Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,764)

Search Parameters:
Keywords = rotation directions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 17921 KB  
Article
Development and Balancing Control of Control Moment Gyroscope (CMG) Unicycle–Legged Robot
by Seungchul Shin, Minjun Choi, Seongmin Ahn, Seongyong Hur, David Kim and Dongil Choi
Machines 2025, 13(10), 937; https://doi.org/10.3390/machines13100937 - 10 Oct 2025
Abstract
A wheeled–legged robot has the advantage of stable and agile movement on flat ground and an excellent ability to overcome obstacles. However, when faced with a narrow footprint, there is a limit to its ability to move. We developed the control moment gyroscope [...] Read more.
A wheeled–legged robot has the advantage of stable and agile movement on flat ground and an excellent ability to overcome obstacles. However, when faced with a narrow footprint, there is a limit to its ability to move. We developed the control moment gyroscope (CMG) unicycle–legged robot to solve this problem. A scissored pair of CMGs was applied to control the roll balance, and the pitch balance was modeled as a double-inverted pendulum. We performed Linear Quadratic Regulator (LQR) control and model predictive control (MPC) in a system in which the control systems in the roll and pitch directions were separated. We also devised a method for controlling the rotation of the robot in the yaw direction using torque generated by the CMG, and the performance of these controllers was verified in the Gazebo simulator. In addition, forward driving control was performed to verify mobility, which is the main advantage of the wheeled–legged robot; it was confirmed that this control enabled the robot to pass through a narrow space of 0.15 m. Before implementing the verified controllers in the real world, we built a CMG test platform and confirmed that balancing control was maintained within ±1. Full article
18 pages, 3398 KB  
Article
Mechanical Properties of Frozen Loess Subject to Directional Shear Effects from Multiple Principal Stress Directions
by Jianhong Fang, Chenwei Wang, Binlong Zhang and Qingzhi Wang
Eng 2025, 6(10), 271; https://doi.org/10.3390/eng6100271 - 10 Oct 2025
Abstract
Frozen loess is extensively distributed across seasonally frozen regions, where its mechanical behavior plays a critical role in the stability of engineering structures such as foundations, tunnels, and slopes. While the temperature-dependent strength characteristics of frozen soils have been widely investigated under conventional [...] Read more.
Frozen loess is extensively distributed across seasonally frozen regions, where its mechanical behavior plays a critical role in the stability of engineering structures such as foundations, tunnels, and slopes. While the temperature-dependent strength characteristics of frozen soils have been widely investigated under conventional triaxial conditions, their response to variations in principal stress direction and intermediate principal stress under complex loading paths remains poorly understood. This study addresses this gap through a series of directional shear tests on frozen loess, examining the effects of principal stress direction angle (α) and intermediate principal stress coefficient (b) at different temperatures. The results demonstrate that lower negative temperatures (−5 °C, −10 °C, and −15 °C) markedly enhance both axial and shear strength compared with normal temperature (20 °C). Increasing α leads to a progressive reduction in axial strength, highlighting the strong influence of stress orientation on deformation characteristics. Higher values of b also reduce axial strength, but their impact on shear strength is limited. Overall, the influence of α and temperature on the strength of frozen loess is considerably more pronounced than that of b. These findings provide new insights into the mechanical behavior of frozen loess under non-traditional stress paths, offering practical implications for the design, safety evaluation, and stability control of geotechnical structures in cold regions. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

15 pages, 2538 KB  
Article
Active Damped PI Speed Loop Design for Motor Direct-Drive Operating Mechanism for High-Voltage Circuit Breakers
by Xiao Wang, Xusheng Wu and Xi Xiao
Electronics 2025, 14(19), 3969; https://doi.org/10.3390/electronics14193969 - 9 Oct 2025
Abstract
To address the prevalent issues of oscillation and overshoot in high-voltage circuit breaker motor direct-drive mechanisms under classical PI control, this paper proposes an optimized PI speed loop with active damping characteristics. By first establishing a detailed kinematic and dynamic model of the [...] Read more.
To address the prevalent issues of oscillation and overshoot in high-voltage circuit breaker motor direct-drive mechanisms under classical PI control, this paper proposes an optimized PI speed loop with active damping characteristics. By first establishing a detailed kinematic and dynamic model of the mechanism, we reveal the inherent coupling between tracking performance, disturbance immunity, and the damping ratio within the classical PI speed loop. Our novel method introduces a speed feedback channel at the output of the PI controller to synthesize equivalent viscous damping, thereby enhancing system stability without compromising responsiveness. Through rigorous simulation and experimental validation, the proposed controller’s effectiveness is demonstrated. Compared with the traditional PI controller, the ADPI method reduces the velocity overshoot to only 5.76% in the startup phase, and the maximum velocity tracking error of the velocity is only 18.62% and the cumulative position tracking error is only 0.632 rad under the actual working condition, which is a reduction of 42.7% in the positional error relative to the traditional PI method. The controller also exhibits low sensitivity to changes in the system’s equivalent rotational inertia. This work provides a low-complexity and easy-to-implement speed loop performance enhancement scheme, ideally suited for the short-duration, high-dynamic-load conditions of high-voltage circuit breaker applications. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Figure 1

10 pages, 1174 KB  
Article
Global Solutions to Rasmussen’s Problem by Homotopy Renormalization Method
by Bing Guan, Xianjun Wang, Xiaofei Fu, Shuangqing Chen and Shibin Li
Symmetry 2025, 17(10), 1674; https://doi.org/10.3390/sym17101674 - 7 Oct 2025
Viewed by 147
Abstract
In this study, we employ the homotopy renormalization (HTR) method to analytically investigate Rasmussen’s problem, which characterizes the viscous fluid motion between a pair of infinitely large, coaxially rotating disks. The original set of nonlinear ordinary differential equations is reformulated within a homotopy-based [...] Read more.
In this study, we employ the homotopy renormalization (HTR) method to analytically investigate Rasmussen’s problem, which characterizes the viscous fluid motion between a pair of infinitely large, coaxially rotating disks. The original set of nonlinear ordinary differential equations is reformulated within a homotopy-based framework, allowing us to construct global asymptotic approximations with closed-form expressions. The HTR method overcomes the limitations of traditional perturbation and renormalization techniques, and avoids the need for asymptotic matching. In addition, the analytic expressions allow for direct estimation of flow parameters such as boundary layer thickness. These results demonstrate the effectiveness of the HTR method in asymptotic analysis and highlight its potential for broader applications in nonlinear fluid dynamics. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

21 pages, 3017 KB  
Article
Interface Rotation in Accumulative Rolling Bonding (ARB) Cu/Nb Nanolaminates Under Constrained and Unconstrained Loading Conditions as Revealed by In Situ Micromechanical Testing
by Rahul Sahay, Ihor Radchenko, Pavithra Ananthasubramanian, Christian Harito, Fabien Briffod, Koki Yasuda, Takayuki Shiraiwa, Mark Jhon, Rachel Speaks, Derrick Speaks, Kangjae Lee, Manabu Enoki, Nagarajan Raghavan and Arief Suriadi Budiman
Nanomaterials 2025, 15(19), 1528; https://doi.org/10.3390/nano15191528 - 7 Oct 2025
Viewed by 183
Abstract
Accumulative rolling bonding (ARB) Cu/Nb nanolaminates have been widely observed to exhibit unique and large numbers of interface-based plasticity mechanisms, and these have been associated with the many extraordinary properties of the material system, especially resistances in extreme engineering environments (mechanical/pressure, thermal, irradiation, [...] Read more.
Accumulative rolling bonding (ARB) Cu/Nb nanolaminates have been widely observed to exhibit unique and large numbers of interface-based plasticity mechanisms, and these have been associated with the many extraordinary properties of the material system, especially resistances in extreme engineering environments (mechanical/pressure, thermal, irradiation, etc.) and ability to self-heal defects (microstructural, as well as radiation-induced). Recently, anisotropy in the interface shearing mechanisms in the material system has been observed and much discussed. The Cu/Nb nanolaminates appear to shear on the interface planes to a much larger extent in the transverse direction (TD) than in the rolling direction (RD). Related to that, in this present study we observe interface rotation in Cu/Nb ARB nanolaminates under constrained and unconstrained loading conditions. Although the primary driving force for interface shearing was expected only in the RD, additional shearing in the TD was observed. This is significant as it represents an interface rotation, while there was no external rotational driving force. First, we observed interface rotation in in situ rectangular micropillar compression experiments, where the interface is simply sheared in one particular direction only, i.e., in the RD. This is rather unexpected as, in rectangular micropillar compression, there is no possibility of extra shearing or driving force in the perpendicular direction due to the loading conditions. This motivated us to subsequently perform in situ microbeam bending experiments (microbeam with a pre-made notch) to verify if similar interface rotation could also be observed in other loading modes. In the beam bending mode, the notch area was primarily under tensile stress in the direction of the beam longitudinal axis, with interfacial shear also in the same direction. Hence, we expect interface shearing only in that direction. We then found that interface rotation was also evident and repeatable under certain circumstances, such as under an offset loading. As this behaviour was consistently observed under two distinct loading modes, we propose that it is an intrinsic characteristic of Cu/Nb interfaces (or FCC/BCC interfaces with specific orientation relationships). This interface rotation represents another interface-based or interface-mediated plasticity mechanism at the nanoscale with important potential implications especially for design of metallic thin films with extreme stretchability and other emerging applications. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

25 pages, 5261 KB  
Article
Modeling and Optimization of Nanofluid-Based Shaft Cooling for Automotive Electric Motors
by Davide Di Battista, Ali Deriszadeh, Giammarco Di Giovine, Federico Di Prospero and Roberto Cipollone
Energies 2025, 18(19), 5286; https://doi.org/10.3390/en18195286 - 6 Oct 2025
Viewed by 214
Abstract
Electrified powertrains in the transportation sector have increased significantly in recent years, thanks to the need for decarbonization of the on-the-road transport means. However, management of powertrains still deserves particular attention to assess necessary improvements for reducing electric consumption and increasing the mileage [...] Read more.
Electrified powertrains in the transportation sector have increased significantly in recent years, thanks to the need for decarbonization of the on-the-road transport means. However, management of powertrains still deserves particular attention to assess necessary improvements for reducing electric consumption and increasing the mileage of the vehicles. In this regard, electric motor cooling is essential for maintaining optimal performance and longevity. In fact, as electric motors operate, they generate heat due to electric and magnetic phenomena as well as mechanical friction. If not properly managed, this heat can lead to decreased efficiency, accelerated wear, or even failure of critical components. Effective cooling systems ensure that the motor runs within its ideal temperature range, reducing the occurrence of the mentioned concerns. This improves operational reliability and, at the same time, contributes to energy savings and reduced maintenance costs over the components’ life. In this study, the cooling of the rotor of a 130-kW electric motor via refrigerating fluid circulating inside the shaft has been investigated. Two configurations of fluid passages have been considered: a direct-through flow crossing the shaft along its axis and a hollow shaft with recirculating flow, with three types of rotating helical configurations at different pitches. The benefits when using nanofluids as a cooling medium have also been evaluated to enhance the heat transfer coefficient and decrease temperature values. Compared with the baseline configuration using standard fluids (water), the proposed solution employing nanofluids demonstrates effectiveness in terms of heat transfer coefficients (up to 28% higher than pure water), with limited impact on pressure losses, thus reducing rotor temperature by up to 30 K with respect to the baseline. This study opens the possibility of integrating the cooling of the rotor with whole electric motor cooling for electric and hybrid powertrains. Full article
(This article belongs to the Special Issue Advanced Thermal Simulation of Energy Systems: 2nd Edition)
Show Figures

Figure 1

19 pages, 3024 KB  
Article
Evaluation and Correction of Systematic Motion Errors in a Compact Three-Wheeled Omnidirectional Platform Based on Servomotors
by David Martínez, Elena Rubies, Ricard Bitriá and Jordi Palacín
Appl. Sci. 2025, 15(19), 10700; https://doi.org/10.3390/app151910700 - 3 Oct 2025
Viewed by 234
Abstract
This paper evaluates and corrects systematic odometry errors in a compact omnidirectional mobile platform equipped with three omni-wheels driven by digital servomotors featuring velocity control capabilities. Compared to differential-drive platforms, omnidirectional platforms offer the significant advantage of being able to translate in any [...] Read more.
This paper evaluates and corrects systematic odometry errors in a compact omnidirectional mobile platform equipped with three omni-wheels driven by digital servomotors featuring velocity control capabilities. Compared to differential-drive platforms, omnidirectional platforms offer the significant advantage of being able to translate in any direction while rotating simultaneously. The motion capabilities of the platform have been experimentally evaluated, and its systematic motion errors analyzed and corrected. The final motion capabilities achieved confirm that a basic three-wheeled omnidirectional platform driven by servomotors is suitable for use as a testbench for control algorithms and trajectory-tracking experiments. Full article
(This article belongs to the Special Issue Recent Advances in Mechatronic and Robotic Systems—2nd Edition)
Show Figures

Figure 1

20 pages, 74841 KB  
Article
Autonomous Concrete Crack Monitoring Using a Mobile Robot with a 2-DoF Manipulator and Stereo Vision Sensors
by Seola Yang, Daeik Jang, Jonghyeok Kim and Haemin Jeon
Sensors 2025, 25(19), 6121; https://doi.org/10.3390/s25196121 - 3 Oct 2025
Viewed by 264
Abstract
Crack monitoring in concrete structures is essential to maintaining structural integrity. Therefore, this paper proposes a mobile ground robot equipped with a 2-DoF manipulator and stereo vision sensors for autonomous crack monitoring and mapping. To facilitate crack detection over large areas, a 2-DoF [...] Read more.
Crack monitoring in concrete structures is essential to maintaining structural integrity. Therefore, this paper proposes a mobile ground robot equipped with a 2-DoF manipulator and stereo vision sensors for autonomous crack monitoring and mapping. To facilitate crack detection over large areas, a 2-DoF motorized manipulator providing linear and rotational motions, with a stereo vision sensor mounted on the end effector, was deployed. In combination with a manual rotation plate, this configuration enhances accessibility and expands the field of view for crack monitoring. Another stereo vision sensor, mounted at the front of the robot, was used to acquire point cloud data of the surrounding environment, enabling tasks such as SLAM (simultaneous localization and mapping), path planning and following, and obstacle avoidance. Cracks are detected and segmented using the deep learning algorithms YOLO (You Only Look Once) v6-s and SFNet (Semantic Flow Network), respectively. To enhance the performance of crack segmentation, synthetic image generation and preprocessing techniques, including cropping and scaling, were applied. The dimensions of cracks are calculated using point clouds filtered with the median absolute deviation method. To validate the performance of the proposed crack-monitoring and mapping method with the robot system, indoor experimental tests were performed. The experimental results confirmed that, in cases of divided imaging, the crack propagation direction was predicted, enabling robotic manipulation and division-point calculation. Subsequently, total crack length and width were calculated by combining reconstructed 3D point clouds from multiple frames, with a maximum relative error of 1%. Full article
Show Figures

Figure 1

21 pages, 5185 KB  
Article
Additive Manufacturing of a Passive Beam-Steering Antenna System Using a 3D-Printed Hemispherical Lens at 10 GHz
by Patchadaporn Sangpet, Nonchanutt Chudpooti and Prayoot Akkaraekthalin
Electronics 2025, 14(19), 3913; https://doi.org/10.3390/electronics14193913 - 1 Oct 2025
Viewed by 260
Abstract
This paper presents a novel mechanically beam-steered antenna system for 10 GHz applications, enabled by multi-material 3D-printing technology. The proposed design eliminates the need for complex electronic circuitry by integrating a mechanically rotatable, 3D-printed hemispherical lens with a conventional rectangular patch antenna. The [...] Read more.
This paper presents a novel mechanically beam-steered antenna system for 10 GHz applications, enabled by multi-material 3D-printing technology. The proposed design eliminates the need for complex electronic circuitry by integrating a mechanically rotatable, 3D-printed hemispherical lens with a conventional rectangular patch antenna. The system comprises three main components: a 10-GHz patch antenna, a precision-fabricated hemispherical dielectric lens produced via stereolithography (SLA), and a structurally robust rotation assembly fabricated using fused deposition modeling (FDM). The mechanical rotation of the lens enables discrete beam-steering from −45° to +45° in 5° steps. Experimental results demonstrate a gain improvement from 6.21 dBi (standalone patch) to 10.47 dBi with the integrated lens, with minimal degradation across steering angles (down to 9.59 dBi). Simulations and measurements show strong agreement, with the complete system achieving 94% accuracy in beam direction. This work confirms the feasibility of integrating additive manufacturing with passive beam-steering structures to deliver a low-cost, scalable, and high-performance alternative to electronically scanned arrays. Moreover, the design is readily adaptable for motorized actuation and closed-loop control via embedded systems, enabling future development of real-time, programmable beam-steering platforms. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

16 pages, 1681 KB  
Article
Theoretical Study of a Pneumatic Device for Precise Application of Mineral Fertilizers by an Agro-Robot
by Tormi Lillerand, Olga Liivapuu, Yevhen Ihnatiev and Jüri Olt
AgriEngineering 2025, 7(10), 320; https://doi.org/10.3390/agriengineering7100320 - 1 Oct 2025
Viewed by 223
Abstract
This article presents the development of a new pneumatic device for the precise application of mineral fertilizers, designed for use in precision agriculture systems involving farming robots. The proposed device is mounted on an autonomous agricultural platform and utilizes a machine vision system [...] Read more.
This article presents the development of a new pneumatic device for the precise application of mineral fertilizers, designed for use in precision agriculture systems involving farming robots. The proposed device is mounted on an autonomous agricultural platform and utilizes a machine vision system to determine plant coordinates. Its operating principle is based on accumulating a single dose of fertilizer in a chamber and delivering it precisely to the plant’s root zone using a directed airflow. The study includes a theoretical investigation of fertilizer movement inside the applicator tube under the influence of airflow and rotational motion of the tube. A mathematical model has been developed to describe both the relative and translational motion of the fertilizer. The equations, which account for frictional forces, inertia, and air pressure, enable the determination of optimal structural and kinematic parameters of the device depending on operating conditions and the properties of the applied material. The use of numerical methods to solve the developed mathematical model allows for synchronization of the device’s operating time parameters with the movement of the agricultural robot along the crop rows. The obtained results and the developed device improve the accuracy and speed of fertilizer application, minimize fertilizer consumption, and reduce soil impact, making the proposed device a promising solution for precision agriculture. Full article
(This article belongs to the Section Agricultural Mechanization and Machinery)
Show Figures

Figure 1

16 pages, 619 KB  
Systematic Review
Risk Factors and Prevention of Musculoskeletal Injuries in Adolescent and Adult High-Performance Tennis Players: A Systematic Review
by María Soledad Amor-Salamanca, Eva María Rodríguez-González, Domingo Rosselló, María de Lluc-Bauza, Francisco Hermosilla-Perona, Adrián Martín-Castellanos and Ivan Herrera-Peco
Sports 2025, 13(10), 336; https://doi.org/10.3390/sports13100336 - 1 Oct 2025
Viewed by 470
Abstract
Background: High-performance tennis exposes players to repetitive high-load strokes and abrupt directional changes, which substantially increase musculoskeletal injury risk. This systematic review synthesized evidence on epidemiology, risk factors, and physiotherapy-led preventive strategies in elite adolescent and adult players. Methods: Following a PROSPERO-registered protocol, [...] Read more.
Background: High-performance tennis exposes players to repetitive high-load strokes and abrupt directional changes, which substantially increase musculoskeletal injury risk. This systematic review synthesized evidence on epidemiology, risk factors, and physiotherapy-led preventive strategies in elite adolescent and adult players. Methods: Following a PROSPERO-registered protocol, MEDLINE, Web of Science, and Scopus were searched (2011–2024) for observational studies reporting epidemiological outcomes in high-performance tennis. Methodological quality was appraised with NIH tools, and certainty of evidence was graded with GRADE. Results: Thirty-seven studies met inclusion criteria: 16 in adolescents, 18 in adults, and 3 mixed. Incidence ranged from 2.1 to 3.5 injuries/1000 h in juniors and 1.25 to 56.6/1000 h in adults. Seasonal prevalence was 46–54% in juniors and 30–54% in professionals. Lower-limb trauma (48–56%) predominated, followed by lumbar (12–39%) and shoulder overuse syndromes. Across age groups, abrupt increases in the acute-to-chronic workload ratio (≥1.3 in juniors; ≥1.5 in adults) were the strongest extrinsic predictor of injury. Intrinsic contributors included reduced glenohumeral internal rotation, scapular dyskinesis, and poor core stability. Three prevention clusters emerged: (1) External load control, four-week “ramp-up” strategies reduced injury incidence by up to 21%; (2) Kinetic-chain conditioning, core stability plus eccentric rotator-cuff training decreased overuse by 26% and preserved shoulder mobility; and (3) Technique/equipment adjustments, grip-size personalization halved lateral epicondylalgia, while serve-timing modifications reduced shoulder torque. Conclusions: Injury risk in high-performance tennis is quantifiable and preventable. Progressive load management targeted kinetic-chain conditioning, and tailored technique/equipment modifications represent the most effective evidence-based safeguards for adolescent and adult elite players. Full article
Show Figures

Figure 1

19 pages, 7270 KB  
Article
A Fast Rotation Detection Network with Parallel Interleaved Convolutional Kernels
by Leilei Deng, Lifeng Sun and Hua Li
Symmetry 2025, 17(10), 1621; https://doi.org/10.3390/sym17101621 - 1 Oct 2025
Viewed by 184
Abstract
In recent years, convolutional neural network-based object detectors have achieved extensive applications in remote sensing (RS) image interpretation. While multi-scale feature modeling optimization remains a persistent research focus, existing methods frequently overlook the symmetrical balance between feature granularity and morphological diversity, particularly when [...] Read more.
In recent years, convolutional neural network-based object detectors have achieved extensive applications in remote sensing (RS) image interpretation. While multi-scale feature modeling optimization remains a persistent research focus, existing methods frequently overlook the symmetrical balance between feature granularity and morphological diversity, particularly when handling high-aspect-ratio RS targets with anisotropic geometries. This oversight leads to suboptimal feature representations characterized by spatial sparsity and directional bias. To address this challenge, we propose the Parallel Interleaved Convolutional Kernel Network (PICK-Net), a rotation-aware detection framework that embodies symmetry principles through dual-path feature modulation and geometrically balanced operator design. The core innovation lies in the synergistic integration of cascaded dynamic sparse sampling and symmetrically decoupled feature modulation, enabling adaptive morphological modeling of RS targets. Specifically, the Parallel Interleaved Convolution (PIC) module establishes symmetric computation patterns through mirrored kernel arrangements, effectively reducing computational redundancy while preserving directional completeness through rotational symmetry-enhanced receptive field optimization. Complementing this, the Global Complementary Attention Mechanism (GCAM) introduces bidirectional symmetry in feature recalibration, decoupling channel-wise and spatial-wise adaptations through orthogonal attention pathways that maintain equilibrium in gradient propagation. Extensive experiments on RSOD and NWPU-VHR-10 datasets demonstrate our superior performance, achieving 92.2% and 84.90% mAP, respectively, outperforming state-of-the-art methods including EfficientNet and YOLOv8. With only 12.5 M parameters, the framework achieves symmetrical optimization of accuracy-efficiency trade-offs. Ablation studies confirm that the symmetric interaction between PIC and GCAM enhances detection performance by 2.75%, particularly excelling in scenarios requiring geometric symmetry preservation, such as dense target clusters and extreme scale variations. Cross-domain validation on agricultural pest datasets further verifies its rotational symmetry generalization capability, demonstrating 84.90% accuracy in fine-grained orientation-sensitive detection tasks. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

13 pages, 542 KB  
Article
Biomechanical Profile of Portuguese High-Level Female Handball Players
by Manoel Rios, Ricardo J. Fernandes, Ricardo Cardoso, Pedro Fonseca, João Paulo Vilas-Boas and José António Silva
Biomechanics 2025, 5(4), 74; https://doi.org/10.3390/biomechanics5040074 - 1 Oct 2025
Viewed by 473
Abstract
Background/Objectives: This study aimed to investigate the anthropometric characteristics, motor performance, and isokinetic strength profiles of elite Portuguese female handball players, as well as to examine the relationships among these variables. Methods: Sixteen national-team female handball players with an average age of 20.25 [...] Read more.
Background/Objectives: This study aimed to investigate the anthropometric characteristics, motor performance, and isokinetic strength profiles of elite Portuguese female handball players, as well as to examine the relationships among these variables. Methods: Sixteen national-team female handball players with an average age of 20.25 ± 0.45 years, height of 171.13 ± 8.13 cm and body mass of 72.24 ± 10.96 kg volunteered. Evaluations were conducted in two sessions within one week (24–48 h apart). The first comprised anthropometric and motor performance tests, while the second focused on isokinetic strength assessments of the upper and lower limbs. Pearson correlations assessed variable associations (p < 0.05). Results: Direct correlations were found between height and arm span (r = 0.910) and between internal rotation total work and internal rotation average power (r = 0.960). The 9 m jump throw was associated with the 7 m standing throw (r = 0.670). External rotation peak torque correlated with squat jump performance (r = 0.540) and the 7 m standing throw (r = 0.760) and 9 m jump throw (r = 0.568). Internal rotation peak torque associated with squat jump performance (r = 0.674) and the 7 m standing throw (r = 0.550). Knee extension peak torque correlated with squat jump performance (r = 0.650), while knee extension total work was strongly associated with external rotation total work (r = 0.870). Knee flexion total work was associated with knee flexion peak torque (r = 0.910). Conclusions: The integrated analysis of anthropometric, motor and isokinetic variables revealed distinct strength–performance associations in female handball players, highlighting the role of upper- and lower-limb muscle function in jumping and throwing. Full article
(This article belongs to the Special Issue Biomechanics in Sport, Exercise and Performance)
Show Figures

Figure 1

26 pages, 4900 KB  
Article
Design and Experiment of Bare Seedling Planting Mechanism Based on EDEM-ADAMS Coupling
by Huaye Zhang, Xianliang Wang, Hui Li, Yupeng Shi and Xiangcai Zhang
Agriculture 2025, 15(19), 2063; https://doi.org/10.3390/agriculture15192063 - 30 Sep 2025
Viewed by 220
Abstract
In traditional scallion cultivation, the bare-root transplanting method—which involves direct seeding, seedling raising in the field, and lifting—is commonly adopted to minimize seedling production costs. However, during the mechanized transplanting of bare-root scallion seedlings, practical problems such as severe seedling damage and poor [...] Read more.
In traditional scallion cultivation, the bare-root transplanting method—which involves direct seeding, seedling raising in the field, and lifting—is commonly adopted to minimize seedling production costs. However, during the mechanized transplanting of bare-root scallion seedlings, practical problems such as severe seedling damage and poor planting uprightness exist. In this paper, the Hertz–Mindlin with Bonding contact model was used to establish the scallion seedling model. Combined with the Plackett–Burman experiment, steepest ascent experiment, and Box–Behnken experiment, the bonding parameters of scallion seedlings were calibrated. Furthermore, the accuracy of the scallion seedling model parameters was verified through the stress–strain characteristics observed during the actual loading and compression process of the scallion seedlings. The results indicate that the scallion seedling normal/tangential contact stiffness, scallion seedling normal/tangential ultimate stress, and scallion Poisson’s ratio significantly influence the mechanical properties of scallion seedlings. Through optimization experiments, the optimal combination of the above parameters was determined to be 4.84 × 109 N/m, 5.64 × 107 Pa, and 0.38. In this paper, the flexible planting components of scallion seedlings were taken as the research object. Flexible protrusions were added to the planting disc to reduce the damage rate of scallion seedlings, and an EDEM-ADAMS coupling interaction model between the planting components and scallion seedlings was established. Based on this model, optimization and verification were carried out on the key components of the planting components. Orthogonal experiments were conducted with the contact area between scallion seedlings and the disc, rotational speed of the flexible disc, furrow depth, and clamping force on scallion seedlings as experimental factors, and with the uprightness and damage status of scallion seedlings as evaluation criteria. The experimental results showed that when the contact area between scallion seedlings and the disc was 255 mm2, the angular velocity was 0.278 rad/s, and the furrow depth was 102.15 mm, the performance of the scallion planting mechanism was optimal. At this point, the uprightness of the scallion seedlings was 94.80% and the damage rate was 3%. Field experiments were carried out based on the above parameters. The results indicated that the average uprightness of transplanted scallion seedlings was 93.86% and the damage rate was 2.76%, with an error of less than 2% compared with the simulation prediction values. Therefore, the parameter model constructed in this paper is reliable and effective, and the designed and improved transplanting mechanism can realize the upright and low-damage planting of scallion seedlings, providing a reference for the low-damage and high-uprightness transplanting operation of scallions. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

27 pages, 7010 KB  
Article
Trailing-Edge Noise and Amplitude Modulation Under Yaw-Induced Partial Wake: A Curl–UVLM Analysis with Atmospheric Stability Effects
by Homin Kim, Taeseok Yuk, Kukhwan Yu and Soogab Lee
Energies 2025, 18(19), 5205; https://doi.org/10.3390/en18195205 - 30 Sep 2025
Viewed by 253
Abstract
This study examines the effects of partial wakes caused by upstream turbine yaw control on the trailing-edge noise of a downstream turbine under stable and neutral atmospheric conditions. Using a combined model coupling the unsteady vortex lattice method (UVLM) with the Curl wake [...] Read more.
This study examines the effects of partial wakes caused by upstream turbine yaw control on the trailing-edge noise of a downstream turbine under stable and neutral atmospheric conditions. Using a combined model coupling the unsteady vortex lattice method (UVLM) with the Curl wake model, calibrated with large eddy simulation data, wake behavior and noise characteristics were analyzed for yaw angles from −30° to +30°. Results show that partial wakes slightly raise overall noise levels and lateral asymmetry of trailing-edge noise, while amplitude modulation (AM) strength is more strongly influenced by yaw control. AM varies linearly with wake deflection at moderate yaw angles but behaves nonlinearly beyond a threshold due to large wake deflection and deformation. Findings reveal that yaw control can significantly increase the lateral asymmetry in the AM strength directivity pattern of the downstream turbine, and that AM characteristics depend on the complex interplay between inflow distribution and convective amplification effects, highlighting the importance of accurate wake prediction, along with appropriate consideration of observer point location and blade rotation, for evaluating AM characteristics of a wind turbine influenced by a partial wake. Full article
(This article belongs to the Special Issue Progress and Challenges in Wind Farm Optimization)
Show Figures

Figure 1

Back to TopTop