Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (922)

Search Parameters:
Keywords = rotating blades

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4153 KiB  
Article
Spherical Indentation Behavior of DD6 Single-Crystal Nickel-Based Superalloy via Crystal Plasticity Finite Element Simulation
by Xin Hao, Peng Zhang, Hao Xing, Mengchun You, Erqiang Liu, Xuegang Xing, Gesheng Xiao and Yongxi Tian
Materials 2025, 18(15), 3662; https://doi.org/10.3390/ma18153662 - 4 Aug 2025
Abstract
Nickel-based superalloys are widely utilized in critical hot-end components, such as aeroengine turbine blades, owing to their exceptional high-temperature strength, creep resistance, and oxidation resistance. During service, these components are frequently subjected to complex localized loading, leading to non-uniform plastic deformation and microstructure [...] Read more.
Nickel-based superalloys are widely utilized in critical hot-end components, such as aeroengine turbine blades, owing to their exceptional high-temperature strength, creep resistance, and oxidation resistance. During service, these components are frequently subjected to complex localized loading, leading to non-uniform plastic deformation and microstructure evolution within the material. Combining nanoindentation experiments with the crystal plasticity finite element method (CPFEM), this study systematically investigates the effects of loading rate and crystal orientation on the elastoplastic deformation of DD6 alloy under spherical indenter loading. The results indicate that the maximum indentation depth increases and hardness decreases with prolonged loading time, exhibiting a significant strain rate strengthening effect. The CPFEM model incorporating dislocation density effectively simulates the nonlinear characteristics of the nanoindentation process and elucidates the evolution of dislocation density and slip system strength with indentation depth. At low loading rates, both dislocation density and slip system strength increase with loading time. Significant differences in mechanical behavior are observed across different crystal orientations, which correspond to the extent of lattice rotation during texture evolution. For the [111] orientation, crystal rotation is concentrated and highly regular, while the [001] orientation shows uniform texture evolution. This demonstrates that anisotropy governs the deformation mechanism through differential slip system activation and texture evolution. Full article
(This article belongs to the Special Issue Nanoindentation in Materials: Fundamentals and Applications)
Show Figures

Figure 1

16 pages, 10446 KiB  
Article
Transient Vortex Dynamics in Tip Clearance Flow of a Novel Dishwasher Pump
by Chao Ning, Yalin Li, Haichao Sun, Yue Wang and Fan Meng
Machines 2025, 13(8), 681; https://doi.org/10.3390/machines13080681 - 2 Aug 2025
Viewed by 158
Abstract
Blade tip leakage vortex (TLV) is a critical phenomenon in hydraulic machinery, which can significantly affect the internal flow characteristics and deteriorate the hydraulic performance. In this paper, the blade tip leakage flow and TLV characteristics in a novel dishwasher pump were investigated. [...] Read more.
Blade tip leakage vortex (TLV) is a critical phenomenon in hydraulic machinery, which can significantly affect the internal flow characteristics and deteriorate the hydraulic performance. In this paper, the blade tip leakage flow and TLV characteristics in a novel dishwasher pump were investigated. The correlation between the vorticity distribution in various directions and the leakage vortices was established within a rotating coordinate system. The results show that the TLV in a composite impeller can be categorized into initial and secondary leakage vortices. The initial leakage vortex originates from the evolution of two corner vortices that initially form at different locations within the blade tip clearance. This vortex induces pressure fluctuations at the impeller inlet; its shedding is identified as the primary contributor to localized energy loss within the flow passage. These findings provide insights into TLVs in complex pump geometries and provide solutions for future pump optimization strategies. Full article
Show Figures

Figure 1

18 pages, 10032 KiB  
Article
Design and Efficiency Analysis of High Maneuvering Underwater Gliders for Kuroshio Observation
by Zhihao Tian, Bing He, Heng Zhang, Cunzhe Zhang, Tongrui Zhang and Runfeng Zhang
Oceans 2025, 6(3), 48; https://doi.org/10.3390/oceans6030048 - 1 Aug 2025
Viewed by 139
Abstract
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier [...] Read more.
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier in marine innovation. In recent years, the global research community has increased its efforts towards the development of high-maneuverability underwater vehicles. However, propeller design optimization ignores the key balance between acoustic performance and hydrodynamic efficiency, as well as the appropriate speed threshold for blade rotation. In order to solve this problem, the propeller design of the NACA 65A010 airfoil is optimized by using OpenProp v3.3.4 and XFlow 2022 software, aiming at innovating the propulsion system of shallow water agile submersibles. The study presents an integrated design framework combining lattice Boltzmann method (LBM) simulations synergized with fully Lagrangian-LES modeling, implementing rotational speed thresholds to detect cavitation inception, followed by advanced acoustic propagation analysis. Through rigorous comparative assessment of hydrodynamic metrics, we establish an optimization protocol for propeller selection tailored to littoral zone operational demands. Studies have shown that increasing the number of propeller blades can reduce the single-blade load and delay cavitation, but too many blades will aggravate the complexity of the flow field, resulting in reduced efficiency and noise rebound. It is concluded that the propeller with five blades, a diameter of 234 mm, and a speed of 500 RPM exhibits the best performance. Under these conditions, the water efficiency is 69.01%, and the noise is the lowest, which basically realizes the balance between hydrodynamic efficiency and acoustic performance. This paradigm-shifting research carries substantial implications for next-generation marine vehicles, particularly in optimizing operational stealth and energy efficiency through intelligent propulsion architecture. Full article
Show Figures

Figure 1

16 pages, 3366 KiB  
Article
Numerical Analysis of Microfluidic Motors Actuated by Reconfigurable Induced-Charge Electro-Osmotic Whirling Flow
by Jishun Shi, Zhipeng Song, Xiaoming Chen, Ziang Bai, Jialin Yu, Qihang Ye, Zipeng Yang, Jianru Qiao, Shuhua Ma and Kailiang Zhang
Micromachines 2025, 16(8), 895; https://doi.org/10.3390/mi16080895 (registering DOI) - 31 Jul 2025
Viewed by 172
Abstract
The detection of proteins plays a key role in disease diagnosis and drug development. For this, we numerically investigated a novel microfluidic motor actuated by an induced-charge electro-osmotic (ICEO) whirling flow. An alternating current–flow field effect transistor is engineered to modulate the profiles [...] Read more.
The detection of proteins plays a key role in disease diagnosis and drug development. For this, we numerically investigated a novel microfluidic motor actuated by an induced-charge electro-osmotic (ICEO) whirling flow. An alternating current–flow field effect transistor is engineered to modulate the profiles of ICEO streaming to stimulate and adjust the whirling flow in the circle microfluidic chamber. Based on this, we studied the distribution of an ICEO whirling flow in the detection chamber by tuning the fixed potential on the gate electrodes by the simulations. Then, we established a fluid–structure interaction model to explore the influence of blade structure parameters on the rotation performance of microfluidic motors. In addition, we investigated the rotation dependence of microfluidic motors on the potential drop between two driving electrodes and fixed potential on the gate electrodes. Next, we numerically explored the capability of these microfluidic motors for the detection of low-abundance proteins. Finally, we studied the regulating effect of potential drops between the driving electrodes on the detection performance of microfluidic motors by numerical simulations. Microfluidic motors actuated by an ICEO whirling flow hold good potential in environmental monitoring and disease diagnosis for the outstanding advantages of flexible controllability, a simple structure, and gentle work condition. Full article
(This article belongs to the Special Issue Recent Development of Micro/Nanofluidic Devices, 2nd Edition)
Show Figures

Figure 1

24 pages, 8445 KiB  
Article
DEM-Based Simulation Study on the Operational Performance of a Single Horizontal Shaft Forced-Action Mixer
by Haipeng Yang, Guanguo Ma and Wei Zhao
Buildings 2025, 15(15), 2627; https://doi.org/10.3390/buildings15152627 - 24 Jul 2025
Viewed by 293
Abstract
This study conducts a numerical simulation of the working performance of a single horizontal shaft forced mixer using the Discrete Element Method (DEM). It systematically investigates the effects of blade installation angle, feeding method, mixing speed, and coarse aggregate particle size on the [...] Read more.
This study conducts a numerical simulation of the working performance of a single horizontal shaft forced mixer using the Discrete Element Method (DEM). It systematically investigates the effects of blade installation angle, feeding method, mixing speed, and coarse aggregate particle size on the mixing uniformity. A 1:2 scale model was developed, incorporating Newton’s laws of motion and a soft-sphere contact model to simulate the particle trajectories and interactions during mixing. The results indicate that top–bottom feeding enhances mixing efficiency significantly by forming vertical convective circulation, achieving a mixing uniformity above 0.9. A moderate rotation speed of 30 rpm provides the best balance between energy consumption and mixing performance. As the coarse aggregate size increases (from 9 mm to 15 mm), the enhanced particle inertia leads to a decrease in mixing uniformity (from 0.9 to 0.6). Additionally, the discrepancy between simulation and experimental results is less than 0.1, validating the reliability of the model. This research offers theoretical guidance for the structural optimization and parameter selection of single-shaft mixers, contributing to improved mixing efficiency and concrete quality in engineering applications. Full article
Show Figures

Figure 1

18 pages, 8784 KiB  
Article
Some RANS Modeling Results of the UHBR Fan: The Case of ECL5/CATANA
by Lorenzo Pinelli, Maria Malcaus, Giovanni Giannini and Michele Marconcini
Int. J. Turbomach. Propuls. Power 2025, 10(3), 17; https://doi.org/10.3390/ijtpp10030017 - 23 Jul 2025
Viewed by 227
Abstract
With the advancement of modern fan architectures, dedicated experimental benchmarks are becoming fundamental to improving the knowledge of flow physics, validating novel CFD methods, and fine-tuning existing methods. In this context the open test case ECL5/CATANA, representative of a modern Ultra High Bypass [...] Read more.
With the advancement of modern fan architectures, dedicated experimental benchmarks are becoming fundamental to improving the knowledge of flow physics, validating novel CFD methods, and fine-tuning existing methods. In this context the open test case ECL5/CATANA, representative of a modern Ultra High Bypass Ratio (UHBR) architecture, has been designed and experimentally investigated at École Centrale de Lyon (ECL) in a novel test facility with multi-physical instrumentation, providing a large database of high-quality aerodynamic and aeromechanic measurements. In this paper, a thorough numerical study of the fan stage aerodynamics was performed using the CFD TRAF code developed at the University of Florence. Fan stage performance was studied at design speed over the entire operating range. The results were discussed and compared with datasets provided by ECL. Detailed sensitivity on numerical schemes and state-of-the-art turbulence/transition models allowed for the selection of the best numerical setup to perform UHBR fan simulations. Moreover, to have a deeper understanding of the fan stall margin, unsteady simulations were also carried out. The results showed the appearance of blade tip instability, precursor of a rotating stall condition, which may generate non-synchronous blade vibrations. Full article
Show Figures

Figure 1

26 pages, 6409 KiB  
Article
Experimental and Numerical Investigation of Cavitation-Induced Pressure Fluctuation Characteristics in the Blade-Tip Region of an Axial Flow Pump
by Haoran Wu, Xi Shen, Chen Ni and Gang Yang
J. Mar. Sci. Eng. 2025, 13(8), 1391; https://doi.org/10.3390/jmse13081391 - 22 Jul 2025
Viewed by 176
Abstract
This paper investigates the pressure fluctuation characteristics induced by cavitation in the blade-tip region of an axial flow pump through experimental and numerical methods. Compared with previous studies, this research not only analyzes the development of cavitation bubbles under varying flow rates but [...] Read more.
This paper investigates the pressure fluctuation characteristics induced by cavitation in the blade-tip region of an axial flow pump through experimental and numerical methods. Compared with previous studies, this research not only analyzes the development of cavitation bubbles under varying flow rates but also explores the transient pressure fluctuation features caused by cavitation. It is found that partial-loading conditions tend to exacerbate cavitation, leading to more pronounced transient flow characteristics. The primary frequency of pressure fluctuations consistently corresponds to the impeller’s rotational frequency and its harmonics, with the magnitude inversely related to flow rate. At the same cavitation stage, lower flow rates exhibit larger amplitudes and more significant fluctuations in high-frequency components. This indicates stronger entrainment disturbance between the cavitation morphology and the mainstream in the blade-tip region at lower flow rates, resulting in more complex flow structures. This study provides a theoretical basis for understanding the mechanisms of pressure fluctuations induced by cavitation in the blade-tip region of axial flow pumps. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

28 pages, 5015 KiB  
Article
Design and Experiment of a Vertical Cotton Stalk Crushing and Returning Machine with Large and Small Dual-Blade Discs
by Xiaohu Guo, Bin Li, Yang Liu, Shiguo Wang, Zhong Tang, Yuncheng Dong and Xiangxin Liu
Agriculture 2025, 15(15), 1572; https://doi.org/10.3390/agriculture15151572 - 22 Jul 2025
Viewed by 300
Abstract
To address the problems of low crushing efficiency and uneven distribution in traditional straw crushing and returning machines for cotton stalk return operations in Xinjiang, a vertical straw crushing and returning machine with large and small dual-blade discs was designed, adapted to Xinjiang’s [...] Read more.
To address the problems of low crushing efficiency and uneven distribution in traditional straw crushing and returning machines for cotton stalk return operations in Xinjiang, a vertical straw crushing and returning machine with large and small dual-blade discs was designed, adapted to Xinjiang’s cotton planting model. The machine employs a differentiated configuration of large and small blade discs corresponding to four and two rows of cotton stalks, respectively, effectively reducing tool workload while significantly improving operational efficiency. A simulation model of the crushing and returning machine was developed using the discrete element method (DEM), and a flexible cotton stalk model was established to systematically investigate the effects of machine forward speed, crushing blade rotational speed, and knife tip-to-ground clearance on operational performance. Single-factor simulation experiments were conducted using crushing qualification rate and broken stalk drop rate as evaluation indicators. Subsequently, a multi-factor orthogonal field experiment was designed with Design-Expert software (13.0.1.0, Stat-Ease Inc, Minneapolis, MN, USA). The optimal working parameters were determined to be machine forward speed of 3.5 m/s, crushing blade shaft speed of 1500 r/min, and blade tip ground clearance of 60 mm. Verification tests demonstrated that under these optimal parameters, the straw crushing qualification rate reached 95.9% with a broken stalk drop rate of 15.5%. The relative errors were less than 5% compared to theoretical optimization values, confirming the reliability of parameter optimization. This study provides valuable references for the design optimization and engineering application of straw return machinery. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

19 pages, 4851 KiB  
Article
Natural Frequency of Monopile Supported Offshore Wind Turbine Structures Under Long-Term Cyclic Loading
by Rong Chen, Haitao Yang, Yilong Sun, Jinglong Zou, Boyan Sun and Jialin Xu
Appl. Sci. 2025, 15(15), 8143; https://doi.org/10.3390/app15158143 - 22 Jul 2025
Viewed by 273
Abstract
Offshore wind turbine structures (OWTs) commonly use monopile foundations for support, and long-term exposure to wind–wave cyclic loads may induce changes in foundation stiffness. Variations in foundation stiffness can significantly alter the inherent vibration characteristics of OWTs, potentially leading to amplified vibrations or [...] Read more.
Offshore wind turbine structures (OWTs) commonly use monopile foundations for support, and long-term exposure to wind–wave cyclic loads may induce changes in foundation stiffness. Variations in foundation stiffness can significantly alter the inherent vibration characteristics of OWTs, potentially leading to amplified vibrations or resonant conditions. In this study, a numerical model considering soil–pile interaction was developed on the FLAC3D platform to analyze the natural frequency of OWTs under long-term cyclic loading. The study first validated the numerical model’s effectiveness through comparison with measured data; a degradation stiffness model (DSM) was then embedded to assess how prolonged cyclic loading affects the degradation of foundation stiffness. A series of parametric studies were conducted in medium-dense and dense sand layers to investigate natural frequency alterations induced by prolonged cyclic loading. Finally, a simplified method for evaluating long-term natural frequency changes was established, and a 3.6 MW offshore wind turbine case was used to reveal the evolution characteristics of its natural frequency under long-term cyclic loads. The data reveal that the natural frequency of the structure undergoes a downward tendency as cyclic loading and frequency increase. To ensure long-term safe operation, the designed natural frequency should preferably shift toward 3P (where P is the blade rotation frequency). Full article
Show Figures

Figure 1

21 pages, 8976 KiB  
Article
Design and Parameter Optimization of Drum Pick-Up Machine Based on Archimedean Curve
by Caichao Liu, Feng Wu, Fengwei Gu, Man Gu, Jingzhan Ni, Weiweng Luo, Jiayong Pei, Mingzhu Cao and Bing Wang
Agriculture 2025, 15(14), 1551; https://doi.org/10.3390/agriculture15141551 - 19 Jul 2025
Viewed by 239
Abstract
Stones in farmland soil affect the efficiency of agricultural mechanization and the efficient growth of crops. In order to solve the problems of traditional stone pickers, such as large soil disturbance, high soil content and low picking rate, this paper introduces the Archimedean [...] Read more.
Stones in farmland soil affect the efficiency of agricultural mechanization and the efficient growth of crops. In order to solve the problems of traditional stone pickers, such as large soil disturbance, high soil content and low picking rate, this paper introduces the Archimedean curve with constant radial expansion characteristics into the design of the core working parts of the drum picker and designs a new type of drum stone picker. The key components such as spiral blades, rollers, and scrapers were theoretically analyzed, the structural parameters of the main components were determined, and the reliability of the spiral blades was checked using ANSYS Workbench software. Through the preliminary stone-picking performance test, the forward speed of the stone picker, the rotation speed of the drum, and the starting sliding angle of the spiral blade were determined as the test influencing factors. The picking rate and soil content of the stone picker were determined as the test indicators. The response surface test was carried out in the Design-Expert13.0 software. The results show that, when the forward speed of the stone picker is 0.726 m/s, the drum speed is 30 rpm, and the initial sliding angle of the spiral blade is 26.214°, the picking rate is 91.458% and the soil content is 3.513%. Field tests were carried out with the same parameters, and the picking rate was 91.42% and the soil content was 3.567%, with errors of 0.038% and 0.054% compared with the predicted values, indicating that the stone picker meets the field operation requirements. These research results can provide new ideas and technical paths for improving the performance of pickers and are of great value in promoting the development of advanced harvesting equipment and the efficient use of agricultural resources. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

18 pages, 3307 KiB  
Article
Temperature-Related Containment Analysis and Optimal Design of Aluminum Honeycomb Sandwich Aero-Engine Casings
by Shuyi Yang, Ningke Tong and Jianhua Zuo
Coatings 2025, 15(7), 834; https://doi.org/10.3390/coatings15070834 - 17 Jul 2025
Viewed by 278
Abstract
Aero-engine casings with excellent impact resistance are a practical requirement for ensuring the safe operation of aero-engines. In this paper, we report on numerical simulations of broken rotating blades impacting aluminum honeycomb sandwich casings under different temperatures and optimization of structural parameters. Firstly, [...] Read more.
Aero-engine casings with excellent impact resistance are a practical requirement for ensuring the safe operation of aero-engines. In this paper, we report on numerical simulations of broken rotating blades impacting aluminum honeycomb sandwich casings under different temperatures and optimization of structural parameters. Firstly, an impact test system with adjustable temperature was established. Restricted by the temperature range of the strain gauge, ballistic impact tests were carried out at 25 °C, 100 °C, and 200 °C. Secondly, a finite element (FE) model including a pointed bullet and an aluminum honeycomb sandwich plate was built using LS-DYNA. The corresponding simulations of the strain–time curve and damage conditions showed good agreement with the test results. Then, the containment capability of the aluminum honeycomb sandwich aero-engine casing at different temperatures was analyzed based on the kinetic energy loss of the blade, the internal energy increment of the casing, and the containment state of the blade. Finally, with the design objectives of minimizing the casing mass and maximizing the blade kinetic energy loss, the structural parameters of the casing were optimized using the multi-objective genetic algorithm (MOGA). Full article
Show Figures

Figure 1

22 pages, 10008 KiB  
Article
Design and Testing of a Device to Investigate Dynamic Performance of Aero-Engine Rotor–Stator Rubbing Dynamics
by Qinqin Mu, Qun Yan, Peng Sun, Yonghui Chen, Jiaqi Chang and Shiyu Huo
Eng 2025, 6(7), 162; https://doi.org/10.3390/eng6070162 - 17 Jul 2025
Viewed by 207
Abstract
To analyze the wear performance induced by rotor–stator rubbing in an aero-engine sealing structure under authentic operating conditions, a transonic rotor system with double bearing is constructed. This system incorporates the disk, shaft, blades, joint bolts, and auxiliary support structure. The system was [...] Read more.
To analyze the wear performance induced by rotor–stator rubbing in an aero-engine sealing structure under authentic operating conditions, a transonic rotor system with double bearing is constructed. This system incorporates the disk, shaft, blades, joint bolts, and auxiliary support structure. The system was evaluated in terms of its critical speed, vibration characteristics, component strength under operational conditions, and response characteristics in abnormal extreme scenarios. A ball screw-type feeding system is employed to achieve precise rotor–stator rubbing during rotation by controlling the coating feed. Additionally, a quartz lamp heating system is used to apply thermal loads to coating specimens, and the appropriate heat insulation and cooling measures are implemented. Furthermore, a high-frequency rubbing force test platform is developed to capture the key characteristics caused by rubbing. The test rig can conduct response tests of the system with rotor–stator rubbing and abrasion tests with tip speeds reaching 425 m/s, feed rates ranging from 2 to 2000 μm/s, and heating temperatures up to 1200 °C. Test debugging has confirmed these specifications and successfully executed rubbing tests, which demonstrate stability throughout the process and provide reliable rubbing force test results. This designed test rig and analysis methodology offers valuable insights for developing high-speed rotating machinery. Full article
Show Figures

Figure 1

18 pages, 1709 KiB  
Article
Fluid and Dynamic Analysis of Space–Time Symmetry in the Galloping Phenomenon
by Jéssica Luana da Silva Santos, Andreia Aoyagui Nascimento and Adailton Silva Borges
Symmetry 2025, 17(7), 1142; https://doi.org/10.3390/sym17071142 - 17 Jul 2025
Viewed by 299
Abstract
Energy generation from renewable sources has increased exponentially worldwide, particularly wind energy, which is converted into electricity through wind turbines. The growing demand for renewable energy has driven the development of horizontal-axis wind turbines with larger dimensions, as the energy captured is proportional [...] Read more.
Energy generation from renewable sources has increased exponentially worldwide, particularly wind energy, which is converted into electricity through wind turbines. The growing demand for renewable energy has driven the development of horizontal-axis wind turbines with larger dimensions, as the energy captured is proportional to the area swept by the rotor blades. In this context, the dynamic loads typically observed in wind turbine towers include vibrations caused by rotating blades at the top of the tower, wind pressure, and earthquakes (less common). In offshore wind farms, wind turbine towers are also subjected to dynamic loads from waves and ocean currents. Vortex-induced vibration can be an undesirable phenomenon, as it may lead to significant adverse effects on wind turbine structures. This study presents a two-dimensional transient model for a rigid body anchored by a torsional spring subjected to a constant velocity flow. We applied a coupling of the Fourier pseudospectral method (FPM) and immersed boundary method (IBM), referred to in this study as IMERSPEC, for a two-dimensional, incompressible, and isothermal flow with constant properties—the FPM to solve the Navier–Stokes equations, and IBM to represent the geometries. Computational simulations, solved at an aspect ratio of ϕ=4.0, were analyzed, considering Reynolds numbers ranging from Re=150 to Re = 1000 when the cylinder is stationary, and Re=250 when the cylinder is in motion. In addition to evaluating vortex shedding and Strouhal number, the study focuses on the characterization of space–time symmetry during the galloping response. The results show a spatial symmetry breaking in the flow patterns, while the oscillatory motion of the rigid body preserves temporal symmetry. The numerical accuracy suggested that the IMERSPEC methodology can effectively solve complex problems. Moreover, the proposed IMERSPEC approach demonstrates notable advantages over conventional techniques, particularly in terms of spectral accuracy, low numerical diffusion, and ease of implementation for moving boundaries. These features make the model especially efficient and suitable for capturing intricate fluid–structure interactions, offering a promising tool for analyzing wind turbine dynamics and other similar systems. Full article
Show Figures

Figure 1

17 pages, 4357 KiB  
Article
Rotational Bending Fatigue Crack Initiation and Early Extension Behavior of Runner Blade Steels in Air and Water Environments
by Bing Xue, Yongbo Li, Wanshuang Yi, Wen Li and Jiangfeng Dong
Metals 2025, 15(7), 783; https://doi.org/10.3390/met15070783 - 11 Jul 2025
Viewed by 297
Abstract
This study provides a comprehensive analysis of the fatigue cracking behavior of super martensitic stainless steel in air and water environments, highlighting the critical influence of environmental factors on its mechanical properties. By examining the distribution of fatigue test data, the Weibull three-parameter [...] Read more.
This study provides a comprehensive analysis of the fatigue cracking behavior of super martensitic stainless steel in air and water environments, highlighting the critical influence of environmental factors on its mechanical properties. By examining the distribution of fatigue test data, the Weibull three-parameter model was identified as the most accurate descriptor of fatigue life data in both environments. Key findings reveal that, in air, cracks predominantly propagate along the densest crystallographic planes, whereas, in water, corrosive media significantly accelerate crack initiation and propagation, reducing fatigue resistance, creating more tortuous crack paths, and inducing microvoids and secondary cracks at the crack tip. These corrosive effects adversely alter the material’s microstructure, profoundly impacting fatigue life and crack propagation rates. The insights gained from this research are crucial for understanding the performance of super martensitic stainless steel in aqueous environments, offering a reliable basis for its engineering applications and contributing to the development of more effective design and maintenance strategies. Full article
(This article belongs to the Special Issue Microstructure, Deformation and Fatigue Behavior in Metals and Alloys)
Show Figures

Figure 1

17 pages, 3534 KiB  
Article
Lift–Thrust Integrated Ducted-Grid Fusion Configuration Design for a Ducted Fan Tail-Sitter UAV
by Lei Liu and Baigang Mi
Appl. Sci. 2025, 15(14), 7687; https://doi.org/10.3390/app15147687 - 9 Jul 2025
Viewed by 244
Abstract
A new lift enhancement scheme is designed for the cruise flight process of a tail-sitter UAV (Unmanned Aerial Vehicle), proposing a fusion configuration with embedded grid channels on the duct wall. The low pressure zone at the lip of the duct is induced [...] Read more.
A new lift enhancement scheme is designed for the cruise flight process of a tail-sitter UAV (Unmanned Aerial Vehicle), proposing a fusion configuration with embedded grid channels on the duct wall. The low pressure zone at the lip of the duct is induced to expand through the grid channels, forming a significant force component difference with the non-grid side, thereby generating significant lift effects for the propeller of the ducted fan during level flight. Taking a ducted fan system as an example, a design method for embedding grids into the ducted wall is established. By using the sliding mesh technique to simulate propeller rotation, the effects of annular distribution angle, grid channel width, circumferential and flow direction grid quantity on its aerodynamic performance are evaluated. The results indicate that the ducted fan embedded in the grid can generate a lift about 22.16% of total thrust without significantly affecting thrust and power characteristics. The increase in circumferential distribution angle increases within a reasonable range and benefits the lift of the propeller. However, the larger the grid width, the more it affects the lip and tail of the duct. Ultimately, the overall effect actually deteriorates the performance. The number of circumferential grids has a relatively small impact. As the number of flow grids increases, the aerodynamic characteristics of the entire fusion configuration significantly improves, due to its favorable induction of airflow at the lip and tail of the duct, as well as blocking the dissipation of blade-tip vortices. Full article
(This article belongs to the Special Issue Multidisciplinary Collaborative Design of Aircraft)
Show Figures

Figure 1

Back to TopTop