Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,215)

Search Parameters:
Keywords = rotational movement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4949 KiB  
Article
Motion Coupling at the Cervical Vertebral Joints in the Horse—An Ex Vivo Study Using Bone-Anchored Markers
by Katharina Bosch, Rebeka R. Zsoldos, Astrid Hartig and Theresia Licka
Animals 2025, 15(15), 2259; https://doi.org/10.3390/ani15152259 (registering DOI) - 1 Aug 2025
Abstract
The influence of soft tissue structures, including ligaments spanning one or more intervertebral junctions and the nuchal ligament, on motion of the equine cervical joints remains unclear. The present study addressed this using four post-mortem horse specimens extending from head to withers with [...] Read more.
The influence of soft tissue structures, including ligaments spanning one or more intervertebral junctions and the nuchal ligament, on motion of the equine cervical joints remains unclear. The present study addressed this using four post-mortem horse specimens extending from head to withers with all ligaments intact. Three-dimensional kinematics was obtained from markers on the head and bone-anchored markers on each cervical and the first thoracic vertebra during rotation, lateral bending, flexion and extension of the whole head, and neck segment. Yaw, pitch, and roll angles in 8 cervical joints (total 32) were calculated. Flexion and extension were expressed mainly as pitch in 27 and 22 joints, respectively. Rotation appeared as predominantly roll in 13 joints, whereas lateral bending was represented as predominantly yaw in 1 and as roll or pitch in all other joints. Significant correlations between yaw, pitch, and roll were observed at individual cervical joints in 97% of all measurements, with the atlanto-occipital joint showing complete (100%) correlation. Most non-significant correlations occurred at the C5–C6 joint, while C6–C7 exhibited significantly lower correlation coefficients compared to other levels. The overall movement of the head and neck is not replicated at individual cervical joint levels and should be considered when evaluating equine necks in vivo. Full article
Show Figures

Figure 1

18 pages, 4452 KiB  
Article
Upper Limb Joint Angle Estimation Using a Reduced Number of IMU Sensors and Recurrent Neural Networks
by Kevin Niño-Tejada, Laura Saldaña-Aristizábal, Jhonathan L. Rivas-Caicedo and Juan F. Patarroyo-Montenegro
Electronics 2025, 14(15), 3039; https://doi.org/10.3390/electronics14153039 - 30 Jul 2025
Viewed by 181
Abstract
Accurate estimation of upper-limb joint angles is essential in biomechanics, rehabilitation, and wearable robotics. While inertial measurement units (IMUs) offer portability and flexibility, systems requiring multiple inertial sensors can be intrusive and complex to deploy. In contrast, optical motion capture (MoCap) systems provide [...] Read more.
Accurate estimation of upper-limb joint angles is essential in biomechanics, rehabilitation, and wearable robotics. While inertial measurement units (IMUs) offer portability and flexibility, systems requiring multiple inertial sensors can be intrusive and complex to deploy. In contrast, optical motion capture (MoCap) systems provide precise tracking but are constrained to controlled laboratory environments. This study presents a deep learning-based approach for estimating shoulder and elbow joint angles using only three IMU sensors positioned on the chest and both wrists, validated against reference angles obtained from a MoCap system. The input data includes Euler angles, accelerometer, and gyroscope data, synchronized and segmented into sliding windows. Two recurrent neural network architectures, Convolutional Neural Network with Long-short Term Memory (CNN-LSTM) and Bidirectional LSTM (BLSTM), were trained and evaluated using identical conditions. The CNN component enabled the LSTM to extract spatial features that enhance sequential pattern learning, improving angle reconstruction. Both models achieved accurate estimation performance: CNN-LSTM yielded lower Mean Absolute Error (MAE) in smooth trajectories, while BLSTM provided smoother predictions but underestimated some peak movements, especially in the primary axes of rotation. These findings support the development of scalable, deep learning-based wearable systems and contribute to future applications in clinical assessment, sports performance analysis, and human motion research. Full article
(This article belongs to the Special Issue Wearable Sensors for Human Position, Attitude and Motion Tracking)
Show Figures

Figure 1

10 pages, 621 KiB  
Review
Optimizing Hip Abductor Strengthening for Lower Extremity Rehabilitation: A Narrative Review on the Role of Monster Walk and Lateral Band Walk
by Ángel González-de-la-Flor
J. Funct. Morphol. Kinesiol. 2025, 10(3), 294; https://doi.org/10.3390/jfmk10030294 - 30 Jul 2025
Viewed by 222
Abstract
Introduction: Hip abductor strength is essential for pelvic stability, lower limb alignment, and injury prevention. Weaknesses of the gluteus medius and minimus contribute to various musculoskeletal conditions. Lateral band walks and monster walks are elastic resistance exercises commonly used to target the [...] Read more.
Introduction: Hip abductor strength is essential for pelvic stability, lower limb alignment, and injury prevention. Weaknesses of the gluteus medius and minimus contribute to various musculoskeletal conditions. Lateral band walks and monster walks are elastic resistance exercises commonly used to target the hip abductors and external rotators in functional, weight-bearing tasks. Therefore, the aim was to summarize the current evidence on the biomechanics, muscle activation, and clinical applications of lateral and monster band walks. Methods: This narrative review was conducted following the SANRA guideline. A comprehensive literature search was performed across PubMed, Scopus, Web of Science, and SPORTDiscus up to April 2025. Studies on the biomechanics, electromyography, and clinical applications of lateral band walks and monster walks were included, alongside relevant evidence on hip abductor strengthening. Results: A total of 13 studies were included in the review, of which 4 specifically investigated lateral band walk and/or monster walk exercises. Lateral and monster walks elicit moderate to high activation of the gluteus medius and maximus, especially when performed with the band at the ankles or forefeet and in a semi-squat posture. This technique minimizes compensation from the tensor fasciae latae and promotes selective gluteal recruitment. Proper execution requires control of the trunk and pelvis, optimal squat depth, and consistent band tension. Anatomical factors (e.g., femoral torsion), sex differences, and postural variations may influence movement quality and necessitate tailored instruction. Full article
(This article belongs to the Special Issue Biomechanical Analysis in Physical Activity and Sports—2nd Edition)
Show Figures

Figure 1

20 pages, 3364 KiB  
Article
Inverse Kinematics of a Serial Manipulator with a Free Joint for Aerial Manipulation
by Alberto Pasetto, Mattia Pedrocco, Riccardo Zenari and Silvio Cocuzza
Appl. Sci. 2025, 15(15), 8390; https://doi.org/10.3390/app15158390 - 29 Jul 2025
Viewed by 90
Abstract
In Aerial Manipulation, the motion of the robotic arm can cause unwanted movements of the flying base affecting the trajectory tracking capability. A possible solution to reduce these disturbances is to use a free revolute joint between the flying base and the manipulator, [...] Read more.
In Aerial Manipulation, the motion of the robotic arm can cause unwanted movements of the flying base affecting the trajectory tracking capability. A possible solution to reduce these disturbances is to use a free revolute joint between the flying base and the manipulator, thus reducing the torque applied to the base from the manipulator. In this paper, a novel approach to solve the inverse kinematics of an aerial manipulator with a free revolute joint is presented. The approach exploits the Generalized Jacobian to deal with the presence of a mobile base, and the dynamics of the system is considered to predict the motion of the non-actuated joint; external forces acting on the system are also included. The method is implemented in MATLAB for a planar case considering the parameters of a real manipulator attached to a real octocopter. The tracking of a trajectory with the end-effector and a load picking task are simulated for a non-redundant and for a redundant manipulator. Simulation results demonstrate the capability of this approach in following the desired trajectories and reducing rotation and horizontal translation of the base. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

29 pages, 8216 KiB  
Article
Research on the Diaphragm Movement Characteristics and Cavity Profile Optimization of a Dual-Stage Diaphragm Compressor for Hydrogen Refueling Applications
by Chongzhou Sun, Zhilong He, Dantong Li, Xiaoqian Chen, Jie Tang, Manguo Yan and Xiangjie Kang
Appl. Sci. 2025, 15(15), 8353; https://doi.org/10.3390/app15158353 - 27 Jul 2025
Viewed by 274
Abstract
The large-scale utilization of hydrogen energy is currently hindered by challenges in low-cost production, storage, and transportation. This study focused on investigating the impact of the diaphragm cavity profile on the movement behavior and stress distribution of a dual-stage diaphragm compressor. Firstly, an [...] Read more.
The large-scale utilization of hydrogen energy is currently hindered by challenges in low-cost production, storage, and transportation. This study focused on investigating the impact of the diaphragm cavity profile on the movement behavior and stress distribution of a dual-stage diaphragm compressor. Firstly, an experimental platform was established to test the gas mass flowrate and fluid pressures under various preset conditions. Secondly, a simulation path integrating the finite element method simulation, theoretical stress model, and movement model was developed and experimentally validated to analyze the diaphragm stress distribution and deformation characteristics. Finally, comparative optimization analyses were conducted on different types of diaphragm cavity profiles. The results indicated that the driving pressure differences at the top dead center position reached 85.58 kPa for the first-stage diaphragm and 75.49 kPa for the second-stage diaphragm. Under experimental conditions of 1.6 MPa suction pressure, 8 MPa second-stage discharge pressure, and 200 rpm rotational speed, the first-stage and second-stage diaphragms reached the maximum center deflections of 4.14 mm and 2.53 mm, respectively, at the bottom dead center position. Moreover, the cavity profile optimization analysis indicated that the double-arc profile (DAP) achieved better cavity volume and diaphragm stress characteristics. The first-stage diaphragm within the optimized DAP-type cavity exhibited 173.95 MPa maximum principal stress with a swept volume of 0.001129 m3, whereas the second-stage optimized configuration reached 172.57 MPa stress with a swept volume of 0.0003835 m3. This research offers valuable insights for enhancing the reliability and performance of diaphragm compressors. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

29 pages, 8648 KiB  
Article
Design and Experimentation of Comb-Spiral Impact Harvesting Device for Camellia oleifera Fruit
by Fengxin Yan, Yaoyao Zhu, Xujie Li, Yu Zhang, Komil Astanakulov and Naimov Alisher
Agriculture 2025, 15(15), 1616; https://doi.org/10.3390/agriculture15151616 - 25 Jul 2025
Viewed by 269
Abstract
Camellia oleifera is one of the four largest woody oil species in the world, with more than 5 million hectares planted in China alone. Reducing bud damage and improving harvesting net rate and efficiency have become the key challenges to mechanized harvesting of [...] Read more.
Camellia oleifera is one of the four largest woody oil species in the world, with more than 5 million hectares planted in China alone. Reducing bud damage and improving harvesting net rate and efficiency have become the key challenges to mechanized harvesting of Camellia oleifera fruits. This paper presents a novel comb-spiral impact harvesting device primarily composed of four parts, which are lifting mechanism, picking mechanism, rotating mechanism, and tracked chassis. The workspace of the four-degree-of-freedom lifting mechanism was simulated, and the harvesting reachable area was maximized using MATLAB R2021a software. The picking mechanism, which includes dozens of spirally arranged impact pillars, achieves high harvesting efficiency through impacting, brushing, and dragging, while maintaining a low bud shedding rate. The rotary mechanism provides effective harvesting actions, and the tracked chassis guarantees free movement of the equipment. Simulation experiments and field validation experiments indicate that optimal performance can be achieved when the brushing speed is set to 21.45 r/min, the picking finger speed is set to 341.27 r/min, and the picking device tilt angle is set to 1.0°. With these parameters, the harvesting quantity of Camellia oleifera fruits is 119.75 kg/h, fruit shedding rate 92.30%, and bud shedding rate as low as 9.16%. This new model for fruit shedding and the comb-spiral impact harvesting principle shows promise as a mechanized harvesting solution for nut-like fruits. Full article
Show Figures

Figure 1

18 pages, 3870 KiB  
Article
Universal Vector Calibration for Orientation-Invariant 3D Sensor Data
by Wonjoon Son and Lynn Choi
Sensors 2025, 25(15), 4609; https://doi.org/10.3390/s25154609 - 25 Jul 2025
Viewed by 212
Abstract
Modern electronic devices such as smartphones, wearable devices, and robots typically integrate three-dimensional sensors to track the device’s movement in the 3D space. However, sensor measurements in three-dimensional vectors are highly sensitive to device orientation since a slight change in the device’s tilt [...] Read more.
Modern electronic devices such as smartphones, wearable devices, and robots typically integrate three-dimensional sensors to track the device’s movement in the 3D space. However, sensor measurements in three-dimensional vectors are highly sensitive to device orientation since a slight change in the device’s tilt or heading can change the vector values. To avoid complications, applications using these sensors often use only the magnitude of the vector, as in geomagnetic-based indoor positioning, or assume fixed device holding postures such as holding a smartphone in portrait mode only. However, using only the magnitude of the vector loses the directional information, while ad hoc posture assumptions work under controlled laboratory conditions but often fail in real-world scenarios. To resolve these problems, we propose a universal vector calibration algorithm that enables consistent three-dimensional vector measurements for the same physical activity, regardless of device orientation. The algorithm works in two stages. First, it transforms vector values in local coordinates to those in global coordinates by calibrating device tilting using pitch and roll angles computed from the initial vector values. Second, it additionally transforms vector values from the global coordinate to a reference coordinate when the target coordinate is different from the global coordinate by correcting yaw rotation to align with application-specific reference coordinate systems. We evaluated our algorithm on geomagnetic field-based indoor positioning and bidirectional step detection. For indoor positioning, our vector calibration achieved an 83.6% reduction in mismatches between sampled magnetic vectors and magnetic field map vectors and reduced the LSTM-based positioning error from 31.14 m to 0.66 m. For bidirectional step detection, the proposed algorithm with vector calibration improved step detection accuracy from 67.63% to 99.25% and forward/backward classification from 65.54% to 100% across various device orientations. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

29 pages, 20260 KiB  
Review
Geodynamic, Tectonophysical, and Structural Comparison of the South Caspian and Levant Basins: A Review
by Lev Eppelbaum, Youri Katz, Fakhraddin Kadirov, Ibrahim Guliyev and Zvi Ben-Avraham
Geosciences 2025, 15(8), 281; https://doi.org/10.3390/geosciences15080281 - 24 Jul 2025
Viewed by 255
Abstract
The Paratethyan South Caspian and Mediterranean Levant basins relate to the significant hydrocarbon provinces of Eurasia. The giant hydrocarbon reserves of the SCB are well-known. Within the LB, so far, only a few commercial gas fields have been found. Both the LB and [...] Read more.
The Paratethyan South Caspian and Mediterranean Levant basins relate to the significant hydrocarbon provinces of Eurasia. The giant hydrocarbon reserves of the SCB are well-known. Within the LB, so far, only a few commercial gas fields have been found. Both the LB and SCB contain some geological peculiarities. These basins are highly complex tectonically and structurally, requiring a careful, multi-component geological–geophysical analysis. These basins are primarily composed of oceanic crust. The oceanic crust of both the South Caspian and Levant basins formed within the complex Neotethys ocean structure. However, this crust is allochthonous in the Levant Basin (LB) and autochthonous in the South Caspian Basin (SCB). This study presents a comprehensive comparison of numerous tectonic, geodynamic, morphological, sedimentary, and geophysical aspects of these basins. The Levant Basin is located directly above the middle part of the massive, counterclockwise-rotating mantle structure and rotates accordingly in the same direction. To the north of this basin is located the critical latitude 35° of the Earth, with the vast Cyprus Bouguer gravity anomaly. The LB contains the most ancient block of oceanic crust on Earth, which is related to the Kiama paleomagnetic hyperzone. On the western boundary of the SCB, approximately 35% of the world’s mud volcanoes are located; the geological reasons for this are still unclear. The low heat flow values and thick sedimentary layers in both basins provide opportunities to discover commercial hydrocarbon deposits at great depths. The counterclockwise-rotating mantle structure creates an indirect geodynamic influence on the SCB. The lithospheric blocks situated above the eastern branch of the mantle structure trigger a north–northeastward movement of the western segment of the Iranian Plate, which exhibits a complex geometric configuration. Conversely, the movement of the Iranian Plate induced a clockwise rotation of the South Caspian Basin, which lies to the east of the plate. This geodynamic ensemble creates an unstable geodynamic situation in the region. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

21 pages, 2765 KiB  
Article
Lyapunov-Based Framework for Platform Motion Control of Floating Offshore Wind Turbines
by Mandar Phadnis and Lucy Pao
Energies 2025, 18(15), 3969; https://doi.org/10.3390/en18153969 - 24 Jul 2025
Viewed by 270
Abstract
Floating offshore wind turbines (FOWTs) unlock superior wind resources and reduce operational barriers. The dynamics of FOWT platforms present added engineering challenges and opportunities. While the motion of the floating platform due to wind and wave disturbances can worsen power quality and increase [...] Read more.
Floating offshore wind turbines (FOWTs) unlock superior wind resources and reduce operational barriers. The dynamics of FOWT platforms present added engineering challenges and opportunities. While the motion of the floating platform due to wind and wave disturbances can worsen power quality and increase structural loading, certain movements of the floating platform can be exploited to improve power capture. Consequently, active FOWT platform control methods using conventional and innovative actuation systems are under investigation. This paper develops a novel framework to design nonlinear control laws for six degrees-of-freedom platform motion. The framework uses simplified rigid-body analytical models of the FOWT. Lyapunov’s direct method is used to develop actuator-agnostic unconstrained control laws for platform translational and rotational control. A model based on the NREL-5MW reference turbine on the OC3-Hywind spar-buoy platform is utilized to test the control framework for an ideal actuation scenario. Possible applications using traditional and novel turbine actuators and future research directions are presented. Full article
(This article belongs to the Special Issue Comprehensive Design and Optimization of Wind Turbine)
Show Figures

Figure 1

17 pages, 2402 KiB  
Article
Performance and Comfort of Precise Distal Pointing Interaction in Intelligent Cockpits: The Role of Control Display Gain and Wrist Posture
by Yongmeng Wu, Ninghan Ma, Guoan Mao, Xin Li, Xiao Song, Leshao Zhang and Jinyi Zhi
Multimodal Technol. Interact. 2025, 9(7), 73; https://doi.org/10.3390/mti9070073 - 19 Jul 2025
Viewed by 199
Abstract
Using personal smart devices such as mobile phones to perform precise distal pointing in intelligent cockpits is a developing trend. The present study investigated the effects of different control display gains (CD gains) and wrist movement modalities on performance and comfort for precise [...] Read more.
Using personal smart devices such as mobile phones to perform precise distal pointing in intelligent cockpits is a developing trend. The present study investigated the effects of different control display gains (CD gains) and wrist movement modalities on performance and comfort for precise distal pointing interaction. Twenty healthy participants performed a precise distant pointing task with four constant CD gains (0.6, 0.8, 0.84, and 1.0), two dynamic CD gains, and two wrist movement modalities (wrist extension and rotation) by using a mobile phone as the input device. Physiological electromyographic data, task performance, and subjective questionnaire data were collected. Comparative results show that constant CD gain is superior to dynamic CD gain and that 0.8 to 1.0 is the optimum range of values. The data showed a clear and consistent trend in performance and comfort as the CD gain increased from 0.6 to 1.0, with performance and comfort becoming progressively better, reaching an optimum at 0.84. In terms of the wrist control method, the rotation mode had smaller task completion time than the extension mode. The results of this study provide a basis for the design of remote interaction using mobile phones in an intelligent cockpit. Full article
Show Figures

Figure 1

12 pages, 2851 KiB  
Article
Comparative Analysis of Mechanical Variables in Different Exercises Performed with a Rotational Inertial Device in Professional Soccer Players: A Pilot Study
by Álvaro Murillo-Ortiz, Luis Manuel Martínez-Aranda, Moisés Falces-Prieto, Samuel López-Mariscal, Francisco Javier Iglesias-García and Javier Raya-González
J. Funct. Morphol. Kinesiol. 2025, 10(3), 279; https://doi.org/10.3390/jfmk10030279 - 18 Jul 2025
Viewed by 311
Abstract
Background: Soccer performance is largely dependent on high-intensity, unilateral actions such as sprints, jumps, and changes of direction. These demands can lead to strength and power differences between limbs, highlighting the importance of individualised assessment in professional players. Rotational inertial devices offer a [...] Read more.
Background: Soccer performance is largely dependent on high-intensity, unilateral actions such as sprints, jumps, and changes of direction. These demands can lead to strength and power differences between limbs, highlighting the importance of individualised assessment in professional players. Rotational inertial devices offer a valuable method to evaluate and train these mechanical variables separately for each leg. The aim of this study was twofold: (a) to characterise the mechanical variables derived from several lower-body strength exercises performed on rotational inertial devices, all targeting the same muscle group; and (b) to compare the mechanical variables between the dominant and non-dominant leg for each exercise. Methods: Twenty-six male professional soccer players (age = 26.3 ± 5.1 years; height = 182.3 ± 0.6 cm; weight = 75.9 ± 5.9 kg; body mass index = 22.8 ± 1.1 kg/m2; fat mass percentage = 9.1 ± 0.6%; fat-free mass = 68.8 ± 5.3 kg), all belonging to the same professional Belgian team, voluntarily participated in this study. The players completed a single assessment session consisting of six unilateral exercises (i.e., quadriceps hip, hamstring knee, adductor, quadriceps knee, hamstring hip, and abductor). For each exercise, they performed two sets of eight repetitions with each leg (i.e., dominant and non-dominant) in a randomised order. Results: The quadriceps hip exercise resulted in higher mechanical values compared to the quadriceps knee exercise in both limbs (p < 0.004). Similarly, the hamstring hip exercise produced greater values across all variables and limbs (p < 0.004), except for peak force, where the hamstring knee exercise exhibited higher values (p < 0.004). The adductor exercise showed higher peak force values for the dominant limb (p < 0.004). The between-limb comparison revealed differences only in the abductor exercise (p < 0.004). Conclusions: These findings suggest the necessity of prioritising movement selection based on targeted outcomes, although it should be considered that the differences between limb differences are very limited. Full article
(This article belongs to the Special Issue Sports-Specific Conditioning: Techniques and Applications)
Show Figures

Figure 1

28 pages, 10371 KiB  
Article
CNN-Based Automatic Tablet Classification Using a Vibration-Controlled Bowl Feeder with Spiral Torque Optimization
by Kicheol Yoon, Sangyun Lee, Junha Park and Kwang Gi Kim
Sensors 2025, 25(14), 4248; https://doi.org/10.3390/s25144248 - 8 Jul 2025
Viewed by 342
Abstract
This paper proposes a drug classification system using convolutional neural network (CNN) training and rotational pill dropping technology. Images of 40 pills for each of 102 types (total 4080 images) were captured, achieving a CNN classification accuracy of 88.8%. The system uses a [...] Read more.
This paper proposes a drug classification system using convolutional neural network (CNN) training and rotational pill dropping technology. Images of 40 pills for each of 102 types (total 4080 images) were captured, achieving a CNN classification accuracy of 88.8%. The system uses a bowl feeder with optimized operating parameters—voltage, torque, PWM, tilt angle, vibration amplitude (0.2–1.5 mm), and frequency (4–40 Hz)—to ensure stable, sequential pill movement without loss or clumping. Performance tests were conducted at 5 V, 20 rpm, 20% PWM (@40 Hz), and 1.5 mm vibration amplitude. The bowl feeder structure tolerates oblique angles up to 75°, enabling precise pill alignment and classification. The CNN model plays a key role in accurate pill detection and classification. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Graphical abstract

21 pages, 13284 KiB  
Article
Closed-Loop Control Strategies for a Modular Under-Actuated Smart Surface: From Threshold-Based Logic to Decentralized PID Regulation
by Edoardo Bianchi, Francisco Javier Brosed Dueso and José A. Yagüe-Fabra
Appl. Sci. 2025, 15(14), 7628; https://doi.org/10.3390/app15147628 - 8 Jul 2025
Viewed by 229
Abstract
In the field of intralogistics, new systems are continuously being studied to increase flexibility and adaptability while striving to maintain high handling capabilities and performance. Among these new systems, this article focuses on a novel under-actuated intelligent surface capable of performing various handling [...] Read more.
In the field of intralogistics, new systems are continuously being studied to increase flexibility and adaptability while striving to maintain high handling capabilities and performance. Among these new systems, this article focuses on a novel under-actuated intelligent surface capable of performing various handling tasks with a simplified design and without employing motors. The technology behind the device involves idle rotors, i.e., without motor-driven spinning, whose axis of rotation can be controlled in a few discrete positions. The system’s operation and digital model have already been tested and validated; however, a control system that makes the surface “smart” has not yet been developed. In this context, the following work analyzes control methodologies for the concept. Specifically, in a first phase, a threshold-based method is introduced and tested on a prototype of the surface for sorting and orientation operations. This basic technique involves actuating the surface modules according to pre-assigned rules once a chosen threshold condition is reached. In a second phase, instead, a decentralizd PID control is described and simulated based on real and potential industrial applications. Unlike the first method, in this case, it is the control law that defines the actuation and, through the dynamic description of the device, determines the best combination to achieve the goal. Additionally, the article illustrates how the difficulties introduced by the numerous nonlinearities, due to the under-actuation and the simplifications of the physical system, were overcome. For both control methods, promising results were obtained in terms of handling capability and errors in achieving the desired movement. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

22 pages, 7569 KiB  
Article
Chaos Suppression in Spiral Bevel Gears Through Profile Modifications
by Milad Asadi, Farhad S. Samani, Antonio Zippo and Moslem Molaie
Vibration 2025, 8(3), 38; https://doi.org/10.3390/vibration8030038 - 6 Jul 2025
Viewed by 203
Abstract
Spiral bevel gears are used in a wide range of industries, such as automotive and aerospace, to transfer power between intersecting axes. However, a certain level of vibration is always present in the systems, primarily due to the complex dynamic forces generated during [...] Read more.
Spiral bevel gears are used in a wide range of industries, such as automotive and aerospace, to transfer power between intersecting axes. However, a certain level of vibration is always present in the systems, primarily due to the complex dynamic forces generated during the meshing of the gear teeth affected by the tooth profile. To address these challenges, this research developed a comprehensive dynamic model with eight degrees of freedom, capturing both translational and rotational movements of the system’s components. The study focused on evaluating the effects of two different tooth profile modifications, namely topology and flank modifications, on the vibration characteristics of the system. The system comprised a spiral bevel gear pair with mesh stiffness in forward rotation. The results highlighted that optimizing the tooth profile and minimizing tooth surface deviation significantly reduce vibration amplitudes and improve dynamic stability. These findings not only enhance the performance and lifespan of spiral bevel gears but also provide a robust foundation for the design and optimization of advanced gear systems in industrial applications, ensuring higher efficiency and reliability. In this paper, it was observed that some modifications led to a 68% reduction in vibration levels. Additionally, three modifications helped improve the vibrational behavior of the system, preventing chaotic behavior, which can lead to system failure, and transforming the system’s behavior into periodic motion. Full article
Show Figures

Figure 1

18 pages, 1513 KiB  
Article
Perceptual Decision Efficiency Is Modifiable and Associated with Decreased Musculoskeletal Injury Risk Among Female College Soccer Players
by Gary B. Wilkerson, Alejandra J. Gullion, Katarina L. McMahan, Lauren T. Brooks, Marisa A. Colston, Lynette M. Carlson, Jennifer A. Hogg and Shellie N. Acocello
Brain Sci. 2025, 15(7), 721; https://doi.org/10.3390/brainsci15070721 - 4 Jul 2025
Viewed by 313
Abstract
Background: Prevention and clinical management of musculoskeletal injuries have historically focused on the assessment and training of modifiable physical factors, but perceptual decision-making has only recently been recognized as a potentially important capability. Immersive virtual reality (VR) systems can measure the speed, accuracy, [...] Read more.
Background: Prevention and clinical management of musculoskeletal injuries have historically focused on the assessment and training of modifiable physical factors, but perceptual decision-making has only recently been recognized as a potentially important capability. Immersive virtual reality (VR) systems can measure the speed, accuracy, and consistency of body movements corresponding to stimulus–response instructions for the completion of a forced-choice task. Methods: A cohort of 26 female college soccer players (age 19.5 ± 1.3 years) included 10 players who participated in a baseline assessment, 10 perceptual-response training (PRT) sessions, a post-training assessment that preceded the first soccer practice, and a post-season assessment. The remaining 16 players completed an assessment prior to the team’s first pre-season practice session, and a post-season assessment. The assessments and training sessions involved left- or right-directed neck rotation, arm reach, and step-lunge reactions to 40 presentations of different types of horizontally moving visual stimuli. The PRT program included 4 levels of difficulty created by changes in initial stimulus location, addition of distractor stimuli, and increased movement speed, with ≥90% response accuracy used as the criterion for training progression. Perceptual latency (PL) was defined as the time elapsed from stimulus appearance to initiation of neck rotation toward a peripheral virtual target. The speed–accuracy tradeoff was represented by Rate Correct per Second (RCS) of PL, and inconsistency across trials derived from their standard deviation for PL was represented by intra-individual variability (IIV). Perceptual Decision Efficiency (PDE) represented the ratio of RCS to IIV, which provided a single value representing speed, accuracy, and consistency. Statistical procedures included the bivariate correlation between RCS and IIV, dependent t-test comparisons of pre- and post-training metrics, repeated measures analysis of variance for group X session pre- to post-season comparisons, receiver operating characteristic analysis, and Kaplan–Meier time to injury event analysis. Results: Statistically significant (p < 0.05) results were found for pre- to post-training change, and pre-season to post-season group differences, for RCS, IIV, and PDE. An inverse logarithmic relationship was found between RCS and IIV (Spearman’s Rho = −0.795). The best discriminator between injured and non-injured statuses was PDE ≤ 21.6 (93% Sensitivity; 42% Specificity; OR = 9.29). Conclusions: The 10-session PRT program produced significant improvement in perceptual decision-making that appears to provide a transfer benefit, as the PDE metric provided good prospective prediction of musculoskeletal injury. Full article
Show Figures

Figure 1

Back to TopTop