Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (241)

Search Parameters:
Keywords = rotational kinetic energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3307 KiB  
Article
Temperature-Related Containment Analysis and Optimal Design of Aluminum Honeycomb Sandwich Aero-Engine Casings
by Shuyi Yang, Ningke Tong and Jianhua Zuo
Coatings 2025, 15(7), 834; https://doi.org/10.3390/coatings15070834 - 17 Jul 2025
Viewed by 287
Abstract
Aero-engine casings with excellent impact resistance are a practical requirement for ensuring the safe operation of aero-engines. In this paper, we report on numerical simulations of broken rotating blades impacting aluminum honeycomb sandwich casings under different temperatures and optimization of structural parameters. Firstly, [...] Read more.
Aero-engine casings with excellent impact resistance are a practical requirement for ensuring the safe operation of aero-engines. In this paper, we report on numerical simulations of broken rotating blades impacting aluminum honeycomb sandwich casings under different temperatures and optimization of structural parameters. Firstly, an impact test system with adjustable temperature was established. Restricted by the temperature range of the strain gauge, ballistic impact tests were carried out at 25 °C, 100 °C, and 200 °C. Secondly, a finite element (FE) model including a pointed bullet and an aluminum honeycomb sandwich plate was built using LS-DYNA. The corresponding simulations of the strain–time curve and damage conditions showed good agreement with the test results. Then, the containment capability of the aluminum honeycomb sandwich aero-engine casing at different temperatures was analyzed based on the kinetic energy loss of the blade, the internal energy increment of the casing, and the containment state of the blade. Finally, with the design objectives of minimizing the casing mass and maximizing the blade kinetic energy loss, the structural parameters of the casing were optimized using the multi-objective genetic algorithm (MOGA). Full article
Show Figures

Figure 1

21 pages, 4452 KiB  
Article
Periodic Power Fluctuation Smoothing Control Using Blade Inertia and DC-Link Capacitor in Variable-Speed Wind Turbine
by Jin-Ho Do, Ye-Chan Kim and Seung-Ho Song
Energies 2025, 18(14), 3763; https://doi.org/10.3390/en18143763 - 16 Jul 2025
Viewed by 189
Abstract
Due to the structural aspects of the wind turbine, such as wind shear and tower shadow effects, the output power of the wind turbine has periodic fluctuations, known as 3P fluctuations. These fluctuations can reduce overall power generation and deteriorate power quality. In [...] Read more.
Due to the structural aspects of the wind turbine, such as wind shear and tower shadow effects, the output power of the wind turbine has periodic fluctuations, known as 3P fluctuations. These fluctuations can reduce overall power generation and deteriorate power quality. In this context, this paper proposes a power smoothing control method that utilizes rotor inertia and a DC-link capacitor as small-scale energy storage devices. First, the typical energy storage capacities of the rotor’s rotational kinetic energy and the DC-link capacitor’s electrostatic energy are analyzed to assess their smoothing potential. Secondly, a control method is presented to apply the rotor and the DC-link capacitor as small-scale energy storage, with the smoothing frequency range allocated according to their respective storage capacities. Finally, the proposed method is compared with the conventional maximum power point tracking (MPPT) method and the 3P-notch filter method. The effectiveness of the proposed algorithm is verified through MATLAB/Simulink simulations, demonstrating its capability to mitigate periodic power fluctuations. The results showed that the proposed control method is applicable, reliable, and effective in mitigating periodic power fluctuations. Full article
Show Figures

Figure 1

19 pages, 4122 KiB  
Article
Fluid Dynamics Analysis of Flow Characteristics in the Clearance of Hydraulic Turbine Seal Rings
by Leilei Chen, Wenhao Wu, Jian Deng, Bing Xue, Liuming Xu, Baosheng Xie and Yuchuan Wang
Energies 2025, 18(14), 3726; https://doi.org/10.3390/en18143726 - 14 Jul 2025
Viewed by 217
Abstract
The hydraulic turbine serves as the cornerstone of hydropower generation systems, with the sealing system’s performance critically influencing energy conversion efficiency and operational cost-effectiveness. The sealing ring is a pivotal component, which mitigates leakage and energy loss by regulating flow within the narrow [...] Read more.
The hydraulic turbine serves as the cornerstone of hydropower generation systems, with the sealing system’s performance critically influencing energy conversion efficiency and operational cost-effectiveness. The sealing ring is a pivotal component, which mitigates leakage and energy loss by regulating flow within the narrow gap between itself and the frame. This study investigates the intricate flow dynamics within the gap between the sealing ring and the upper frame of a super-large-scale Francis turbine, with a specific focus on the rotating wall’s impact on the flow field. Employing theoretical modeling and three-dimensional transient computational fluid dynamics (CFD) simulations grounded in real turbine design parameters, the research reveals that the rotating wall significantly alters shear flow and vortex formation within the gap. Tangential velocity exhibits a nonlinear profile, accompanied by heightened turbulence intensity near the wall. The short flow channel height markedly shapes flow evolution, driving the axial velocity profile away from a conventional parabolic pattern. Further analysis of rotation-induced vortices and flow instabilities, supported by turbulence kinetic energy monitoring and spectral analysis, reveals the periodic nature of vortex shedding and pressure fluctuations. These findings elucidate the internal flow mechanisms of the sealing ring, offering a theoretical framework for analyzing flow in microscale gaps. Moreover, the resulting flow field data establishes a robust foundation for future studies on upper crown gap flow stability and sealing ring dynamics. Full article
(This article belongs to the Special Issue Optimization Design and Simulation Analysis of Hydraulic Turbine)
Show Figures

Figure 1

20 pages, 2295 KiB  
Article
An Energy–Momentum Conserving Algorithm for Co-Rotational Quadrilateral Shell Elements in Nonlinear Multibody Dynamics
by Zhongxue Li and Hongtao Qian
Appl. Sci. 2025, 15(13), 7153; https://doi.org/10.3390/app15137153 - 25 Jun 2025
Viewed by 241
Abstract
A new computational framework for nonlinear dynamic analysis of smooth shell structures is presented in this paper. The new framework is based on Simo & Tarnow’s energy–momentum conservation algorithm. A novel co-rotational nine-node quadrilateral shell element is embedded in the new framework. The [...] Read more.
A new computational framework for nonlinear dynamic analysis of smooth shell structures is presented in this paper. The new framework is based on Simo & Tarnow’s energy–momentum conservation algorithm. A novel co-rotational nine-node quadrilateral shell element is embedded in the new framework. The dynamic equilibrium differential equations are derived using the Hamilton principle and solved by the Newmark algorithm. At each step, midpoint interpolation is applied to both nodal variables and their time derivatives. The average value of strains at the beginning and the end of each step is used to evaluate strain energy to obtain a symmetric tangent stiffness matrix. When deriving the kinetic energy functional, the first-order derivatives of vectorial rotational variables are embedded into equivalent nodal forces. Therefore, a symmetric equivalent mass matrix is generated. The symmetric stiffness and mass matrices significantly reduce the workload in solving the nonlinear governing equations. Benchmark validations reveal close agreement with results in the existing literature. The proposed algorithm is applicable for solving smooth shell structures undergoing large displacements and rotations within spatial domains, while maintaining unconditional stability and geometric exactness. Full article
Show Figures

Figure 1

23 pages, 4567 KiB  
Article
Validation of Taylor’s Frozen Hypothesis for DAS-Based Flow
by Shu Dai, Lei Liang, Ke Jiang, Hui Wang and Chengyi Zhong
Sensors 2025, 25(13), 3840; https://doi.org/10.3390/s25133840 - 20 Jun 2025
Viewed by 392
Abstract
Accurate measurement of pipeline flow is of great significance for industrial and environmental monitoring. Traditional intrusive methods have the disadvantages of high cost and damage to pipeline structure, while non-intrusive techniques can circumvent such issues. Although Taylor’s frozen hypothesis has a theoretical advantage [...] Read more.
Accurate measurement of pipeline flow is of great significance for industrial and environmental monitoring. Traditional intrusive methods have the disadvantages of high cost and damage to pipeline structure, while non-intrusive techniques can circumvent such issues. Although Taylor’s frozen hypothesis has a theoretical advantage in non-intrusive velocity detection, current research focuses on planar flow fields, and its applicability in turbulent circular pipes remains controversial. Moreover, there is no precedent for combining it with distributed acoustic sensing (DAS) technology. This paper constructs a circular pipe turbulence model through large eddy simulation (LES), revealing the spatiotemporal distribution characteristics of turbulent kinetic energy and the energy propagation rules of FK spectra. It proposes a dispersion feature enhancement algorithm based on cross-correlation, which combines a rotatable elliptical template with normalized cross-correlation coefficients to suppress interference from non-target directions. An experimental circulating pipeline DAS measurement system was set up to complete signal denoising and compare two principles of flow velocity verification. The results show that the vortex structure of turbulent flow in circular pipes remains stable in the convection direction, conforming to theoretical premises; the relative error of average flow velocity by this method is ≤3%, with significant improvements in accuracy and stability in high-flow zones. This study provides innovative methods and experimental basis for non-intrusive flow detection using DAS. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

13 pages, 6452 KiB  
Article
Facile Synthesis of Non-Noble CuFeCo/C Catalysts with High Stability for ORR in PEMFC
by Ruixia Chu, Hongtao Zhang, Fangyuan Qiu, Wenjun Fu, Wanyou Huang, Runze Li, Zhenyu Li, Xiaoyue Jin and Yan Wang
Materials 2025, 18(12), 2826; https://doi.org/10.3390/ma18122826 - 16 Jun 2025
Viewed by 339
Abstract
Proton exchange membrane fuel cells (PEMFCs) have been widely studied as an efficient and environmentally friendly energy conversion technology in recent years. However, the high cost, easy poisoning and complex synthesis methods of noble metal catalysts have hindered their commercialization. Therefore, in this [...] Read more.
Proton exchange membrane fuel cells (PEMFCs) have been widely studied as an efficient and environmentally friendly energy conversion technology in recent years. However, the high cost, easy poisoning and complex synthesis methods of noble metal catalysts have hindered their commercialization. Therefore, in this paper, a non-noble metal composite catalyst CuFeCo/C for the oxygen reduction reaction (ORR) was prepared by using a facile liquid-phase reduction method. The ORR kinetic performance of CuFeCo/C was evaluated by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and rotating ring-disk electrode (RRDE) tests. The results show that the oxygen reduction peak of CuFeCo/C appears at about 0.64 V, the half-wave potential is about 0.73 V, the limiting current density is about −16.51 A·m−2, and the Tafel slope is about −0.08. The 10,800 s chronoamperometry test shows that the catalyst has a very good long-term cycle stability. This indicates that the CuFeCo/C composite catalyst has strong stability, good conductivity and ORR catalytic activity under alkaline conditions, which can promote the large-scale commercial application of PEMFCs. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

16 pages, 1970 KiB  
Article
Biomechanical Factors for Enhanced Performance in Snowboard Big Air: Takeoff Phase Analysis Across Trick Difficulties
by Liang Jiang, Xue Chen, Xianzhi Gao, Yanfeng Li, Teng Gao, Qing Sun and Bo Huo
Appl. Sci. 2025, 15(12), 6618; https://doi.org/10.3390/app15126618 - 12 Jun 2025
Viewed by 508
Abstract
Snowboard Big Air (SBA), recognized as an Olympic discipline since 2018, emphasizes maneuver difficulty as a key scoring criterion, requiring athletes to integrate technical skill with adaptive responses to dynamic environments in order to perform complex aerial rotations. The takeoff phase is critical, [...] Read more.
Snowboard Big Air (SBA), recognized as an Olympic discipline since 2018, emphasizes maneuver difficulty as a key scoring criterion, requiring athletes to integrate technical skill with adaptive responses to dynamic environments in order to perform complex aerial rotations. The takeoff phase is critical, determining both flight trajectory and rotational performance through coordinated lower limb extension and upper body movements. Despite advances in motion analysis technology, quantitative assessment of key takeoff parameters remains limited. This study investigates parameters related to performance, joint kinematics, and rotational kinetics during the SBA takeoff phase to identify key factors for success and provide practical guidance to athletes and coaches. Eleven athletes from the Chinese national snowboard team performed multiple backside tricks (720°, 1080°, 1440°, and 1800°) at an outdoor dry slope with airbag landings. Three-dimensional motion capture with synchronized cameras was used to collect data on performance, joint motion, and rotational kinetics during takeoff. The results showed significant increases in most measured metrics with rising trick difficulty from 720° to 1800°. The findings reveal that elite SBA athletes optimize performance in high-difficulty maneuvers by increasing the moment of inertia, maximizing propulsion, and refining joint kinematics to enhance rotational energy and speed. These results suggest that training should emphasize lower limb power, core and shoulder strength, flexibility, and coordination to maximize performance in advanced maneuvers. Full article
Show Figures

Figure 1

22 pages, 5015 KiB  
Article
Study on Dynamic Response and Progressive Collapse Resistance of Space Steel Frame Under Impact Load
by Junling Jiang, Zhishuang Zhang and Changren Ke
Buildings 2025, 15(11), 1888; https://doi.org/10.3390/buildings15111888 - 29 May 2025
Viewed by 509
Abstract
The dynamic response of multi-story steel frames under impact loading exhibits a complex nonlinear behavior. This study develops a three-story, multi-scale spatial steel frame finite element model using ABAQUS 2023 software, and the contact algorithm and material parameters were validated through published drop-weight [...] Read more.
The dynamic response of multi-story steel frames under impact loading exhibits a complex nonlinear behavior. This study develops a three-story, multi-scale spatial steel frame finite element model using ABAQUS 2023 software, and the contact algorithm and material parameters were validated through published drop-weight impact beam tests. A total of 48 impact parameter combinations were defined, covering rational mass–velocity ranges while accounting for column position variations at the first story. Systematic comparisons were conducted on the influence of varying impact parameters on structural dynamic responses. This study investigates deformation damage and progressive collapse mechanisms in spatial steel frames under impact loading. Structural dynamic responses show significant enhancement with increasing impact mass and velocity. As impact kinetic energy increases, the steel frame transitions from localized denting at impact zones to global bending deformation, inducing structural tilting. The steel frame exhibits potential collapse risk under severe impact conditions. Under identical impact energy, corner column impact displacements differ by <1% from edge-middle column displacements, with vertical displacement variations ranging 0–17.6%. The displacement of the first-floor joints of the structure with three spans in the impact direction was reduced by about 50% compared to that with two spans. When designing the structure, it is necessary to increase the number of frame spans in the impact direction to improve the overall stability of the structure. Based on the development of the rotation angle of the beam members during the impact process, the steel frame collapse process was divided into three stages, the elastic stage, the plastic and catenary stage, and the column member failure stage; the steel frame finally collapsed due to an excessive beam rotation angle and column failure. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 5172 KiB  
Article
Can Ammonium Nitrate Be a Strategic Tool by Replacing Urea as a Nitrogen Supplementation Source to Beef Cattle in Intensified Grazing Systems?
by Willian Rufino Andrade, Analisa Vasques Bertoloni, Flavio Perna Junior, Althieres José Furtado, Ana Laura Januário Lelis, Murilo Trettel, Alexandre Berndt, Patricia Perondi Anchão Oliveira, Angélica Simone Cravo Pereira and Paulo Henrique Mazza Rodrigues
Fermentation 2025, 11(5), 261; https://doi.org/10.3390/fermentation11050261 - 6 May 2025
Viewed by 561
Abstract
For cattle raised on tropical grass pastures, it is essential to explore strategies that circumvent climatic seasonality that affect forage availability and quality. We hypothesize that the intensification of grazing systems, with rotational and deferred methods, combined with ammonium nitrate or urea supplementation, [...] Read more.
For cattle raised on tropical grass pastures, it is essential to explore strategies that circumvent climatic seasonality that affect forage availability and quality. We hypothesize that the intensification of grazing systems, with rotational and deferred methods, combined with ammonium nitrate or urea supplementation, are excellent strategies to increase ruminal efficiency and animal productivity. For this purpose, 8 cattle with cannulas were distributed in rotational and deferred grazing systems, supplemented with urea or ammonium nitrate, and evaluated throughout the four seasons of the year over a period of two years. Dry matter intake and digestibility were measured using indigestible neutral detergent fiber, titanium dioxide and chromium oxide markers. Ruminal kinetics and degradability of DM and nutrients were measured using the nylon bag technique. Urine parameters were used to estimate microbial nitrogen compounds synthesis and efficiency of microbial protein synthesis. The rotational grazing improves NPN intake, NDF and ADF digestibility, and gross energy. Ammonium nitrate supplementation showed improved efficiency in microbial protein synthesis without negatively affecting feed intake, positioning it as a valuable nitrogen source for grazing cattle. Full article
(This article belongs to the Special Issue Ruminal Fermentation)
Show Figures

Figure 1

22 pages, 28104 KiB  
Article
Spatial and Temporal Characteristics of Mesoscale Eddies in the North Atlantic Ocean Based on SWOT Mission
by Aiqun Cui, Zizhan Zhang, Haoming Yan and Baomin Han
Remote Sens. 2025, 17(8), 1469; https://doi.org/10.3390/rs17081469 - 20 Apr 2025
Viewed by 521
Abstract
Mesoscale eddies play a crucial role as primary transporters of heat, salinity, and freshwater in oceanic systems. Utilizing the latest Surface Water and Ocean Topography (SWOT) dataset, this study employed the py-eddy-tracker (PET) algorithm to identify and track mesoscale eddies in the North [...] Read more.
Mesoscale eddies play a crucial role as primary transporters of heat, salinity, and freshwater in oceanic systems. Utilizing the latest Surface Water and Ocean Topography (SWOT) dataset, this study employed the py-eddy-tracker (PET) algorithm to identify and track mesoscale eddies in the North Atlantic (NA). Our investigation focused on evaluating the influence of applying varying filter wavelengths (800, 600, 400, and 200 km) for absolute dynamic topography (ADT) on the detection of spatiotemporal patterns and dynamic properties of mesoscale eddies, encompassing eddy kinetic energy (EKE), effective radius, rotational velocity, amplitude, lifespan, and propagation distance. The analysis reveals a cyclonic to anticyclonic eddy ratio of approximately 1.1:1 in the study region. The dynamic parameters of mesoscale eddies identified at filter wavelengths of 800 km and 600 km are similar, while a marked reduction in these parameters becomes evident at the 200 km wavelength. Parameter comparative analysis indicates that effective radius exhibits the highest sensitivity to wavelength reduction, followed by amplitude, whereas rotational velocity remains relatively unaffected by filtering variations. The lifespan distribution analysis shows that the majority of eddies persist for 7–21 days, with only a small number of robust mesoscale eddies maintaining activity beyond 45 days. These long-lived, strong mesoscale eddies are primarily generated in the high-energy current zones associated with the Gulf Stream (GS). Full article
Show Figures

Figure 1

21 pages, 12715 KiB  
Article
Effect of Twisted Tapes on Swirling Flow Dynamics in Gas–Solid Two-Phase Flows for Natural Gas Hydrate Transportation
by Yongchao Rao, Zijia Gong, Shuli Wang, Chenglong Zhang, Yunxiao Wang and Chuang Wen
Processes 2025, 13(3), 781; https://doi.org/10.3390/pr13030781 - 7 Mar 2025
Viewed by 902
Abstract
The discrete phase model (DPM) and the RNG k-ε turbulence model were employed to simulate the swirl flow behavior of hydrate transport in pipelines equipped with twisted tapes. The study analyzed the effects of various twisted tape parameters on the velocity [...] Read more.
The discrete phase model (DPM) and the RNG k-ε turbulence model were employed to simulate the swirl flow behavior of hydrate transport in pipelines equipped with twisted tapes. The study analyzed the effects of various twisted tape parameters on the velocity field, turbulent dissipation, turbulent kinetic energy, and pressure distribution of hydrate particles. The results indicate that increasing the placement angle of the twisted tape enhances the tangential velocity near the pipe axis while reducing the axial velocity. Similarly, higher twisted tape configurations result in a further decrease in axial velocity. An increase in the number of twisted tapes leads to reductions in both tangential and axial velocities, and maximum speed increased by 18.2%. Larger placement angles of twisted tapes also intensify turbulence dissipation, with a more pronounced decay in turbulence intensity observed from the pipe wall to the axis. At section 8D, the turbulent kinetic energy increases by 60% with the increase in the height of the twisted tapes. Furthermore, as the number of twisted tapes increases, the disparity in turbulence strength between regions near the twisted tape and the pipe axis diminishes. The inner pipe pressure distribution is 360°/n rotation symmetrical distribution, and the twist tape is more, and the high pressure area is greater on the pipe section. The minimum pressure area is gradually close from the lee plane of the diversion strip to the position of the pipe axis. At section 65D, the pressure drop increases gradually with the increase in the orientation angle, and it increases by 36.8%. Full article
Show Figures

Figure 1

14 pages, 4965 KiB  
Article
Digital-Twin of the National Collegiate Athletic Association Specified Energy Rebound Testing Device: Kinetic-Energy Absorption by a Basketball Rim and Backboard Modeled with ANSYS Workbench Finite Element Analysis
by Daniel Winarski, Kip P. Nygren and Tyson Winarski
Vibration 2025, 8(1), 9; https://doi.org/10.3390/vibration8010009 - 28 Feb 2025
Viewed by 741
Abstract
This paper is the first to offer a digital-twin of the Energy Rebound Testing Device, which is specified by the National Collegiate Athletic Association for the sport of basketball. This digital-twin replicates the physical ERTD, which was previously studied empirically. This paper merges [...] Read more.
This paper is the first to offer a digital-twin of the Energy Rebound Testing Device, which is specified by the National Collegiate Athletic Association for the sport of basketball. This digital-twin replicates the physical ERTD, which was previously studied empirically. This paper merges the original finite element analysis of a basketball rim and backboard with the finite element analysis of the Energy Rebound Testing Device, using the ANSYS Workbench 2024R2, student edition. The first modal model was of the ERTD in isolation in the Workbench Modal Analysis system, and the natural frequency modeled via finite element analysis, 12.776 Hz, compared favorably with the empirical modal analysis value of 12.72 Hz. The second modal model, also in the Workbench Modal Analysis system, was of the ERTD rotatably attached to a basketball rim and backboard. This second model was then imported into the Transient Structural Analysis system and first used to confirm the hypothesis that the ERTD did indeed transfer kinetic energy from its drop-mass to the basketball rim and backboard. Then, an energy transfer surface was used to confirm the hypothesis that this kinetic energy transfer was responsive to changes in rim and backboard stiffness via changes in the respective Young’s moduli. Finally, a second-generation ERTD was proposed, where the control box transmits its energy readings to “the cloud” via the WiFi capabilities of the Arduino UNO R4 WiFi. Full article
Show Figures

Graphical abstract

20 pages, 4461 KiB  
Article
Exploring Lower Limb Biomechanical Differences in Competitive Aerobics Athletes of Different Ability Levels During Rotational Jump Landings
by Qincheng Ge, Datao Xu, Zanni Zhang, Julien S. Baker and Huiyu Zhou
Bioengineering 2025, 12(3), 220; https://doi.org/10.3390/bioengineering12030220 - 21 Feb 2025
Viewed by 1204
Abstract
High-level (HL) and low-level (LL) competitive aerobics athletes demonstrate different landing patterns during rotational jump landings, resulting in differing risks of lower limb injuries. This research aimed to investigate biomechanical differences between different levels of competitive aerobics athletes during rotational jump landings. The [...] Read more.
High-level (HL) and low-level (LL) competitive aerobics athletes demonstrate different landing patterns during rotational jump landings, resulting in differing risks of lower limb injuries. This research aimed to investigate biomechanical differences between different levels of competitive aerobics athletes during rotational jump landings. The subjects included 15 male HL athletes and 15 LL athletes. This study captured kinematics, kinetics, muscle activation, and muscle force data, calculating joint stiffness, energy dissipation, anterior tibial shear force (ATSF), and patellofemoral joint contact force (PTF). LL athletes demonstrated significantly greater ankle dorsiflexion, inversion, and internal rotation angles; knee abduction angle and moment, internal rotation angle and moment; and smaller ankle plantarflexion moment and knee flexion angle. They also showed lower calf muscle coactivation, PTF, joint stiffness at the knee and hip, and the energy dissipation of the ankle and lower limb; greater thigh muscle coactivation and ATSF. The results show that LL athletes exhibit poorer stability at the ankle and knee joints, with a higher risk of anterior cruciate ligament (ACL) and ankle inversion injuries during rotational jump landings. To lower these risks, LL athletes should increase the flexion angle of the knee, hip, and ankle plantarflexion during landing. Full article
(This article belongs to the Special Issue Advances in Trauma and Injury Biomechanics)
Show Figures

Figure 1

18 pages, 5366 KiB  
Article
Regenerative Structural Fatigue Testing with Digital Displacement Pump/Motors
by Win Rampen, Marek J. Munko, Sergio Lopez Dubon and Fergus Cuthill
Actuators 2025, 14(3), 103; https://doi.org/10.3390/act14030103 - 20 Feb 2025
Viewed by 880
Abstract
Historically, a large fraction of fatigue testing of both components and structures has been performed using hydraulic actuators. These are typically driven by servo-valves, which are in themselves very inefficient. But, as most tests involve elastically stressing mechanical components, a lot of stored [...] Read more.
Historically, a large fraction of fatigue testing of both components and structures has been performed using hydraulic actuators. These are typically driven by servo-valves, which are in themselves very inefficient. But, as most tests involve elastically stressing mechanical components, a lot of stored energy could be recovered. Unfortunately, servo-valves are not regenerative—simply metering out fluid in order to relax the system prior to the start of the next cycle. There is much to be gained with a more intelligently controlled system. The FastBlade facility in Scotland uses a new type of regenerative test hydraulics. Digital displacement pump/motors (DDPMs), originated by Artemis Intelligent Power, now Danfoss Scotland, are used to load and unload the test structure directly via hydraulic rams. The DDPMs are driven by induction motors supplied by three-phase frequency converters, each with a very loose speed correction target, such that they can speed up or slow down according to the instantaneous torque exerted by the load. The rotating assembly of the induction motor and DDPM is designed to have sufficient inertia so as to function as a kinetic energy storage flywheel. The loading energy is then cyclically transferred between the rotating inertia of the motor/DDPM and the spring energy in the test structure. The electric motor provides sufficient energy to maintain the target average cyclical shaft speed of the DDPM whilst the bulk of the system energy oscillates between the two storage mechanisms. Initial tests (at low load) suggest that this technique requires only 30% of the energy previously needed. FastBlade is a unique facility built by the University of Edinburgh and Babcock, with support from the UK EPSRC, conceived as a means of testing and certifying turbine blades for marine current turbines. However, this approach can be used in any cyclical application where elastic energy is stored. Full article
(This article belongs to the Special Issue Actuation and Control in Digital Fluid Power)
Show Figures

Figure 1

22 pages, 11871 KiB  
Article
Numerical Study of Rice Grain Milling Uniformity in the Abrasive Milling Process
by Ze Sun, Anqi Li, Shouyu Ji, Hao Li, Zhuozhuang Li, Haonan Gao, Xinlei Wang, Xianle Li, Yanlong Han and Dan Zhao
Foods 2025, 14(4), 630; https://doi.org/10.3390/foods14040630 - 13 Feb 2025
Viewed by 733
Abstract
The uniform removal of the bran layer significantly enhances the nutritional and economic benefits of rice. However, the influence of parameter conditions on the uniformity of milling in the abrasive milling process remains unclear. This is not conducive to improving the quality of [...] Read more.
The uniform removal of the bran layer significantly enhances the nutritional and economic benefits of rice. However, the influence of parameter conditions on the uniformity of milling in the abrasive milling process remains unclear. This is not conducive to improving the quality of rice milling. In this study, the effects of rotational speed and filling volume on milling uniformity in abrasive milling were investigated by combining experimental methods and simulation. The results showed that the higher the rotational speed, the more uniform the milling. The higher the filling volume, the more non-uniform the milling. The main reason for the variation in milling uniformity is the axial and radial position exchange of the rice particles in the milling chamber. The more frequent the exchange, the higher the milling uniformity. Subsequently, the frequency of position exchange was quantitatively characterised using axial and radial exchange rates, respectively. The rotational speed and filling volume change the position exchange frequency by affecting the rotational kinetic energy of the rice particles and the degree of dense rice population, respectively. These findings are useful in promoting rice loss reduction and nutritional balance. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

Back to TopTop