: Gastroesophageal reflux disease (GERD) is the most common esophageal disorder worldwide and a progressive condition leading to Barrett’s esophagus and adenocarcinoma. Continuous medical therapy with proton pump inhibitors fails to restore the antireflux barrier and is unable to relieve symptoms [...] Read more.
Background and Aims: Gastroesophageal reflux disease (GERD) is the most common esophageal disorder worldwide and a progressive condition leading to Barrett’s esophagus and adenocarcinoma. Continuous medical therapy with proton pump inhibitors fails to restore the antireflux barrier and is unable to relieve symptoms in up to 40% of patients. A tailored and standardized antireflux surgical procedure may increase cure rates and meet patient expectations. Methods and Results: Antireflux surgery aims to reestablish the natural antireflux barrier, which includes the diaphragmatic crura, the lower esophageal sphincter (LES), and the angle of His along with the gastroesophageal flap valve. For decades, the Nissen total fundoplication has been the primary procedure and remains the gold standard for surgical treatment. Alternatives such as Toupet partial fundoplication, Dor partial fundoplication, and the magnetic sphincter augmentation (LINX™) procedure have been developed to mitigate side effects like dysphagia, gas-bloat syndrome, and the inability to belch or vomit. Recent clinical findings regarding a novel procedure, RefluxStop™, indicate that restoring the gastroesophageal flap valve, in conjunction with anterior fundoplication and a silicone device for stabilizing the LES beneath the diaphragm, can achieve lasting reflux control and enhance patient-reported outcomes. Conclusions: The planning of healthcare services and actionable strategies to improve equity and quality of treatment is critical to address the global burden of GERD. Modern laparoscopic surgery for GERD is safe and effective and should be performed in centers offering a complete diagnostic pathway and specific surgical techniques tailored to the individual GERD phenotype. Shared decision-making between the surgeon and the patient is essential for the choice of operation. A personalized approach can offer clinical benefits over total fundoplication and improve patient-reported outcomes. Full article
Show Figures

Figure 1

Back to TopTop