Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (300)

Search Parameters:
Keywords = sPLA2 activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 10636 KiB  
Article
Qifu Decoction Alleviates Lipopolysaccharide-Induced Myocardial Dysfunction by Inhibiting TLR4/NF-κB/NLRP3 Inflammatory Pathway and Activating PPARα/CPT Pathway
by Lingxin Zhuo, Mingxuan Ma, Jiayi Zhang, Jiayu Zhou, Yuqi Zheng, Aiyin Liang, Qingqing Sun, Jia Liu and Wenting Liao
Pharmaceuticals 2025, 18(8), 1109; https://doi.org/10.3390/ph18081109 - 25 Jul 2025
Viewed by 166
Abstract
Background/Objectives: Sepsis-induced cardiomyopathy (SIC) is a serious clinical disorder with a high death rate. Qifu decoction (QFD) is a renowned traditional Chinese medicine with documented pharmacological actions, such as anti-inflammatory, anti-oxidant and anti-apoptosis activities, and it has good therapeutic effects on cardiovascular [...] Read more.
Background/Objectives: Sepsis-induced cardiomyopathy (SIC) is a serious clinical disorder with a high death rate. Qifu decoction (QFD) is a renowned traditional Chinese medicine with documented pharmacological actions, such as anti-inflammatory, anti-oxidant and anti-apoptosis activities, and it has good therapeutic effects on cardiovascular diseases. This study aimed to reveal the cardioprotective effects and underlying mechanisms of QFD against SIC. Methods: Electrocardiography, histopathological examination, and biochemical indicator determination were carried out to investigate the cardioprotective effects of QFD in the treatment of LPS-induced SIC mice. Metabolomics and network pharmacology strategies were employed to preliminarily analyze and predict the mechanisms of QFD against SIC. Molecular docking and Western blot were further applied to validate the core targets and potential pathways for the treatment of SIC in in vitro and in vivo models. Results: It was found that QFD considerably enhanced cardiac function; attenuated myocardial injury; and reduced the serum levels of LDH, CK-MB, IL-1β, and TNF-α by 28.7%, 32.3%, 38.6%, and 36.7%, respectively. Metabolomic analysis showed that QFD could regulate seven metabolic pathways, namely, glutathione metabolism; alanine, aspartate, and glutamate metabolism; arachidonic acid metabolism; glycerophospholipid metabolism; purine metabolism; sphingolipid metabolism; and fatty acid metabolism. Network pharmacology suggested that the anti-SIC effect of QFD may be mediated through the TNF, toll-like receptor, NOD-like receptor, NF-κB, and PPAR signaling pathways. Additionally, 26 core targets were obtained. Molecular docking revealed that active ingredients such as formononetin, kaempferol, quercetin, and (R)-norcoclaurine in QFD had a high affinity for binding to PPARα and TLR4. Further Western blot validation indicated that QFD could regulate the protein levels of NLRP3, TLR4, NF-κB, IL-6, TNF-α, COX2, sPLA2, PPARα, CPT1B, and CPT2. Conclusions: This study demonstrates that QFD can alleviate SIC by suppressing the TLR4/NF-κB/NLRP3 inflammatory pathway and modulating impaired FAO through the activation of the PPARα/CPT pathway, highlighting QFD as a promising candidate drug for SIC treatment. Full article
(This article belongs to the Section Natural Products)
Show Figures

Graphical abstract

29 pages, 2351 KiB  
Review
Animal Venoms as Potential Antitumor Agents Against Leukemia and Lymphoma
by Geovanna M. Malachias-Pires, Eloise T. M. Filardi, Marcela Romanazzi, Julia Lopes-de-Oliveira, Isabela C. dos Santos, Guilherme Melo-dos-Santos, Ana Beatriz Rossi, Michele Procópio Machado, Thiago A. da Silva and Manuela B. Pucca
Cancers 2025, 17(14), 2331; https://doi.org/10.3390/cancers17142331 - 14 Jul 2025
Viewed by 513
Abstract
Leukemias and lymphomas are hematologic malignancies characterized by complex pathophysiological mechanisms and increasing global incidence. Despite advances in chemotherapy, immunotherapy, and targeted therapies, challenges such as drug resistance and relapse persist, necessitating novel therapeutic strategies. This review explores the cytotoxic potential of venoms [...] Read more.
Leukemias and lymphomas are hematologic malignancies characterized by complex pathophysiological mechanisms and increasing global incidence. Despite advances in chemotherapy, immunotherapy, and targeted therapies, challenges such as drug resistance and relapse persist, necessitating novel therapeutic strategies. This review explores the cytotoxic potential of venoms derived from snakes, bees, and scorpions against leukemia and lymphoma cells. Numerous venom-derived components, such as L-amino acid oxidases (LAAOs), phospholipases A2 (PLA2s), and peptides like melittin, demonstrate selective antitumor activity through mechanisms involving oxidative stress, apoptosis induction, cell cycle arrest, and immunomodulation. These molecules exert their effects via mitochondrial pathways, caspase activation, and inhibition of pro-survival signaling cascades such as NF-κB and PI3K/Akt. Despite promising preclinical results, the clinical translation of these bioactive compounds remains limited due to challenges in standardization, delivery, and safety profiling. This review highlights recent advances in venom research, summarizes key molecular targets, and discusses future directions to harness venom-derived molecules as innovative therapies for hematological cancers. Full article
Show Figures

Graphical abstract

18 pages, 4137 KiB  
Article
Three-Dimensional Printed Porous PLA Scaffolds with Dual Functionality: Cell Proliferation Enhancement and Antibacterial Properties
by Renad N. AlQurashi, Noora M. Bataweel, Mehal Atallah AlQriqri, Sarah H. Alqahtani, Ahmad A. Basalah and Laila A. Damiati
Polymers 2025, 17(14), 1928; https://doi.org/10.3390/polym17141928 - 13 Jul 2025
Viewed by 461
Abstract
Scaffold architecture plays a significant role in regulating cellular and microbial interactions in tissue engineering applications. This study evaluates the performance of 3D-printed poly (lactic acid) (PLA) scaffolds with varying porosity levels (20%, 40%, 60%, 80%, and 100%) in mechanical strength, supporting human [...] Read more.
Scaffold architecture plays a significant role in regulating cellular and microbial interactions in tissue engineering applications. This study evaluates the performance of 3D-printed poly (lactic acid) (PLA) scaffolds with varying porosity levels (20%, 40%, 60%, 80%, and 100%) in mechanical strength, supporting human skin fibroblast (HSF) viability and reducing bacterial colonization of Gram-positive bacteria (Staphylococcus epidermidis, Staphylococcus aureus), and Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli). The maximum tensile strength (28 MPa) was achieved in the 100% dense scaffold. Increasing porosity drastically decreased tensile strength, where 80% PLA scaffold possessed 16 MPa strength. At greater levels of porosity (60% and 40%), tensile strengths greatly decrease (8 MPa and 4 MPa), while ductility increases, especially at high porosity levels. HSF viability, assessed using the AlamarBlue assay, showed a time-dependent increase in cell proliferation, with the highest viability observed on scaffolds with 60% and 80% porosity. SEM imaging confirmed strong cell adhesion on the 80% porous scaffold, indicating that intermediate-to-high porosity enhances cell attachment and metabolic activity. In contrast, bacterial adhesion showed species-specific responses to scaffold porosity. S. epidermidis and E. coli exhibited a progressive increase in adherence with porosity, peaking at 100%. P. aeruginosa showed maximum adhesion at 80%, suggesting a porosity “sweet spot” that favors its colonization. S. aureus adhered most strongly to scaffolds with intermediate porosities (40–60%) and significantly less at 100% porosity. The current study provides insights into scaffold design considerations, emphasizing the need for optimized scaffold architecture that balances regenerative potential with infection control in tissue engineering applications. Full article
(This article belongs to the Special Issue Advances in Functional Polymer Materials for Biomedical Applications)
Show Figures

Graphical abstract

16 pages, 1643 KiB  
Article
Interactive Effect of Microplastics and Fungal Pathogen Rhizoctonia solani on Antioxidative Mechanism and Fluorescence Activity of Invasive Species Solidago canadensis
by Muhammad Anas, Irfan Ullah Khan, Rui-Ke Zhang, Shan-Shan Qi, Zhi-Cong Dai and Dao-Lin Du
Plants 2025, 14(13), 1972; https://doi.org/10.3390/plants14131972 - 27 Jun 2025
Viewed by 484
Abstract
Microplastics and invasive species, driven by anthropogenic activities, significantly disrupt ecosystems and microbial communities. This study investigated the interactive effects of biodegradable microplastics (polylactic acid, or PLA, and polyhydroxyalkanoates, or PHAs) and the fungal pathogen Rhizoctonia solani on the invasive plant Solidago canadensis [...] Read more.
Microplastics and invasive species, driven by anthropogenic activities, significantly disrupt ecosystems and microbial communities. This study investigated the interactive effects of biodegradable microplastics (polylactic acid, or PLA, and polyhydroxyalkanoates, or PHAs) and the fungal pathogen Rhizoctonia solani on the invasive plant Solidago canadensis. One plant of Solidago canadensis/pot was cultivated in forest soil amended with 1% (w/w) microplastics and/or R. solani. PLA exhibited greater toxicity than PHAs, reducing the plant height, root length, and biomass by 68%, 44%, and 70%, respectively. Microplastics impaired the maximum quantum yield of photosystem II more severely than R. solani. However, S. canadensis demonstrated adaptive antioxidative and extracellular enzymatic mechanisms under combined stresses. A heatmap analysis revealed a positive correlation between PHAs and plant growth traits, while a redundancy analysis explained the 15.96% and 4.19% variability for the first two components (r2 = 0.95). A structural equation model indicated the negative effects of morphology and physiology on biomass (β = −1.694 and β = −0.932; p < 0.001), countered by positive antioxidant contributions (β = 1.296; p < 0.001). These findings highlight complex interactions among microplastics, pathogens, and invasive species, offering insights into ecological management strategies under dual environmental pressures. Future studies should assess the long-term field effects and microbial mediation of these interactions. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Graphical abstract

15 pages, 2767 KiB  
Article
Solid-to-Solid Manufacturing Processes for High-Performance Li-Ion Solid-State Batteries
by David Orisekeh, Byeong-Min Roh and Xinyi Xiao
Polymers 2025, 17(13), 1788; https://doi.org/10.3390/polym17131788 - 27 Jun 2025
Viewed by 586
Abstract
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are [...] Read more.
Batteries are used as energy storage devices in various equipment. Today, research is focused on solid-state batteries (SSBs), replacing the liquid electrolyte with a solid separator. The solid separators provide electrolyte stability, no leakage, and provide mechanical strength to the battery. Separators are mostly manufactured by either traditional processes or 3D printing technologies. These processes involve making a slurry of plastic, active and conductive material and usually adding a plasticizer when making thin films or filaments for 3D printing. This study investigates the additive manufacturing of solid-state electrolytes (SSEs) by employing fused deposition modeling (FDM) with recyclable, bio-derived polylactic acid (PLA) filaments. Precise control of macro-porosity is achieved by systematically varying key process parameters, including raster orientation, infill percentage, and interlayer adhesion conditions, thereby enabling the formation of tunable, interconnected pore networks within the polymer matrix. Following 3D printing, these engineered porous frameworks are infiltrated with lithium hexafluorophosphate (LiPF6), which functions as the active ionic conductor. A tailored thermal sintering protocol is then applied to promote solid-phase fusion of the embedded salt throughout the macro-porous PLA scaffold, resulting in a mechanically robust and ionically conductive composite separator. The electrochemical ionic conductivity and structural integrity of the sintered SSEs are characterized through electrochemical impedance spectroscopy (EIS) and standardized mechanical testing to assess their suitability for integration into advanced solid-state battery architectures. The solid-state separator achieved an average ionic conductivity of 2.529 × 10−5 S·cm−1. The integrated FDM-sintering process enhances ion exchange at the electrode–electrolyte interface, minimizes material waste, and supports cost-efficient, fully recyclable component fabrication. Full article
Show Figures

Figure 1

19 pages, 2066 KiB  
Article
Resolvin D2 and Its Effects on the Intestinal Mucosa of Crohn’s Disease Patients: A Promising Immune Modulation Therapeutic Target
by Livia Bitencourt Pascoal, Bruno Lima Rodrigues, Guilherme Augusto da Silva Nogueira, Maria de Lourdes Setsuko Ayrizono, Priscilla de Sene Portel Oliveira, Licio Augusto Velloso and Raquel Franco Leal
Int. J. Mol. Sci. 2025, 26(13), 6003; https://doi.org/10.3390/ijms26136003 - 23 Jun 2025
Viewed by 350
Abstract
Crohn’s disease (CD) is a chronic inflammatory disorder of the gastrointestinal tract that severely impacts patients’ quality of life. Although current therapies have improved symptom management, they often fail to alter disease progression and are associated with immunosuppressive side effects. This study evaluated [...] Read more.
Crohn’s disease (CD) is a chronic inflammatory disorder of the gastrointestinal tract that severely impacts patients’ quality of life. Although current therapies have improved symptom management, they often fail to alter disease progression and are associated with immunosuppressive side effects. This study evaluated the immunomodulatory potential of resolvin D2 (RvD2), a pro-resolving lipid mediator, using a murine model of colitis and the ex vivo treatment of intestinal mucosal biopsies from CD patients, comparing its effects to those of conventional anti-TNFα therapy. To determine the optimal concentration of RvD2 for application in human tissue explant cultures, an initial in vitro assay was conducted using intestinal biopsies from mice with experimentally induced colitis. The explants were treated in vitro with varying concentrations of RvD2, and 0.1 μM emerged as an effective dose. This concentration significantly reduced the transcriptional levels of TNF-α (p = 0.004) and IL-6 (p = 0.026). Intestinal mucosal biopsies from fifteen patients with CD and seven control individuals were analyzed to validate RNA-sequencing data, which revealed dysregulation in the RvD2 biosynthetic and signaling pathways. The real-time PCR confirmed an increased expression of PLA2G7 (p = 0.02) and ALOX15 (p = 0.02), while the immunohistochemical analysis demonstrated the reduced expression of the RvD2 receptor GPR18 (p = 0.04) in intestinal tissues from CD patients. Subsequently, samples from eight patients with active Crohn’s disease, eight patients in remission, and six healthy controls were used for the serum analysis of RvD2 by ELISA, in vitro treatment of intestinal biopsies with RvD2 or anti-TNF, followed by transcriptional analysis, and a multiplex assay of the explant culture supernatants. The serum analysis demonstrated elevated RvD2 levels in CD patients both with active disease (p = 0.02) and in remission (p = 0.002) compared to healthy controls. The ex vivo treatment of intestinal biopsies with RvD2 decreased IL1β (p = 0.04) and TNFα (p = 0.02) transcriptional levels, comparable to anti-TNFα therapy. Additionally, multiplex cytokine profiling confirmed a reduction in pro-inflammatory cytokines, including IL-6 (p = 0.01), IL-21 (p = 0.04), and IL-22 (p = 0.009), in the supernatant of samples treated with RvD2. Altogether, these findings suggest that RvD2 promotes the resolution of inflammation in CD and supports its potential as a promising therapeutic strategy. Full article
(This article belongs to the Special Issue Inflammatory Bowel Disease: Molecular Insights—2nd Edition)
Show Figures

Figure 1

21 pages, 3474 KiB  
Article
An Experimental Model of Acute Pulmonary Damage Induced by the Phospholipase A2-Rich Venom of the Snake Pseudechis papuanus
by Daniela Solano, Alexandra Rucavado, Teresa Escalante, Edith Bastos Gandra Tavares, Suellen Karoline Moreira Bezerra, Clarice Rosa Olivo, Edna Aparecida Leick, Julio Alejandro Rojas Moscoso, Lourdes Dias, Iolanda de Fátima Lopes Calvo Tibério, Stephen Hyslop and José María Gutiérrez
Toxins 2025, 17(6), 302; https://doi.org/10.3390/toxins17060302 - 12 Jun 2025
Viewed by 633
Abstract
An experimental model of acute pulmonary damage was developed based on the intravenous injection of the phospholipase A2 (PLA2)-rich venom of Pseudechis papuanus (Papuan black snake) in mice. Venom caused pulmonary edema, with the accumulation of a protein-rich exudate, as [...] Read more.
An experimental model of acute pulmonary damage was developed based on the intravenous injection of the phospholipase A2 (PLA2)-rich venom of Pseudechis papuanus (Papuan black snake) in mice. Venom caused pulmonary edema, with the accumulation of a protein-rich exudate, as observed histologically and by analysis of bronchoalveolar lavage fluid (BALF). In parallel, venom induced an increase in all of the pulmonary mechanical parameters evaluated, without causing major effects in terms of tracheal and bronchial reactivity. These effects were abrogated by incubating the venom with the PLA2 inhibitor varespladib, indicating that this hydrolytic enzyme is responsible for these alterations. The venom was cytotoxic to endothelial cells in culture, hydrolyzed phospholipids of a pulmonary surfactant, and reduced the activity of angiotensin-converting enzyme in the lungs. The pretreatment of mice with the nitric oxide synthase inhibitor L-NAME reduced the protein concentration in the BALF, whereas no effect was observed when mice were pretreated with inhibitors of cyclooxygenase (COX), tumor necrosis factor-α (TNF-α), bradykinin, or neutrophils. Based on these findings, it is proposed that the rapid pathological effect of this venom in the lungs is mediated by (a) the direct cytotoxicity of venom PLA2 on cells of the capillary–alveolar barrier, (b) the degradation of surfactant factor by PLA2, (c) the deleterious action of nitric oxide in pulmonary tissue, and (d) the cytotoxic action of free hemoglobin that accumulates in the lungs as a consequence of venom-induced intravascular hemolysis. Our findings offer clues on the mechanisms of pathophysiological alterations induced by PLA2s in a variety of pulmonary diseases, including acute respiratory distress syndrome (ARDS). Full article
(This article belongs to the Section Animal Venoms)
Show Figures

Graphical abstract

21 pages, 3442 KiB  
Article
Material Selection for the Development of Orthoses Using Multicriteria Methods (MCDMs) and Simulation
by Rodger Benjamin Salazar Loor, Javier Martínez-Gómez and Josencka Sarmiento Anchundia
Processes 2025, 13(6), 1796; https://doi.org/10.3390/pr13061796 - 5 Jun 2025
Viewed by 582
Abstract
Low-energy bone fractures refer to injuries that occur from minimal trauma or impact. These fractures are often a result of activities, such as falls from standing height or minor accidents, where the force exerted on the bone is insufficient to cause a break [...] Read more.
Low-energy bone fractures refer to injuries that occur from minimal trauma or impact. These fractures are often a result of activities, such as falls from standing height or minor accidents, where the force exerted on the bone is insufficient to cause a break under normal conditions. To design an effective orthotic splint, it is critical to select the appropriate material that mimics the mechanical properties of traditional materials like plaster, which has long been used for immobilization purposes. In this case, Ansys CES Edupack 2025 software was utilized to evaluate and identify materials with mechanical characteristics similar to those of plaster. The software provided a list of six materials that met these criteria, but selecting the most suitable material involved more than just mechanical properties. Three different multicriteria decision-making methods were employed to ensure the best choice: TOPSIS, VIKOR, and COPRAS. These methods were applied to consider various factors, such as strength, flexibility, weight, cost, and ease of manufacturing. The results of the analyses revealed a strong consensus across all three methods. Each approach identified PLA (Polylactic Acid) as the most appropriate material for the orthotic design. Following the material selection process, simulations were conducted to assess the structural performance of the orthotic splint. The results determined that the minimum thickness required for the PLA orthosis was 4 mm, ensuring that it met all necessary criteria for acceptable stresses and deformations during the four primary movements exerted by the wrist. This thickness was sufficient to maintain the orthosis’s functionality without compromising comfort or effectiveness. Moreover, a significant improvement in the design was achieved through topological optimization, where the mass of the preliminary design was reduced by 9.58%, demonstrating an efficient use of material while maintaining structural integrity. Full article
(This article belongs to the Special Issue Multi-Criteria Decision Making in Chemical and Process Engineering)
Show Figures

Figure 1

17 pages, 2810 KiB  
Article
The Involvement of Glycerophospholipids in Susceptibility of Maize to Gibberella Root Rot Revealed by Comparative Metabolomics and Mass Spectrometry Imaging Joint Analysis
by Qing Wang, Zi’an Zhao, Xin Li and Xiquan Gao
Plants 2025, 14(9), 1376; https://doi.org/10.3390/plants14091376 - 1 May 2025
Viewed by 543
Abstract
Gibberella root rot (GRR), caused by Fusarium graminearum, is one of the major threats to maize production. However, the mechanism underlying maize’s response to GRR is not fully understood. Multi-omics study incorporating metabolomics reveals insights into maize–pathogen interactions. Using metabolomics and mass [...] Read more.
Gibberella root rot (GRR), caused by Fusarium graminearum, is one of the major threats to maize production. However, the mechanism underlying maize’s response to GRR is not fully understood. Multi-omics study incorporating metabolomics reveals insights into maize–pathogen interactions. Using metabolomics and mass spectrometry imaging (MSI), maize inbred lines with GRR resistance (W438) and susceptibility (335M) were deployed to characterize specific metabolites associated with GRR. Analysis of significantly altered metabolites suggested that glycerophospholipid metabolism was highly associated with GRR resistance or susceptibility. Furthermore, the distinct accumulation of lysophosphatidylethanolamine (lysoPE) and lysophosphatidylcholine (lysoPC) from glycerophospholipid metabolism, along with the significant up-regulation of phospholipase (PLA) gene in the susceptible line, suggested that high levels of lysoPC and lysoPE contributed to GRR susceptibility. Meanwhile, genes encoding lysophospholipase (LPLA), the detoxification enzymes of lysoPC, were significantly activated in both genotypes. However, the significantly higher expression of LPLAs in the resistant line corresponded to a significant increase in the content of non-toxic sn-glycero-3-phosphocholine, whereas this increase was not observed in the susceptible line. MSI analysis revealed the involvement of other potential phospholipids in GRR susceptibility. Taken together, maintaining an appropriate concentration of lysophospholipids is crucial for their role in the signaling pathway that triggers GRR resistance without causing damage to maize roots. Full article
(This article belongs to the Special Issue Identification of Resistance of Maize Germplasm Resources to Disease)
Show Figures

Figure 1

20 pages, 3041 KiB  
Article
Active Polylactic Acid (PLA) Films Incorporating Almond Peel Extracts for Food Preservation
by Laia Martin-Perez, Carolina Contreras, Amparo Chiralt and Chelo Gonzalez-Martinez
Molecules 2025, 30(9), 1988; https://doi.org/10.3390/molecules30091988 - 29 Apr 2025
Viewed by 505
Abstract
Almond peel extracts, containing 0.2–0.8% (w/w) phenolic compounds with notable antioxidant and antimicrobial activities, could be used as a natural source of active compounds for the development of active films for food preservation. In this study, almond peel extracts [...] Read more.
Almond peel extracts, containing 0.2–0.8% (w/w) phenolic compounds with notable antioxidant and antimicrobial activities, could be used as a natural source of active compounds for the development of active films for food preservation. In this study, almond peel extracts obtained by subcritical water extraction at 160 and 180 °C were incorporated into PLA films (PLA-E160 and PLA-E180). The films were characterized in terms of their microstructure, mechanical, barrier, optical and thermal properties. Furthermore, the release of phenolic compounds and hydroximethylfurfural (HFM) into food simulants with different polarity was evaluated, as well as the film’s potential antioxidant and antimicrobial activities. To validate their effectiveness as active packaging materials, shelf-life studies were conducted on fresh orange juice and sunflower oil packaged using PLA-160 films. The results show that the incorporation of the almond peel extracts led to significant changes in the films’ microstructure and mechanical properties, which became darker, mechanically less resistant, and stretchable (p < 0.05), with slightly lower thermal stability than neat PLA films. The release of phenolic compounds and HFM from extract-enriched films was promoted in the 95% ethanol simulant due to the matrix swelling and relaxation. Food products packaged with PLA-E160 exhibited slower oxidative degradation during storage, as indicated by the higher ascorbic acid content and hue color in orange juice and lower peroxide content in sunflower oil. Nevertheless, both in vivo and in vitro studies showed no antimicrobial effectiveness from the films, likely due to the limited release of active compounds to the surrounding medium. Thus, almond peel extract conferred valuable properties to PLA films, effectively reducing oxidative reactions in food products sensitive to these deterioration processes. Full article
(This article belongs to the Special Issue Bio-Based Polymers for Sustainable Future)
Show Figures

Graphical abstract

16 pages, 2628 KiB  
Article
Valorization of Beetroot Waste via Subcritical Water Extraction for Developing Active Food Packaging Materials
by Márcia Correa de Carvalho, Pedro A. V. Freitas, Rosa J. Jagus, María V. Agüero and Amparo Chiralt
Molecules 2025, 30(9), 1928; https://doi.org/10.3390/molecules30091928 - 26 Apr 2025
Viewed by 501
Abstract
Obtaining active extracts from beet root leaves and stems (BLS) is an alternative for the valorization of this agricultural waste. Subcritical water extraction (SWE) at 150 °C and 170 °C has been used to obtain these extracts, which were incorporated (6% wt.) into [...] Read more.
Obtaining active extracts from beet root leaves and stems (BLS) is an alternative for the valorization of this agricultural waste. Subcritical water extraction (SWE) at 150 °C and 170 °C has been used to obtain these extracts, which were incorporated (6% wt.) into polymer matrices to produce antioxidant films of thermoplastic starch (TPS) and polylactic acid (PLA) for the preservation of sunflower oil. A high extraction yield (67–60% solubilized solids) was achieved, and the extracts contained high levels of total phenols (51–73 mg GAE·g−1 extract) and betalains and great radical scavenging capacity (EC50: 30–22 mg mg−1 DPPH). The highest temperature promoted the extract’s phenolic richness and antioxidant capacity. The TPS and PLA films containing extracts exhibited color and UV-light blocking effects. The extracts reduced the oxygen permeability (OP) and water vapor permeability of PLA films while promoting those of the TPS films. The capacity of the films to preserve sunflower oil from oxidation was mainly controlled by the OP values of the films, which were very high in TPS films with low OP values. However, in the PLA films (which were more permeable to oxygen), the antioxidant extracts provided significant protection against sunflower oil oxidation. Full article
Show Figures

Figure 1

18 pages, 3897 KiB  
Article
Remediation of Coastal Wetland Soils Co-Contaminated with Microplastics and Cadmium Using Spartina alterniflora Biochar: Soil Quality, Microbial Communities, and Plant Growth Responses
by Jing Shi, Xiangyu Pan, Weizhen Zhang, Jing Dong, Yu Zhao, Jiao Ran, Dan Zhou, Guo Li and Zheng Zheng
Agronomy 2025, 15(4), 877; https://doi.org/10.3390/agronomy15040877 - 31 Mar 2025
Viewed by 918
Abstract
Biochar, an eco-friendly soil amendment, holds promise for remediating contaminated soils, yet its impacts on coastal wetland soils under combined microplastic (MP) and heavy metal (HM) pollution remain underexplored. This study examined the efficacy of 2% Spartina alterniflora-derived biochar (BC) in rehabilitating [...] Read more.
Biochar, an eco-friendly soil amendment, holds promise for remediating contaminated soils, yet its impacts on coastal wetland soils under combined microplastic (MP) and heavy metal (HM) pollution remain underexplored. This study examined the efficacy of 2% Spartina alterniflora-derived biochar (BC) in rehabilitating soils co-contaminated with cadmium (Cd) and two MPs—polyethylene (PE) and polylactic acid (PLA)—at 0.2% and 2% (w/w). The results indicated that biochar significantly elevated soil pH (8.35–8.43) and restored electrical conductivity (EC) to near-control levels, while enhancing organic matter content (up to 130% in PLA-contaminated soils), nutrient availability (e.g., phosphorus, potassium), and enzyme activity. Biochar reduced bioavailable Cd by 14–15% through adsorption and ion exchange. Although bacterial richness and diversity slightly declined, biochar reshaped microbial communities, enriching taxa linked to pollutant degradation (e.g., Proteobacteria, Bacteroidota) and upregulated functional genes associated with carbon, nitrogen, and sulfur cycling. Additionally, biochar boosted Suaeda salsa (S. salsa) biomass (e.g., 0.72 g/plant in A1B) and height (e.g., 14.07 cm in E1B) while reducing Cd accumulation (29.45% in shoots) and translocation. Remediation efficiency was most pronounced in soils with 0.2% PLA. These findings bridge critical knowledge gaps in biochar’s role in complexly polluted coastal wetlands and validate its potential for sustainable soil restoration. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

27 pages, 3876 KiB  
Review
Revealing Three-Dimensional Printing Technology Advances for Oral Drug Delivery: Application to Central-Nervous-System-Related Diseases
by Samir I. Paipa-Jabre-Cantu, Marisela Rodriguez-Salvador and Pedro F. Castillo-Valdez
Pharmaceutics 2025, 17(4), 445; https://doi.org/10.3390/pharmaceutics17040445 - 31 Mar 2025
Cited by 1 | Viewed by 1229
Abstract
Background/Objectives. Central nervous system (CNS)-related diseases such as Alzheimer’s and Parkinson’s, Attention Deficit Hyperactive Disorder (ADHD), stroke, epilepsy, and migraines are leading causes of morbidity and disability worldwide. New solutions for drug delivery are increasingly needed. In this context, three-dimensional (3D) printing technology [...] Read more.
Background/Objectives. Central nervous system (CNS)-related diseases such as Alzheimer’s and Parkinson’s, Attention Deficit Hyperactive Disorder (ADHD), stroke, epilepsy, and migraines are leading causes of morbidity and disability worldwide. New solutions for drug delivery are increasingly needed. In this context, three-dimensional (3D) printing technology has introduced innovative alternatives to produce more efficient medicines with diverse features, patterns, and consistencies, particularly oral medications. Even though research in this area is growing rapidly, no study has thoroughly analyzed 3D printing oral drug delivery progress for the CNS. To fill this gap this study pursues to determine a technological landscape in this field. Methods. For this aim, a Competitive Technology Intelligence (CTI) methodology was applied, examining 747 publications from 1 January 2019 to 20 May 2024 published in the Scopus database. Results. The main advances identified comprise six categories: 3D printing techniques, characteristics and applications, materials, design factors, user acceptance, and quality processes. FDM was identified as the main technique for pharmaceutical use. The main applications include pills, polypills, caplets, gel caps, multitablets, orodispersible films, and tablets, featuring external patterns and internal structures with one or more active substances. Insights show that the most utilized materials are thermoplastic polymers like PLA, PVA, PCL, ABS, and HIPS. A novel design factor involves release patterns using compartments of varying thicknesses and volumes in the core. Additionally, advances in specialized software have enabled the creation of highly complex designs. In the user acceptance category, oral drugs dosages are tailored to the specific needs and preferences of neurological patients. Finally, for the quality aspect, the precision in Active Pharmaceutical Ingredient (API) dosage and controlled-release mechanisms are critical, given the narrow margin between therapeutic doses and toxicity for CNS diseases. Conclusions. Revealing these advancements in 3D printing for oral drug delivery allows researchers, academics, and decision-makers to identify opportunities and allocate resources efficiently, promising enhanced oral medicaments for the health and well-being of individuals suffering from CNS disorders. Full article
(This article belongs to the Special Issue Pharmaceutical Applications of 3D Printing)
Show Figures

Graphical abstract

19 pages, 3426 KiB  
Article
PLA/PMMA Reactive Blending in the Presence of MgO as an Exchange Reaction Catalyst
by Masoud Komeijani, Naeimeh Bahri-Laleh, Zohreh Mirjafary, Massimo Christian D’Alterio, Morteza Rouhani, Hossein Sakhaeinia, Amin Hedayati Moghaddam, Seyed Amin Mirmohammadi and Albert Poater
Polymers 2025, 17(7), 845; https://doi.org/10.3390/polym17070845 - 21 Mar 2025
Viewed by 569
Abstract
To address the limitations of poly (lactic acid) (PLA), it was blended with poly (methyl methacrylate) (PMMA) as a toughening component, using MgO nanoparticles (NPs, 0.075–0.15 wt%) as a catalyst. SEM pictures confirmed the good miscibility of the blends. Mechanical tests showed a [...] Read more.
To address the limitations of poly (lactic acid) (PLA), it was blended with poly (methyl methacrylate) (PMMA) as a toughening component, using MgO nanoparticles (NPs, 0.075–0.15 wt%) as a catalyst. SEM pictures confirmed the good miscibility of the blends. Mechanical tests showed a slight decrease in elastic modulus and tensile strength for the PLA/PMMA125 sample containing 0.125% MgO. Yet, elongation at break rose by over 60% and impact strength increased by over 400% compared to pure PLA. Also, MgO facilitated the shifting of the glass transition temperature (Tg) of both polymers in DSC curves. Additionally, the absence of cold crystallization in PLA, coupled with reductions in its melting temperature (Tm) and crystallinity, were identified as critical factors contributing to improved miscibility within the reactive blend. Melt flow index (MFI) evaluation indicated a decrease in viscosity, while water contact angle measurements revealed an increase in polar groups on the surfaces of the MgO-containing samples. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analyses confirmed the effective distribution and dispersion of NPs throughout the blend, along with a significant decrease in crystallinity. Moreover, DFT calculations were performed to better understand the role of MgO in the reaction. The findings offered key insights into the reaction mechanism, confirming that MgO plays a crucial role in facilitating the transesterification between PLA and PMMA. These findings underscore the enhanced performance of exchange reactions between the active groups of both polymers in the presence of MgO, leading to the formation of PLA-PMMA copolymers with superior miscibility and mechanical properties. Finally, a cell culture assay confirmed the blend’s non-toxicity, showing its versatile potential. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

24 pages, 6184 KiB  
Article
Integration of Complexed Caffeic Acid into Poly(Lactic Acid)-Based Biopolymer Blends by Supercritical CO2-Assisted Impregnation and Foaming: Processing, Structural and Thermal Characterization
by Patricia Rivera, Alejandra Torres, Miguel Pacheco, Julio Romero, Marina P. Arrieta, Francisco Rodríguez-Mercado and Julio Bruna
Polymers 2025, 17(6), 803; https://doi.org/10.3390/polym17060803 - 18 Mar 2025
Viewed by 725
Abstract
Conventional techniques for incorporating active ingredients into polymeric matrices are accompanied by certain disadvantages, primarily attributable to the inherent characteristics of the active ingredient itself, including its sensitivity to temperature. A potential solution to these challenges lies in the utilization of supercritical carbon [...] Read more.
Conventional techniques for incorporating active ingredients into polymeric matrices are accompanied by certain disadvantages, primarily attributable to the inherent characteristics of the active ingredient itself, including its sensitivity to temperature. A potential solution to these challenges lies in the utilization of supercritical carbon dioxide (scCO2) for the formation of polymeric foam and the incorporation of active ingredients, in conjunction with the encapsulation of inclusion complexes (ICs), to ensure physical stability and augmented bioactivity. The objective of this study was to assess the impact of IC impregnation and subsequent foam formation on PLA films and PLA/PBAT blends that had been previously impregnated. The study’s methodology encompassed the formation and characterization of ICs with caffeic acid (CA) and β-cyclodextrin (β-CD), along with the thermal, structural, and morphological properties of the resulting materials. Higher incorporation of impregnated IC into the PLA(42)/PBAT(58) blend was observed at 12 MPa pressure and a depressurization rate of 1 MPa/min. The presence of IC, in addition to a lower rate of expansion, contributed to the formation of homogeneous cells with a size range of 4–44 um. On the other hand, the incorporation of IC caused a decrease in the crystallinity of the PLA fraction due to the interaction of the complex with the polymer. This study makes a significant contribution to the advancement of knowledge on the incorporation of compounds encapsulated in β-CD by scCO2, as well as to the development of active materials with potential applications in food packaging. Full article
Show Figures

Figure 1

Back to TopTop