Comparative Analysis of Mechanical Variables in Different Exercises Performed with a Rotational Inertial Device in Professional Soccer Players: A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedures
- -
- Qhip: Participants started in a standing position with hips in neutral alignment, knees slightly flexed at 10°, and feet shoulder-width apart. Then, they initiated the unilateral hip extension to 10° hyperextension against inertial resistance, to then initiate a controlled eccentric return to the initial posture.
- -
- Qknee: Players lay prone with hips in neutral alignment, knees actively flexed to 90°, and ankles maintained at 0° dorsiflexion. Then, they performed an unilateral knee extension to actively extend the knee joint from 90° flexion to full extension. When players reach the final position, they must break the return movement until they reach the initial position.
- -
- Hhip: Participants lay supine with hips flexed at 60°, knees fully extended, and ankles secured in foot pads attached to a rotational inertia device; then, players performed a unilateral hamstring curl by simultaneously extending the hip from 60° flexion to neutral against rotational inertial resistance, initiating a controlled eccentric return to the initial posture.
- -
- Hknee: Soccer players lay prone with hips in neutral alignment, knees fully extended, and ankles secured to a rotational inertia device; then, players performed a unilateral knee-dominant hamstring curl by flexing the knee joint from 0° to 120° flexion against rotational inertial resistance, initiating a controlled eccentric return to the initial posture.
- -
- ADD: Participants lay supine with hips in neutral alignment (0° flexion/extension) and thighs abducted to 30°, knees extended, while secured to a rotational inertia device via ankle pads; then, players performed unilateral hip adduction by driving the thigh from 30° abduction to neutral (0° adduction) against rotational inertial resistance, initiating a controlled eccentric return to the initial posture.
- -
- ABD: Players lay supine with hips in neutral alignment, thighs adducted to 10°, and knees extended while secured to a rotational inertia device via ankle pads; then, players performed unilateral hip abduction by driving the thigh from 10° adduction to 45° abduction against rotational inertial resistance, initiating a controlled eccentric return to the initial posture.
2.4. Statistical Analysis
3. Results
3.1. Quadriceps Exercises
3.2. Hamstring Exercises
3.3. Adductor vs. Abductor Exercises
4. Discussion
Limitations and Future Research Lines
5. Conclusions
Practical Applications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Qhip | Quadriceps hip |
Hhip | Hamstring hip |
Qknee | Quadriceps knee |
Hknee | Hamstring knee |
ABD | Abduction |
ADD | Adduction |
CON | Concentric |
ECC | Eccentric |
References
- Pons, E.; Ponce-Bordón, J.C.; Díaz-García, J.; Del Campo, R.L.; Resta, R.; Peirau, X.; García-Calvo, T. A Longitudinal Exploration of Match Running Performance during a Football Match in the Spanish La Liga: A Four-Season Study. Int. J. Environ. Res. Public Health 2021, 18, 1133. [Google Scholar] [CrossRef]
- Filter, A.; Olivares-Jabalera, J.; Dos’Santos, T.; Madruga, M.; Lozano, J.; Molina, A.; Santalla, A.; Requena, B.; Loturco, I. High-Intensity Actions in Elite Soccer: Current Status and Future Perspectives. Int. J. Sports Med. 2023, 44, 535–544. [Google Scholar] [CrossRef]
- Madruga-parera, M.; Bishop, C.; Fort-vanmeerhaeghe, A.; Beato, M.; Gonzalo-skok, O.; Romero-rodr, D. Effects of 8 Weeks of Isoinertial vs. Cable- Resistance Training on Motor Skills Performance and Interlimb Asymmetries. J. Strength Cond. Res. 2020, 36, 1200–1208. [Google Scholar] [CrossRef] [PubMed]
- Raya-González, J.; Castillo, D.; Beato, M. The Flywheel Paradigm in Team Sports. Strength Cond. J. 2021, 43, 12–22. [Google Scholar] [CrossRef]
- Raya-González, J.; Clemente, F.M.; Castillo, D. Analyzing the Magnitude of Interlimb Asymmetries in Young Female Soccer Players: A Preliminary Study. Int. J. Environ. Res. Public Health 2021, 18, 475. [Google Scholar] [CrossRef]
- Taketomi, S.; Kawaguchi, K.; Mizutani, Y.; Yamagami, R.; Sameshima, S.; Takei, S.; Kage, T.; Kono, K.; Inui, H.; Fujiwara, S.; et al. Musculoskeletal Asymmetry in Young Soccer Players: Differences between the Dominant and Nondominant Leg. Int. J. Hum. Mov. Sports Sci. 2022, 10, 294–302. [Google Scholar] [CrossRef]
- Sannicandro, I.; Giacomo, C.; Traficante, P. Lower Limb Strength Asymmetry and Functional Movement Screen Values in Professional Soccer Players. MOJ Sports Med. 2019, 3, 59–62. [Google Scholar] [CrossRef]
- Śliwowski, R.; Paillard, T.; Bojkowski, Ł.; Dudziński, W.; Patek, M.; Marynowicz, J. Intra- and Inter-Limb Strength Imbalance and Asymmetry in Soccer: A Comparison of Elite Senior and Junior Players. PLoS ONE 2024, 19, e0302474. [Google Scholar] [CrossRef]
- Norrbrand, L.; Pozzo, M.; Tesch, P.A. Flywheel Resistance Training Calls for Greater Eccentric Muscle Activation than Weight Training. Eur. J. Appl. Physiol. 2010, 110, 997–1005. [Google Scholar] [CrossRef]
- Raya-González, J.; Castillo, D.; Domínguez-Díez, M.; Hernández-Davó, J.L. Eccentric-Overload Production during the Flywheel Squat Exercise in Young Soccer Players: Implications for Injury Prevention. Int. J. Environ. Res. Public Health 2020, 17, 3671. [Google Scholar] [CrossRef]
- Raya-González, J.; Bishop, C.; Gómez-Piqueras, P.; Veiga, S.; Viejo-Romero, D.; Navandar, A. Strength, Jumping, and Change of Direction Speed Asymmetries Are Not Associated With Athletic Performance in Elite Academy Soccer Players. Front. Psychol. 2020, 11, 175. [Google Scholar] [CrossRef]
- Murillo-Ortiz, Á.; Raya-González, J.; Falces-Prieto, M.; López-Mariscal, S.; Iglesias-García, F.J.; Manuel Martínez-Aranda, L. Power Indices Through Rotational Inertial Devices for Lower Extremity Profiling and Injury Risk Stratification in Professional Soccer Players: A Cross-Sectional Study. Diagnostics 2025, 15, 1691. [Google Scholar] [CrossRef]
- Kim, H.; Kim, J.-T.; Kim, S.-Y. Comparison of Effect of Hip-Dominant vs Knee-Dominant Hamstring Strengthening Exercises on the Muscle Strength, Range of Movement, and Functional Performance Level: A Randomized Intervention Trial. J. Korean Orthop. Manip. Phys. Ther. 2024, 30, 13–26. [Google Scholar]
- Sabido, R.; Hernández-Davó, J.L.; Botella, J.; Navarro, A.; Tous-Fajardo, J. Effects of Adding a Weekly Eccentric-Overload Training Session on Strength and Athletic Performance in Team-Handball Players. Eur. J. Sport Sci. 2017, 17, 530–538. [Google Scholar] [CrossRef] [PubMed]
- Illera-Domínguez, V.; Nuell, S.; Carmona, G.; Padullés, J.M.; Padullés, X.; Lloret, M.; Cussó, R.; Alomar, X.; Cadefau, J.A. Early Functional and Morphological Muscle Adaptations during Short-Term Inertial-Squat Training. Front. Physiol. 2018, 9, 1265. [Google Scholar] [CrossRef] [PubMed]
- Mariscal, S.L.; Gómez, Á.R.; Becerra, M.O.; Arrones, L.S. Análisis y Relación Entre La Composición Corporal y Variables de Rendimiento En Jugadoras de Fútbol Sala. Rev. Iberoam. De Cienc. De La Act. Física Y El Deporte 2024, 13, 1–20. [Google Scholar] [CrossRef]
- Mak, M.; Bishop, C.; Beato, M. Validity and Reliability of Flywheel Resistance Technology as an Assessment Method and Its Association with Sports Performance and Asymmetry: A Systematic Review. J. Strength Cond. Res. 2025, 39, e930–e948. [Google Scholar]
- McErlain-Naylor, S.A.; Beato, M. Concentric and Eccentric Inertia–Velocity and Inertia–Power Relationships in the Flywheel Squat. J. Sports Sci. 2020, 39, 1136–1143. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioural Sciences; Lawrence Earlbaum Associates: Hillside, NJ, USA, 1988. [Google Scholar]
- Gentil, P.; Soares, S.; Bottaro, M. Single vs. Multi-Joint Resistance Exercises: Effects on Muscle Strength and Hypertrophy. Asian J. Sports Med. 2015, 6, e24057. [Google Scholar] [CrossRef]
- Nakamura, M.; Sato, S.; Murakami, Y.; Kiyono, R.; Yahata, K.; Sanuki, F.; Yoshida, R.; Fukaya, T.; Takeuchi, K. The Comparison of Different Stretching Intensities on the Range of Motion and Muscle Stiffness of the Quadriceps Muscles. Front. Physiol. 2021, 11, 628870. [Google Scholar] [CrossRef]
- Constantinou, A.; Mamais, I.; Papathanasiou, G.; Lamnisos, D.; Stasinopoulos, D. Comparing Hip and Knee Focused Exercises versus Hip and Knee Focused Exercises with the Use of Blood Flow Restriction Training in Adults with Patellofemoral Pain. Eur. J. Phys. Rehabil. Med. 2022, 58, 225. [Google Scholar] [CrossRef] [PubMed]
- Presswood, L.; Cronin, J.; Keogh, J.W.L.; Whatman, C. Gluteus Medius: Applied Anatomy, Dysfunction, Assessment, and Progressive Strengthening. Strength Cond. J. 2008, 30, 41–53. [Google Scholar] [CrossRef]
- Maroto-Izquierdo, S.; García-López, D.; Beato, M.; Bautista, I.J.; Hernández-Davó, J.L.; Raya-González, J.; Martín-Rivera, F. Force Production and Electromyographic Activity during Different Flywheel Deadlift Exercises. Sports 2024, 12, 95. [Google Scholar] [CrossRef]
- Virgile, A.; Bishop, C. A Narrative Review of Limb Dominance: Task Specificity and the Importance of Fitness Testing. J. Strength Cond. Res. 2021, 35, 846–858. [Google Scholar] [CrossRef]
- Karatrantou, K.; Gerodimos, V.; Katsareli, E.; Manouras, N.; Ioakimidis, P.; Famisis, K. Strength Profile of Hip Abductor and Adductor Muscles in Youth Elite Soccer Players. J. Hum. Kinet. 2019, 66, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Beato, M.; de Keijzer, K.L.; Muñoz-Lopez, A.; Raya-González, J.; Pozzo, M.; Alkner, B.A.; Dello Iacono, A.; Vicens-Bordas, J.; Coratella, G.; Maroto-Izquierdo, S.; et al. Current Guidelines for the Implementation of Flywheel Resistance Training Technology in Sports: A Consensus Statement. Sports Med. 2024, 54, 541–556. [Google Scholar] [CrossRef]
- Moreno-Villanueva, A.; Soler-López, A.; Cuartero-Martínez, J.C.; Pino-Ortega, J. Assessment of Limb Imbalance in Professional Soccer Players. Appl. Sci. 2025, 15, 1875. [Google Scholar] [CrossRef]
- Bishop, C.; Lake, J.; Loturco, I.; Papadopoulos, K.; Turner, A.; Read, P. Interlimb Asymmetries: The Need for an Individual Approach to Data Analysis. J. Strength Cond. Res. 2021, 35, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Kak, H.-B.; Park, S.-J.; Park, B.-J. The Effect of Hip Abductor Exercise on Muscle Strength and Trunk Stability after an Injury of the Lower Extremities. J. Phys. Ther. Sci. 2016, 28, 932–935. [Google Scholar] [CrossRef]
Variable | Exercise | |||
---|---|---|---|---|
Dom | Ndom | |||
Quadricep Hip | Quadricep Knee | Quadricep Hip | Quadricep Knee | |
Mean power CON (W) | 312.64 ± 94.06 *** | 205.24 ± 58.83 | 311.55 ± 93.27 *** | 203.06 ± 54.55 |
Mean power ECC (W) | 309.43 ± 100.681 *** | 200.62 ± 61.27 | 305.47 ± 97.46 *** | 198.04 ± 57.20 |
Peak power CON (W) | 522.12 ± 156.84 *** | 376.29 ± 123.06 | 506.56 ± 156.83 *** | 366.96 ± 88.01 |
Peak power ECC (W) | 616.72 ± 250.52 | 529.52 ± 178.35 | 633.53 ± 294.31 | 529.52 ± 178.35 |
Mean velocity CON (m/s) | 2.63 ± 0.33 *** | 2.02 ± 0.25 | 2.61 ± 0.31 *** | 2.02 ± 0.17 |
Mean velocity ECC (m/s) | 2.88 ± 0.46 *** | 2.18 ± 0.31 | 2.88 ± 0.46 *** | 2.20 ± 0.29 |
Peak velocity CON (m/s) | 4.14 ± 0.47 *** | 3.23 ± 0.38 | 4.15 ± 0.45 *** | 3.23 ± 0.34 |
Peak velocity ECC (m/s) | 4.13 ± 0.50 *** | 3.19 ± 0.37 | 4.15 ± 0.462 *** | 3.21 ± 0.34 |
Mean force CON (N) | 138.31 ± 26.67 *** | 114.76 ± 22.48 | 138.55 ± 26.20 *** | 114.86 ± 21.41 |
Mean force ECC (N) | 137.21 ± 29.79 *** | 114.06 ± 24.71 | 134.72 ± 27.51 *** | 112.38 ± 23.30 |
Peak force CON (N) | 247.96 ± 53.12 *** | 197.04 ± 51.20 | 255.44 ± 65.65 *** | 192.64 ± 37.09 |
Peak force ECC (N) | 344.33 ± 123.77 | 286.03 ± 84.52 | 337.55 ± 129.62 | 295.13 ± 130.58 |
Variable | Exercise | |||
---|---|---|---|---|
Dom | Ndom | |||
Hamstring Hip | Hamstring Knee | Hamstring Hip | Hamstring Knee | |
Mean power CON (W) | 259.46 ± 58.60 *** | 109.19 ± 30.44 | 249.87 ± 51.21 *** | 107.43 ± 33.18 |
Mean power ECC (W) | 262.96 ± 59.25 *** | 111.90 ± 35.39 | 255.96 ± 56.56 *** | 112.24 ± 37.16 |
Peak power CON (W) | 453.17 ± 92.45 *** | 216.83 ± 81.75 | 435.71 ± 90.91 *** | 204.04 ± 47.45 |
Peak power ECC (W) | 488.18 ± 135.51 *** | 352.37 ± 155.40 | 492.36 ± 139.76 | 402.62 ± 178.21 |
Mean velocity CON (m/s) | 2.50 ± 0.22 *** | 1.61 ± 0.21 | 2.49 ± 0.18 *** | 1.58 ± 0.22 |
Mean velocity ECC (m/s) | 2.73 ± 0.28 *** | 1.88 ± 0.25 | 2.70 ± 0.27 *** | 1.90 ± 0.25 |
Peak velocity CON (m/s) | 4.43 ± 0.40 *** | 2.37 ± 0.25 | 4.38 ± 0.34 *** | 2.36 ± 0.28 |
Peak velocity ECC (m/s) | 4.36 ± 0.41 *** | 2.38 ± 0.26 | 4.32 ± 0.37 *** | 2.37 ± 0.27 |
Mean force CON (N) | 110.27 ± 15.91 *** | 82.70 ± 15.47 | 107.43 ± 15.05 *** | 82.16 ± 16.72 |
Mean force ECC (N) | 113.33 ± 15.89 *** | 82.44 ± 18.74 | 111.88 ± 16.47 *** | 82.51 ± 18.31 |
Peak force CON (N) | 158.69 ± 39.44 *** | 205.80 ± 62.51 | 151.64 ± 24.04 *** | 194.77 ± 39.81 |
Peak force ECC (N) | 203.29 ± 50.90 *** | 330.04 ± 98.04 | 197.60 ± 46.11 *** | 362.28 ± 114.36 |
Variable | Exercise | |||
---|---|---|---|---|
Dom | Ndom | |||
Adductor | Abductor | Adductor | Abductor | |
Mean power CON (W) | 2.43 ± 41.78 | 119.94 ± 29.60 | 117.26 ± 34.63 | 125.66 ± 31.92 |
Mean power ECC (W) | 123.16 ± 44.00 | 116.49 ± 26.83 | 119.25 ± 37.75 | 123.55 ± 30.49 |
Peak power CON (W) | 202.91 ± 60.22 | 200.18 ± 44.29 | 201.01 ± 50.19 | 203.31 ± 51.73 |
Peak power ECC (W) | 233.64 ± 98.30 | 224.66 ± 74.34 | 218.70 ± 71.10 | 242.28 ± 75.23 |
Mean velocity CON (m/s) | 1.95 ± 0.23 | 1.91 ± 0.23 | 1.93 ± 0.21 | 2.01 ± 0.26 |
Mean velocity ECC (m/s) | 2.10 ± 0.25 | 2.02 ± 0.26 | 2.07 ± 0.26 | 2.13 ± 0.27 |
Peak velocity CON (m/s) | 3.14 ± 0.38 | 3.21 ± 0.36 | 3.19 ± 0.36 | 3.29 ± 0.37 |
Peak velocity ECC (m/s) | 3.12 ± 0.38 | 3.17 ± 0.35 | 3.07 ± 0.36 | 3.26 ± 0.37 |
Mean force CON (N) | 72.55 ± 15.17 | 70.06 ± 10.09 | 69.93 ± 12.80 | 71.67 ± 10.91 |
Mean force ECC (N) | 73.14 ± 17.16 | 69.12 ± 8.69 | 71.99 ± 14.34 | 71.11 ± 10.41 |
Peak force CON (N) | 128.80 ± 34.08 *** | 104.82 ± 18.86 | 126.12 ± 31.19 | 117.29 ± 27.91 |
Peak force ECC (N) | 162.85 ± 56.79 *** | 127.85 ± 29.93 | 157.80 ± 48.70 | 142.16 ± 39.12 |
Variable | Exercise | |||||
---|---|---|---|---|---|---|
Quadricep Hip (p; ES) | Quadricep Knee (p; ES) | Hamstring Hip (p; ES) | Hamstring Knee (p; ES) | Adductor (p; ES) | Abductor (p; ES) | |
Mean power CON (W) | 0.906; 0.023 | 0.702; 0.076 | 0.149; 0.292 | 0.492; 0.137 | 0.290; 0.212 | 0.076; 0.364 |
Mean power ECC (W) | 0.624; 0.097 | 0.729; 0.069 | 0.360; 0.183 | 0.901; 0.025 | 0.467; 0.145 | 0.040; 0.425 |
Peak power CON (W) | 0.448; 0.151 | 0.609; 0.102 | 0.235; 0.239 | 0.458; 0.148 | 0.823; 0.044 | 0.659; 0.087 |
Peak power ECC (W) | 0.392; 0.171 | 0.737; 0.067 | 0.871; 0.032 | 0.076; 0.363 | 0.228; 0.243 | 0.192; 0.263 |
Mean velocity CON (m/s) | 0.542; 0.121 | 0.956; 0.011 | 0.703; 0.076 | 0.327; 0.196 | 0.447; 0.152 | 0.012; 0.533 |
Mean velocity ECC (m/s) | 0.955; 0.011 | 0.627; 0.097 | 0.436; 0.155 | 0.474; 0.143 | 0.340; 0.191 | 0.001; 0.710 |
Peak velocity CON (m/s) | 0.882; 0.029 | 0.965; 0.009 | 0.370; 0.179 | 0.517; 0.129 | 0.497; 0.135 | 0.047; 0.410 |
Peak velocity ECC (m/s) | 0.732; 0.068 | 0.761; 0.060 | 0.512; 0.130 | 0.598; 0.105 | 0.332; 0.194 | 0.036; 0.436 |
Mean force CON (N) | 0.935; 0.016 | 0.962; 0.009 | 0.103; 0.332 | 0.697; 0.077 | 0.158; 0.285 | 0.116; 0.319 |
Mean force ECC (N) | 0.351; 0.186 | 0.571; 0.113 | 0.496; 0.135 | 0.957; 0.011 | 0.582; 0.109 | 0.091; 0.345 |
Peak force CON (N) | 0.310; 0.203 | 0.489; 0.138 | 0.220; 0.247 | 0.410; 0.164 | 0.650; 0.090 | 0.002; 0.685 |
Peak force ECC (N) | 0.440; 0.154 | 0.604; 0.103 | 0.481; 0.140 | 0.113; 0.322 | 0.496; 0.136 | 0.011; 0.537 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murillo-Ortiz, Á.; Martínez-Aranda, L.M.; Falces-Prieto, M.; López-Mariscal, S.; Iglesias-García, F.J.; Raya-González, J. Comparative Analysis of Mechanical Variables in Different Exercises Performed with a Rotational Inertial Device in Professional Soccer Players: A Pilot Study. J. Funct. Morphol. Kinesiol. 2025, 10, 279. https://doi.org/10.3390/jfmk10030279
Murillo-Ortiz Á, Martínez-Aranda LM, Falces-Prieto M, López-Mariscal S, Iglesias-García FJ, Raya-González J. Comparative Analysis of Mechanical Variables in Different Exercises Performed with a Rotational Inertial Device in Professional Soccer Players: A Pilot Study. Journal of Functional Morphology and Kinesiology. 2025; 10(3):279. https://doi.org/10.3390/jfmk10030279
Chicago/Turabian StyleMurillo-Ortiz, Álvaro, Luis Manuel Martínez-Aranda, Moisés Falces-Prieto, Samuel López-Mariscal, Francisco Javier Iglesias-García, and Javier Raya-González. 2025. "Comparative Analysis of Mechanical Variables in Different Exercises Performed with a Rotational Inertial Device in Professional Soccer Players: A Pilot Study" Journal of Functional Morphology and Kinesiology 10, no. 3: 279. https://doi.org/10.3390/jfmk10030279
APA StyleMurillo-Ortiz, Á., Martínez-Aranda, L. M., Falces-Prieto, M., López-Mariscal, S., Iglesias-García, F. J., & Raya-González, J. (2025). Comparative Analysis of Mechanical Variables in Different Exercises Performed with a Rotational Inertial Device in Professional Soccer Players: A Pilot Study. Journal of Functional Morphology and Kinesiology, 10(3), 279. https://doi.org/10.3390/jfmk10030279