Biomechanical Factors for Enhanced Performance in Snowboard Big Air: Takeoff Phase Analysis Across Trick Difficulties
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Measurement Protocol
2.2. Motion Capture and Data Processing
2.3. Statistics
3. Results
3.1. Performance Metrics
3.2. Joint Kinematics
3.3. Moment of Inertia and Rotational Energy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SBA | Snowboard Big Air |
Bs | Backside |
References
- FIS. Snowboard & Freeski Park & Pipe Judges Handbook; FIS, Ed.; FIS: Jacksonville, FL, USA, 2023. [Google Scholar]
- Harding, J.W.; James, D.A. Performance assessment innovations for elite snowboarding. Procedia Eng. 2010, 2, 2919–2924. [Google Scholar] [CrossRef]
- Tsai, M.; Chua, J.; Sheppard, J. Competition trick analysis in snowboard slopestyle and big air. J. Hum. Sport Exerc. 2023, 18, 526–533. [Google Scholar] [CrossRef]
- Thomson, C.; Morton, K.; Carlson, S.; Rupert, J.L. The Contextual Sensation Seeking Questionnaire for skiing and snowboarding (CSSQ-S) Development of a sport specific scale. Int. J. Sport Psychol. 2012, 43, 503–521. [Google Scholar]
- Schindelwig, K.; Platzer, H.; Mössner, M.; Nachbauer, W. Safety recommendations of winter terrain park jumps into airbags. J. Sci. Med. Sport 2019, 22, S50–S54. [Google Scholar] [CrossRef]
- Wolfsperger, F.; Meyer, F.; Gilgien, M. Towards more valid simulations of slopestyle and big air jumps: Aerodynamics during in-run and flight phase. J. Sci. Med. Sport. 2021, 24, 1082–1087. [Google Scholar] [CrossRef]
- Platzer, H.P.; Raschner, C.; Patterson, C.; Lembert, S. Comparison of physical characteristics and performance among elite snowboarders. J. Strength Cond. Res. 2009, 23, 1427–1432. [Google Scholar] [CrossRef]
- Staniszewski, M. Biomechanical conditions of maintaining balance in snowboarding. J. Sport Med. Phys. Fit. 2019, 59, 1870–1877. [Google Scholar] [CrossRef] [PubMed]
- Bacik, B.; Kurpas, W.; Marszalek, W.; Wodarski, P.; Sobota, G.; Starzyński, M.; Gzik, M. Movement Variability During the Flight Phase in a Single Back Sideflip (Wildcat) in Snowboarding. J. Hum. Kinet. 2020, 72, 29–37. [Google Scholar] [CrossRef]
- Hoholm, S.L. “Pop” and Its Relation to Performance Factors and Equivalent Fall Height in World Cup Slopestyle for Skiers and Snowboarders. Master’s Thesis, Norwegian School of Sport Sciences, Oslo, Norway, 2022. [Google Scholar]
- Linlokken, M. A Biomechanical Analysis of How Rider Behavior and Equivalent Fall Height Affect Landing Stability in World Cup Slopestyle for Freeski and Snowboard. Master’s Thesis, Norwegian School of Sport Sciences, Oslo, Norway, 2022. [Google Scholar]
- Piiparinen, M. The Effect of a Change in the Difficulty Level of the Big Air Jump Take-Off Phase in Joint Kinematics of Snowboarding Athletes. Master’s Thesis, University of Jyvaskyla, Jyvaskyla, Finland, 2022. [Google Scholar]
- Hao, W.; Wang, Z.; Ai, K. Changes of Moment of Inertia in Posture Control during Somersaults and Twists of Athletes. Chin. J. Sports Med. 2013, 32, 966–973. [Google Scholar]
- King, D.L.; Smith, S.L.; Brown, M.R.; McCrory, J.L.; Munkasy, B.A.; Scheirman, G.I. Comparison of split double and triple twists in pair figure skating. Sports Biomech. 2008, 7, 222–237. [Google Scholar] [CrossRef]
- Mikl, J.; Rye, D.C. Twist within a somersault. Hum. Mov. Sci. 2016, 45, 23–39. [Google Scholar] [CrossRef]
- Klous, M.; Müller, E.; Schwameder, H. Three-Dimensional Lower Extremity Joint Loading in a Carved Ski and Snowboard Turn: A Pilot Study. Comput. Math. Method Med. 2014, 2014, 340272. [Google Scholar] [CrossRef]
- Jonsson, M.; Welde, B.; Stoggl, T.L. Biomechanical differences in double poling between sexes and level of performance during a classical cross-country skiing competition. J. Sport Sci. 2019, 37, 1582–1590. [Google Scholar] [CrossRef]
- Ostrek, M.; Rhodin, H.; Fua, P.; Müller, E.; Spörri, J. Are Existing Monocular Computer Vision-Based 3D Motion Capture Approaches Ready for Deployment? A Methodological Study on the Example of Alpine Skiing. Sensors 2019, 19, 4323. [Google Scholar] [CrossRef] [PubMed]
- Mathis, A.; Mamidanna, P.; Cury, K.M.; Abe, T.; Murthy, V.N.; Mathis, M.W.; Bethge, M. DeepLabCut: Markerless pose estimation of user-defined body parts with deep learning. Nat. Neurosci. 2018, 21, 1281. [Google Scholar] [CrossRef]
- Hay, J.G. The Biomechanics of Sports Techniques; Prentice-Hall: Saddle River, NJ, USA, 1993; ISBN 9780130845344. [Google Scholar]
- Yu, B.; Gabriel, D.; Noble, L.; An, K.-N. Estimate of the optimum cutoff frequency for the Butterworth low-pass digital filter. J. Appl. Biomech. 1999, 15, 318–329. [Google Scholar] [CrossRef]
- Wu, G.; Siegler, S.; Allard, P.; Kirtley, C.; Leardini, A.; Rosenbaum, D.; Whittle, M.; D’Lima, D.D.; Cristofolini, L.; Witte, H.; et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—Part I: Ankle, hip, and spine. J. Biomech. 2002, 35, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; van der Helm, F.C.T.; DirkJan Veeger, H.E.J.; Makhsous, M.; Van Roy, P.; Anglin, C.; Nagels, J.; Karduna, A.R.; McQuade, K.; Wang, X.; et al. ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—Part II: Shoulder, elbow, wrist and hand. J. Biomech. 2005, 38, 981–992. [Google Scholar] [CrossRef]
- Liu, H.; Leigh, S.; Yu, B. Sequences of upper and lower extremity motions in javelin throwing. J. Sports Sci. 2010, 28, 1459–1467. [Google Scholar] [CrossRef]
- De Leva, P. Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biomech. 1996, 29, 1223–1230. [Google Scholar] [CrossRef]
- Wilson, C.; King, M.A.; Yeadon, M.R. The effects of initial conditions and takeoff technique on running jumps for height and distance. J. Biomech. 2011, 44, 2207–2212. [Google Scholar] [CrossRef]
- Albert, W.J.; Miller, D.I. Takeoff characteristics of single and double axel figure skating jumps. J. Appl. Biomech. 1996, 12, 72–87. [Google Scholar] [CrossRef]
- Heinen, T.; Krepela, F. Evaluating routines in trampoline gymnastics. Sci. Gymnast. J. 2016, 8, 229. [Google Scholar] [CrossRef]
- Eythorsdottir, I.; Gloersen, O.; Rice, H.; Werkhausen, A.; Ettema, G.; Mentzoni, F.; Solberg, P.; Lindberg, K.; Paulsen, G. The Battle of the Equations: A Systematic Review of Jump Height Calculations Using Force Platforms. Sports Med. 2024, 54, 2771–2791. [Google Scholar] [CrossRef]
- Vodicar, J.; Coh, M.; Jost, B. Kinematic Structure at the Early Flight Position in Ski Jumping. J. Hum. Kinet. 2012, 35, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Elfmark, O.; Ettema, G.; Groos, D.; Ihlen, E.A.F.; Velta, R.; Haugen, P.; Braaten, S.; Gilgien, M. Performance Analysis in Ski Jumping with a Differential Global Navigation Satellite System and Video-Based Pose Estimation. Sensors 2021, 21, 5318. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, X.; Wang, X.; Chen, L.; Zhao, T. Performance and Biomechanics in the Flight Period of Ski Jumping: Influence of Ski Attitude. Biology 2022, 11, 671. [Google Scholar] [CrossRef]
- Kong, P.W. Hip extension during the come-out of multiple forward and inward pike somersaulting dives is controlled by eccentric contraction of the hip flexors. J. Sports Sci. 2010, 28, 537–543. [Google Scholar] [CrossRef]
- Kyselovicová, O.; Zemková, E. The effects of aerobic gymnastics training on performance-related variables in an elite athlete: A 2-year follow-up study. Front. Physiol. 2024, 15, 1380024. [Google Scholar] [CrossRef]
- Markström, J.L.; Grip, H.; Schelin, L.; Häger, C.K. Dynamic knee control and movement strategies in athletes and non-athletes in side hops: Implications for knee injury. Scand. J. Med. Sci. Sports 2019, 29, 1181–1189. [Google Scholar] [CrossRef]
- Mkaouer, B.; Jemni, M.; Amara, S.; Chaabène, H.; Tabka, Z. Kinematic and Kinetic Analysis of Two Gymnastics Acrobatic Series to Performing the Backward Stretched Somersault. J. Hum. Kinet. 2013, 37, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Göpfert, C.; Holmberg, H.C.; Stöggl, T.; Müller, E.; Lindinger, S.J. Biomechanical characteristics and speed adaptation during kick double poling on roller skis in elite cross-country skiers. Sports Biomech. 2013, 12, 154–174. [Google Scholar] [CrossRef] [PubMed]
- Cabell, L.; Bateman, E. Biomechanics in Figure Skating. In The Science of Figure Skating; Routledge: Abingdon, UK, 2018; ISBN 9781315387741. [Google Scholar]
- Horri, Z.; Lenjannejadian, S.; Boroujeni, M.R.; Farazin, A. Kinematics of take-off phase in successful and unsuccessful performances of gymnastic somersault: An experimental study. Sport Sci. Health 2022, 18, 219–225. [Google Scholar] [CrossRef]
- Sands, W.A.; Kimmel, W.L.; McNeal, J.R.; Murray, S.R.; Stone, M.H. A comparison of pairs figure skaters in repeated jumps. J. Sports Sci. Med. 2012, 11, 102–108. [Google Scholar] [PubMed]
- Clark, K.P.; Meng, C.R.; Stearne, D.J. ‘Whip from the hip’: Thigh angular motion, ground contact mechanics, and running speed. Biol. Open 2020, 9, bio053546. [Google Scholar] [CrossRef]
- Ridge, S.T.; McLean, D.; Bruening, D.; Richards, J. Up in the air: The efficacy of weighted gloves in figure skating jumps. Sports Biomech. 2022, 23, 2637–2648. [Google Scholar] [CrossRef]
- Hora, M.; Soumar, L.; Pontzer, H.; Sládek, V. Body size and lower limb posture during walking in humans. PLoS ONE 2017, 12, e0172112. [Google Scholar] [CrossRef]
- Sasaki, S.; Nagano, Y.; Kaneko, S.; Sakurai, T.; Fukubayashi, T. The relationship between performance and trunk movement during change of direction. J. Sports Sci. Med. 2011, 10, 112–118. [Google Scholar]
- Turnbull, J.; Keogh, J.W.; Kilding, A.E. Strength and conditioning considerations for elite snowboard half pipe. Open Sports Med. J. 2011, 5, 1–11. [Google Scholar] [CrossRef]
- Markovic, G. Does plyometric training improve vertical jump height? A meta-analytical review. Br. J. Sports Med. 2007, 41, 349–355. [Google Scholar] [CrossRef]
- Bai, Y.; Zheng, Z.; Gong, B.; Shen, Y. Effects of different drop height training on lower limb explosive, anaerobic power, and change of direction performance in Chinese elite female wrestler. Heliyon 2024, 10, e38146. [Google Scholar] [CrossRef] [PubMed]
- Compos, Y.; Vianna, J.M.; Guimaraes, M.P.; Oliveira, J.L.D.; Hernández-Mosqueira, C.; da Silva, S.F.; Marchetti, P.H. Different Shoulder Exercises Affect the Activation of Deltoid Portions in Resistance-Trained Individuals. J. Hum. Kinet. 2020, 75, 5–14. [Google Scholar] [CrossRef]
- Ozdamar, S.; Agopyan, A.; Uzun, S. The effects of dumbbell versus TRX suspension training on shoulder strength, vertical jump, and spike speed in volleyball players. Isokinet. Exerc. Sci. 2024, 32, 109–123. [Google Scholar] [CrossRef]
- Skopal, L.K.; Drinkwater, E.J.; Behm, D.G. Application of mobility training methods in sporting populations: A systematic review of performance adaptations. J. Sports Sci. 2024, 42, 46–60. [Google Scholar] [CrossRef] [PubMed]
- González-Fernández, F.T.; Sarmento, H.; Castillo-Rodríguez, A.; Silva, R.; Clemente, F.M. Effects of a 10-Week Combined Coordination and Agility Training Program on Young Male Soccer Players. Int. J. Environ. Res. Public Health 2021, 18, 10125. [Google Scholar] [CrossRef]
- Barris, S.; Button, C. A Review of Vision-Based Motion Analysis in Sport. Sports Med. 2008, 38, 1025–1043. [Google Scholar] [CrossRef] [PubMed]
- Spoerri, J.; Kroell, J.; Schwameder, H.; Müller, E. The role of path length- and speed-related factors for the enhancement of section performance in alpine giant slalom. Eur. J. Sport. Sci. 2018, 18, 911–919. [Google Scholar] [CrossRef]
- Scheiber, P.; Seifert, J.; Mueller, E. Relationships between biomechanics and physiology in older, recreational alpine skiers. Scand. J. Med. Sci. Sports 2012, 22, 49–57. [Google Scholar] [CrossRef]
- Wolfsperger, F.; Meyer, F.; Gilgien, M. The Snow-Friction of Freestyle Skis and Snowboards Predicted from Snow Physical Quantities. Front. Mech. Eng. 2021, 7, 728722. [Google Scholar] [CrossRef]
Bs 720 | Bs 1080 | Bs 1440 | Bs 1800 | F3,36 | p-Value | ||
---|---|---|---|---|---|---|---|
Takeoff time (s) | 0.41 ± 0.03 | 0.51 ± 0.05 a | 0.52 ± 0.05 a | 0.59 ± 0.05 abc | 22.88 | <0.001 | 0.73 |
Flight time (s) | 2.33 ± 0.1 | 2.47 ± 0.06 a | 2.58 ± 0.08 ab | 2.64 ± 0.04 ab | 58.27 | <0.001 | 0.87 |
Flight height (m) | 3.26 ± 0.27 | 3.68 ± 0.19 | 4.03 ± 0.48 ab | 3.98 ± 0.46 ab | 28.52 | <0.001 | 0.77 |
Departure combined velocity (m/s) | 14.7 ± 0.5 | 15.3 ± 0.3 | 15.9 ± 0.3 ab | 16.4 ± 0.5 abc | 41.07 | <0.001 | 0.83 |
Departure vertical velocity (m/s) | 7.27 ± 0.84 | 8.78 ± 0.36 a | 9.05 ± 0.36 ab | 9.14 ± 0.42 ab | 81.67 | <0.001 | 0.91 |
Departure angle (°) | 29.6 ± 3.4 | 35 ± 1.5 a | 34.8 ± 1.2 a | 33.9 ± 1.9 a | 9.32 | <0.001 | 0.53 |
Bs 720 | Bs 1080 | Bs 1440 | Bs 1800 | F3,36 | p-Value | ||
---|---|---|---|---|---|---|---|
Moment of inertia [kg·m2] | |||||||
Maximum | 7.84 ± 1.48 | 9.24 ± 0.95 a | 10.65 ± 1.8 ab | 11.79 ± 1.43 ab | 10.2 | <0.001 | 0.55 |
Minimum | 4.81 ± 0.78 | 4.61 ± 0.8 | 4.47 ± 0.89 | 4.15 ± 0.29 | 2.25 | 0.11 | 0.21 |
Range | 3.03 ± 1.36 | 4.63 ± 0.69 a | 6.18 ± 1.84 ab | 7.65 ± 1.55 abc | 16.5 | <0.001 | 0.66 |
Average | 2.6 ± 0.19 | 3.38 ± 0.52 a | 3.77 ± 0.41 ab | 4.09 ± 0.27 ab | 29 | <0.001 | 0.71 |
Rotational energy [J] | |||||||
Maximum | 170.7 ± 143 | 187.5 ± 101 | 306.9 ± 145.9 a | 408.2 ± 132.8 ab | 7.11 | <0.001 | 0.37 |
Average | 53.64 ± 25.6 | 79.76 ± 35.31 a | 111.99 ± 31.55 ab | 148.37 ± 12.1 abc | 22 | <0.001 | 0.65 |
Departure moment | 60.5 ± 66.6 | 91.7 ± 57.7 | 114.8 ± 43.3 | 248.2 ± 132.3 abc | 10.1 | <0.001 | 0.46 |
Moment of inertia to rotational energy ratio [rad−2] | |||||||
Average | 0.059 ± 0.024 | 0.047 ± 0.012 | 0.036 ± 0.011 a | 0.028 ± 0.003 ab | 8.2 | <0.001 | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, L.; Chen, X.; Gao, X.; Li, Y.; Gao, T.; Sun, Q.; Huo, B. Biomechanical Factors for Enhanced Performance in Snowboard Big Air: Takeoff Phase Analysis Across Trick Difficulties. Appl. Sci. 2025, 15, 6618. https://doi.org/10.3390/app15126618
Jiang L, Chen X, Gao X, Li Y, Gao T, Sun Q, Huo B. Biomechanical Factors for Enhanced Performance in Snowboard Big Air: Takeoff Phase Analysis Across Trick Difficulties. Applied Sciences. 2025; 15(12):6618. https://doi.org/10.3390/app15126618
Chicago/Turabian StyleJiang, Liang, Xue Chen, Xianzhi Gao, Yanfeng Li, Teng Gao, Qing Sun, and Bo Huo. 2025. "Biomechanical Factors for Enhanced Performance in Snowboard Big Air: Takeoff Phase Analysis Across Trick Difficulties" Applied Sciences 15, no. 12: 6618. https://doi.org/10.3390/app15126618
APA StyleJiang, L., Chen, X., Gao, X., Li, Y., Gao, T., Sun, Q., & Huo, B. (2025). Biomechanical Factors for Enhanced Performance in Snowboard Big Air: Takeoff Phase Analysis Across Trick Difficulties. Applied Sciences, 15(12), 6618. https://doi.org/10.3390/app15126618