Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (763)

Search Parameters:
Keywords = rotating beam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1082 KiB  
Article
Fractal Modeling of Nonlinear Flexural Wave Propagation in Functionally Graded Beams: Solitary Wave Solutions and Fractal Dimensional Modulation Effects
by Kai Fan, Zhongqing Ma, Cunlong Zhou, Jiankang Liu and Huaying Li
Fractal Fract. 2025, 9(9), 553; https://doi.org/10.3390/fractalfract9090553 - 22 Aug 2025
Abstract
In this study, a new nonlinear dynamic model was established for functionally graded material (FGM) beams with layered/porous fractal microstructures, aiming to reveal the cross-scale propagation mechanism of flexural waves under large deflection conditions. The characteristics of layered/porous microstructures were equivalently mapped to [...] Read more.
In this study, a new nonlinear dynamic model was established for functionally graded material (FGM) beams with layered/porous fractal microstructures, aiming to reveal the cross-scale propagation mechanism of flexural waves under large deflection conditions. The characteristics of layered/porous microstructures were equivalently mapped to the fractal dimension index. In the framework of the fractal derivative, a fractal nonlinear wave governing equation integrating geometric nonlinear effects and microstructure characteristics was derived, and the coupling effect of finite deformation and fractal characteristics was clarified. Four groups of deflection gradient traveling wave analytical solutions were obtained by solving the equation through the extended minimal (G′/G) expansion method. Compared with the traditional (G′/G) expansion method, the new method, which is concise and expands the solution space, generates additional csch2 soliton solutions and csc2 singular-wave solutions. Numerical simulations showed that the spatiotemporal fractal dimension can dynamically modulate the amplitude attenuation, waveform steepness, and phase rotation characteristics of kink solitary waves in beams. At the same time, it was found that the decrease in the spatial fractal dimension will make the deflection curve of the beam more gentle, revealing that the fractal characteristics of the microstructure have an active control effect on the geometric nonlinearity. This model provides theoretical support for the prediction and regulation of the wave behavior of fractal microstructure FGM components, and has application potential in acoustic metamaterial design and engineering vibration control. Full article
Show Figures

Figure 1

22 pages, 9340 KiB  
Article
The Effect of Defect Size and Location in Roller Bearing Fault Detection: Experimental Insights for Vibration-Based Diagnosis
by Haobin Wen, Khalid Almutairi, Jyoti K. Sinha and Long Zhang
Sensors 2025, 25(16), 4917; https://doi.org/10.3390/s25164917 - 9 Aug 2025
Viewed by 243
Abstract
In rotating machines, any faults in anti-friction bearings occurring during operation can lead to failures that are unacceptable due to considerable downtime losses and maintenance costs. Hence, early fault detection is essential, and different vibration-based methods (VBMs) are explored to recognise incipient fault [...] Read more.
In rotating machines, any faults in anti-friction bearings occurring during operation can lead to failures that are unacceptable due to considerable downtime losses and maintenance costs. Hence, early fault detection is essential, and different vibration-based methods (VBMs) are explored to recognise incipient fault signatures. Based on rotordynamics, if a bearing defect causes metal-to-metal (MtM) impacts during shaft rotation, the impacts excite high-frequency resonance responses of the bearing assembly. The defect-related frequencies are modulated with the resonance responses and rely on signal demodulation for fault detection. However, the current study highlights that the bearing fault/faults may not be detected if the defect in a bearing is not causing MtM impacts nor exciting the high-frequency resonance of the bearing assembly. In a roller bearing, a localised defect may maintain persistent contact between rolling elements and raceways, thereby preventing the occurrence of impulse vibration responses. Due to contact persistence, such defects may not generate impact and may not be detected by existing VBMs, and the bearing could behave as healthy. This paper investigates such specific cases by exploring the relationship between roller-bearing defect characteristics and their potential to generate impact loads during operation. Using an experimental bearing rig, different roller and inner-race defects are presented while their fault characteristic frequencies remain undetected by the envelope analysis, fast Kurtogram, cyclic spectral coherence, and tensor decomposition methods. This study highlights the significance of both the dimension and location of defects within bearings on their detectability based on the rotordynamics concept. Further, simple roller-beam experiments are carried out to visualise and validate the reliability of the experimental observations made on the roller bearing dynamics. Full article
(This article belongs to the Special Issue Electronics and Sensors for Structure Health Monitoring)
Show Figures

Figure 1

23 pages, 7920 KiB  
Article
Dynamic Behavior of a Rotationally Restrained Pipe Conveying Gas-Liquid Two-Phase Flow
by Guangming Fu, Huilin Jiao, Aixia Zhang, Xiao Wang, Boying Wang, Baojiang Sun and Jian Su
J. Mar. Sci. Eng. 2025, 13(8), 1524; https://doi.org/10.3390/jmse13081524 - 8 Aug 2025
Viewed by 198
Abstract
This study explores the dynamic behavior of a vertical pipe conveying gas-liquid two-phase flow with rotationally restrained boundaries, employing the generalized integral transform technique (GITT). The rotationally restrained boundary conditions are more realistic for practical engineering applications in comparison to the classical simply-supported [...] Read more.
This study explores the dynamic behavior of a vertical pipe conveying gas-liquid two-phase flow with rotationally restrained boundaries, employing the generalized integral transform technique (GITT). The rotationally restrained boundary conditions are more realistic for practical engineering applications in comparison to the classical simply-supported and clamped boundary conditions, which can be viewed as limiting scenarios of the rotationally restrained boundary conditions when rotational stiffness approaches zero and infinity, respectively. Utilizing the small-deflection Euler-Bernoulli beam theory, the governing equation of motion for the deflection of the pipe is transformed into an infinite set of coupled ordinary differential equations, which is then numerically solved following truncation at a finite order NW. The proposed integral transform solution was initially validated against extant literature results. Numerical findings demonstrate that as the gas volume fraction increases, there is a reduction in both the first-order critical flow velocity and the vibration frequency of the pipe conveying two-phase flow. Conversely, as the rotational stiffness factor enhances, both the first-order critical velocity and vibration frequency increase, resulting in improved stability of the pipe. The impact of the bottom-end rotational stiffness factor r2 on the dynamic stability of the pipe is more pronounced compared to the top-end rotational factor r1. The variation in two-phase flow parameters is closely associated with the damping and stiffness matrices. Modifying the gas volume fraction in the two-phase flow alters the distribution of centrifugal and Coriolis forces within the pipeline system, thereby affecting the pipeline’s natural frequency. The results illustrate that an increase in the gas volume fraction leads to a decrease in both the pipeline’s critical velocity and vibration frequency, culminating in reduced stability. The findings suggest that both the gas volume fraction and boundary rotational stiffness exert a significant influence on the dynamic behavior and stability of the pipe conveying gas-liquid two-phase flow. Full article
Show Figures

Figure 1

22 pages, 19937 KiB  
Article
Development and Evaluation of a Two-Dimensional Extension/Contraction-Driven Rover for Sideslip Suppression During Slope Traversal
by Kenta Sagara, Daisuke Fujiwara and Kojiro Iizuka
Aerospace 2025, 12(8), 699; https://doi.org/10.3390/aerospace12080699 - 6 Aug 2025
Viewed by 251
Abstract
Wheeled rovers are widely used in lunar and planetary exploration missions owing to their mechanical simplicity and energy efficiency. However, they face serious mobility challenges on sloped soft terrain, especially in terms of sideslip and loss of attitude angle when traversing across slopes. [...] Read more.
Wheeled rovers are widely used in lunar and planetary exploration missions owing to their mechanical simplicity and energy efficiency. However, they face serious mobility challenges on sloped soft terrain, especially in terms of sideslip and loss of attitude angle when traversing across slopes. Previous research proposed using wheelbase extension/contraction and intentionally sinking wheels into the ground, thereby increasing shear resistance and reducing sideslip. Building upon this concept, this study proposes a novel recovery method that integrates beam extension/contraction and Archimedean screw-shaped wheels to enable lateral movement without rotating the rover body. The beam mechanism allows for independent wheel movement, maintaining stability by anchoring stationary wheels during recovery. Meanwhile, the helical structure of the screw wheels helps reduce lateral earth pressure by scraping soil away from the sides, improving lateral drivability. Driving experiments on a sloped sandbox test bed confirmed that the proposed 2DPPL (two-dimensional push-pull locomotion) method significantly reduces sideslip and prevents a drop in attitude angle during slope traversal. Full article
Show Figures

Figure 1

15 pages, 3583 KiB  
Article
Parameter Calibration of Rotating Wave Plate Polarization Detection Device Using Dual Beams
by Haonan Zhang, Junbo Liu, Ziliang Yan, Chuan Jin, Jian Wang and Song Hu
Sensors 2025, 25(15), 4803; https://doi.org/10.3390/s25154803 - 5 Aug 2025
Viewed by 315
Abstract
When measuring Stokes parameters using the rotating wave plate method, the angle error of the polarizer’s light transmission axis, the azimuth error of the wave plate’s fast axis, and the phase delay error are key factors restricting accuracy. To address the existing calibration [...] Read more.
When measuring Stokes parameters using the rotating wave plate method, the angle error of the polarizer’s light transmission axis, the azimuth error of the wave plate’s fast axis, and the phase delay error are key factors restricting accuracy. To address the existing calibration methods’ insufficient accuracy and incomplete consideration of the error parameters, this study constructed an error-transfer analytical model for an in-depth analysis of the principle of measuring Stokes parameters using the rotating wave plate method. It also clarified the quantitative parameter relationship between the measurement, wave plate, and polarizer errors. A device parameter calibration scheme using multi-angle polarized light (horizontally linearly polarized, [1,1,0,0]T, and 45° linearly polarized, [1,0,1,0]T) was further proposed, and by using the deviation between the theoretical response of the standard incident light and the actual measurement data, an error equation was established to solve the device parameter error and precisely calibrate the polarization detection device. The experimental results show that after using this method, the calibration error of the Stokes parameters decreased from 4.83% to within 0.46%, significantly overcoming the traditional methods’ limitations regarding incomplete consideration of the error parameters and accuracy improvement, providing a more concise and reliable method for high-precision polarization measurement. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

10 pages, 615 KiB  
Article
Translating SGRT from Breast to Lung Cancer: A Study on Frameless Immobilization and Real-Time Monitoring Efficacy, Focusing on Setup Accuracy
by Jang Bo Shim, Hakyoung Kim, Sun Myung Kim and Dae Sik Yang
Life 2025, 15(8), 1234; https://doi.org/10.3390/life15081234 - 4 Aug 2025
Viewed by 407
Abstract
Objectives: Surface-Guided Radiation Therapy (SGRT) has been widely adopted in breast cancer radiotherapy, particularly for improving setup accuracy and motion management. Recently, its application in lung cancer has attracted growing interest due to similar needs for precision. This study investigates the feasibility and [...] Read more.
Objectives: Surface-Guided Radiation Therapy (SGRT) has been widely adopted in breast cancer radiotherapy, particularly for improving setup accuracy and motion management. Recently, its application in lung cancer has attracted growing interest due to similar needs for precision. This study investigates the feasibility and clinical utility of SGRT in lung cancer treatment, focusing on its effectiveness in patient setup and real-time motion monitoring under frameless immobilization conditions. Materials and Methods: A total of 204 treatment records from 17 patients with primary lung cancer who underwent radiotherapy at Korea University Guro Hospital between October 2024 and April 2025 were retrospectively analyzed. Patients were initially positioned using the Identify system (Varian) in the CT suite, with surface data transferred to the treatment room system. Alignment was performed to within ±1 cm and ±2° across six degrees of freedom. Cone-beam CT (CBCT) was acquired prior to treatment for verification, and treatment commenced when the Distance to Correspondence Surface (DCS) was ≤0.90. Setup deviations from the Identify system were recorded and compared with CBCT in three translational axes to evaluate positioning accuracy and PTV displacement. Results and Conclusions: The Identify system was shown to provide high setup accuracy and reliable real-time motion monitoring in lung cancer radiotherapy. Its ability to detect patient movement and automatically interrupt beam delivery contributes to enhanced treatment safety and precision. In addition, even though the maximum longitudinal (Lng) shift reached up to −1.83 cm with surface-guided setup, and up to 1.78 cm (Lat) 5.26 cm (Lng), 9.16 cm (Vrt) with CBCT-based verification, the use of Identify’s auto-interruption mode (±1 cm in translational axes, ±2° in rotational axes) allowed treatment delivery with PTV motion constrained within ±0.02 cm. These results suggest that, due to significant motion in the longitudinal direction, appropriate PTV margins should be considered during treatment planning. The Identify system enhances setup accuracy in lung cancer patients using a surface-guided approach and enables real-time tracking of intra-fractional errors. SGRT, when implemented with systems such as Identify, shows promise as a feasible alternative or complement to conventional IGRT in selected lung cancer cases. Further studies with larger patient cohorts and diverse clinical settings are warranted to validate these findings. Full article
(This article belongs to the Special Issue Current Advances in Lung Cancer Diagnosis and Treatment)
Show Figures

Figure 1

19 pages, 3654 KiB  
Article
Longitudinal Displacement Reconstruction Method of Suspension Bridge End Considering Multi-Type Data Under Deep Learning Framework
by Xiaoting Yang, Chao Wu, Youjia Zhang, Wencai Shao, Linyuan Chang, Kaige Kong and Quan Cheng
Buildings 2025, 15(15), 2706; https://doi.org/10.3390/buildings15152706 - 31 Jul 2025
Viewed by 214
Abstract
Suspension bridges, as a type of long-span bridge, usually have a larger longitudinal displacement at the end of the beam (LDBD). LDBD can be used to evaluate the safety of bridge components at the end of the beam. However, due to factors such [...] Read more.
Suspension bridges, as a type of long-span bridge, usually have a larger longitudinal displacement at the end of the beam (LDBD). LDBD can be used to evaluate the safety of bridge components at the end of the beam. However, due to factors such as sensor failure and system maintenance, LDBD in the bridge health monitoring system is often missing. Therefore, this study reconstructs the missing part of LDBD based on the long short-term memory network (LSTM) and various data. Specifically, first, the monitoring data that may be related to LDBD in a suspension bridge is analyzed, and the temperature and beam end rotation angle data (RDBD) at representative locations are selected. Then, the temperature data at different places of the bridge are used as the input of the LSTM model to compare and analyze the prediction effect of LDBD. Next, RDBD is used as the input of the LSTM model to observe the prediction effect of LDBD. Finally, temperature and RDBD are used as the input of the LSTM model to observe whether the prediction effect of the LSTM model is improved. The results show that compared with other parts of the bridge, the prediction effect of the temperature inside the box girder in the main span as the model input is better; when RDBD is used as the input of the LSTM model, it is better than the prediction effect of temperature as the model input; temperature and RDBD have higher prediction accuracy when used as the input of the LSTM model together than when used separately as the input of the LSTM model. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 4992 KiB  
Article
Effect of Heat Treatments and Related Microstructural Modifications on High-Cycle Fatigue Behavior of Powder Bed Fusion–Laser Beam-Fabricated Ti-6Al-2Sn-4Zr-6Mo Alloy
by Gianluca Pirro, Alessandro Morri, Alessandra Martucci, Mariangela Lombardi and Lorella Ceschini
Metals 2025, 15(8), 849; https://doi.org/10.3390/met15080849 - 29 Jul 2025
Viewed by 214
Abstract
The study investigates the influence of microstructures on fatigue behavior and failure mechanisms of the α-β titanium alloy Ti6246, fabricated via Powder Bed Fusion-Laser Beam (PBF-LB). In particular, the investigation assesses the effect of two post-processing heat treatments, namely α-β annealing at 875 [...] Read more.
The study investigates the influence of microstructures on fatigue behavior and failure mechanisms of the α-β titanium alloy Ti6246, fabricated via Powder Bed Fusion-Laser Beam (PBF-LB). In particular, the investigation assesses the effect of two post-processing heat treatments, namely α-β annealing at 875 °C (AN875) and solution treatment at 825 °C followed by aging at 500 °C (STA825), on the alloy’s rotating and bending fatigue behavior. The results indicate that the STA825 condition provides superior fatigue resistance (+25%) compared to AN875, due to the presence of a finer bilamellar microstructure, characterized by thinner primary α lamellae (αp) and a more homogeneous distribution of secondary α lamellae (αs) within the β matrix. Additionally, an investigation conducted using the Kitagawa–Takahashi (KT) approach and the El-Haddad model, based on the relationship between the fatigue limit and defect sensitivity, revealed improved crack propagation resistance from pre-existing defects (ΔKth) for the STA825 condition compared to AN875. Notably, the presence of fine αs after aging for STA825 is effective in delaying crack nucleation and propagation at early stages, while refined αp contributes to hindering macrocrack growth. The fatigue behavior of the STA825-treated Ti6246 alloy was even superior to that of the PBF-LB-processed Ti64, representing a viable alternative for the production of high-performance components in the automotive and aerospace sectors. Full article
Show Figures

Graphical abstract

22 pages, 5896 KiB  
Article
Point Cloud Generation Method Based on Dual-Prism Scanning with Multi-Parameter Optimization
by Yuanfeng Zhao, Zhen Zheng and Hong Chen
Photonics 2025, 12(8), 764; https://doi.org/10.3390/photonics12080764 - 29 Jul 2025
Viewed by 281
Abstract
This study addresses two critical challenges in biprism-based laser scanning systems: the lack of a comprehensive mathematical framework linking prism parameters to scanning performance, and unresolved theoretical gaps regarding parameter effects on point cloud quality. We propose a multi-parameter optimization method for point [...] Read more.
This study addresses two critical challenges in biprism-based laser scanning systems: the lack of a comprehensive mathematical framework linking prism parameters to scanning performance, and unresolved theoretical gaps regarding parameter effects on point cloud quality. We propose a multi-parameter optimization method for point cloud generation using dual-prism scanning. By establishing a beam pointing mathematical model, we systematically analyze how prism wedge angles, refractive indices, rotation speed ratios, and placement configurations influence scanning performance, revealing their coupled effects on deflection angles, azimuth control, and coverage. The non-paraxial ray tracing method combined with the Möller–Trumbore algorithm enables efficient point cloud simulation. Experimental results demonstrate that our optimized parameters significantly enhance point cloud density, uniformity, and target feature integrity while overcoming limitations of traditional database construction methods. This work provides both theoretical foundations and practical solutions for high-precision 3D reconstruction in high-speed rendezvous scenarios such as missile-borne laser fuzes, offering advantages in cost-effectiveness and operational reliability. Full article
Show Figures

Figure 1

32 pages, 18111 KiB  
Article
Across-Beam Signal Integration Approach with Ubiquitous Digital Array Radar for High-Speed Target Detection
by Le Wang, Haihong Tao, Aodi Yang, Fusen Yang, Xiaoyu Xu, Huihui Ma and Jia Su
Remote Sens. 2025, 17(15), 2597; https://doi.org/10.3390/rs17152597 - 25 Jul 2025
Viewed by 298
Abstract
Ubiquitous digital array radar (UDAR) extends the integration time of moving targets by deploying a wide transmitting beam and multiple narrow receiving beams to cover the entire observed airspace. By exchanging time for energy, it effectively improves the detection ability for weak targets. [...] Read more.
Ubiquitous digital array radar (UDAR) extends the integration time of moving targets by deploying a wide transmitting beam and multiple narrow receiving beams to cover the entire observed airspace. By exchanging time for energy, it effectively improves the detection ability for weak targets. Nevertheless, target motion introduces severe across-range unit (ARU), across-Doppler unit (ADU), and across-beam unit (ABU) effects, dispersing target energy across the range–Doppler-beam space. This paper proposes a beam domain angle rotation compensation and keystone-matched filtering (BARC-KTMF) algorithm to address the “three-crossing” challenge. This algorithm first corrects ABU by rotating beam–domain coordinates to align scattered energy into the final beam unit, reshaping the signal distribution pattern. Then, the KTMF method is utilized to focus target energy in the time-frequency domain. Furthermore, a special spatial windowing technique is developed to improve computational efficiency through parallel block processing. Simulation results show that the proposed approach achieves an excellent signal-to-noise ratio (SNR) gain over the typical single-beam and multi-beam long-time coherent integration (LTCI) methods under low SNR conditions. Additionally, the presented algorithm also has the capability of coarse estimation for the target incident angle. This work extends the LTCI technique to the beam domain, offering a robust framework for high-speed weak target detection. Full article
Show Figures

Graphical abstract

16 pages, 3207 KiB  
Article
Determining Vibration Characteristics and FE Model Updating of Friction-Welded Beams
by Murat Şen
Machines 2025, 13(8), 653; https://doi.org/10.3390/machines13080653 - 25 Jul 2025
Cited by 1 | Viewed by 326
Abstract
This study aimed to investigate the dynamic characteristics of shafts joined by friction welding and to update their finite element models. The first five bending mode resonance frequencies, damping ratios, and mode shapes of SAE 304 steel beams, friction-welded at three different rotational [...] Read more.
This study aimed to investigate the dynamic characteristics of shafts joined by friction welding and to update their finite element models. The first five bending mode resonance frequencies, damping ratios, and mode shapes of SAE 304 steel beams, friction-welded at three different rotational speeds (1200, 1500, and 1800 rpm), were determined using the Experimental Modal Analysis method. This approach allowed for an examination of how the dynamic properties of friction-welded beams change at varying rotational speeds. A slight decrease in resonance frequency values was observed with the transition from lower to higher rotational speeds. The largest difference of 3.28% was observed in the first mode, and the smallest difference of 0.19% was observed in the second mode. Different trends in damping ratios were observed for different modes. In the first, second, and fourth modes, damping ratios tended to increase with increasing rotational speeds, while they tended to decrease in the third and fifth modes. The largest difference was calculated as 52.83% in the third vibration mode. However, no significant change in mode shapes was observed for different rotational speeds. Based on the examined Modal Assurance Criterion (MAC) results, cross-comparisons of the mode shapes obtained for all three different speeds yielded a minimum similarity of 93.8%, reaching up to 99.9%. For model updating, a Frequency Response Assurance Criterion (FRAC)-based method utilizing frequency response functions (FRFs) was employed. Initially, a numerical model of the welded shaft was created using MATLAB-R2015a, based on the Euler–Bernoulli beam theory. Since rotational coordinates were not used in the EMA analyses, static model reduction was performed on the numerical model to reduce the effect of rotational coordinates to translational coordinates. For model updating, experimentally obtained FRFs from EMA and FRFs from the numerical model were used. The equivalent modulus of elasticity and equivalent density of the friction weld region were used as updating parameters. Successful results were achieved by developing an algorithm that ensured the convergence of the numerical model’s FRFs and natural frequencies. Full article
(This article belongs to the Special Issue Advances in Noise and Vibrations for Machines)
Show Figures

Figure 1

15 pages, 3491 KiB  
Article
A Single-Phase Aluminum-Based Chiral Metamaterial with Simultaneous Negative Mass Density and Bulk Modulus
by Fanglei Zhao, Zhenxing Shen, Yong Cheng and Huichuan Zhao
Crystals 2025, 15(8), 679; https://doi.org/10.3390/cryst15080679 - 25 Jul 2025
Viewed by 296
Abstract
We propose a single-phase chiral elastic metamaterial capable of simultaneously exhibiting negative effective mass density and negative bulk modulus in the ultrasonic frequency range. The unit cell consists of a regular hexagonal frame connected to a central circular mass through six obliquely oriented, [...] Read more.
We propose a single-phase chiral elastic metamaterial capable of simultaneously exhibiting negative effective mass density and negative bulk modulus in the ultrasonic frequency range. The unit cell consists of a regular hexagonal frame connected to a central circular mass through six obliquely oriented, slender aluminum beams. The design avoids the manufacturing complexity of multi-phase systems by relying solely on geometric topology and chirality to induce dipolar and rotational resonances. Dispersion analysis and effective parameter retrieval confirm a double-negative frequency region from 30.9 kHz to 34 kHz. Finite element simulations further demonstrate negative refraction behavior when the metamaterial is immersed in water and subjected to 32 kHz and 32.7 kHz incident plane wave. Equifrequency curves (EFCs) analysis shows excellent agreement with simulated refraction angles, validating the material’s double-negative performance. This study provides a robust, manufacturable platform for elastic wave manipulation using a single-phase metallic metamaterial design. Full article
(This article belongs to the Special Issue Research Progress of Crystalline Metamaterials)
Show Figures

Figure 1

26 pages, 7471 KiB  
Article
Seismic Performance and Moment–Rotation Relationship Modeling of Novel Prefabricated Frame Joints
by Jiaqi Liu, Dafu Cao, Kun Wang, Wenhai Wang, Hua Ye, Houcun Zou and Changhong Jiang
Buildings 2025, 15(14), 2504; https://doi.org/10.3390/buildings15142504 - 16 Jul 2025
Viewed by 347
Abstract
This study investigates two novel prefabricated frame joints: prestressed steel sleeve-connected prefabricated reinforced concrete joints (PSFRC) and non-prestressed steel sleeve-connected prefabricated reinforced concrete joints (SSFRC). A total of three PSFRC specimens, four SSFRC specimens, and one cast-in-place joint were designed and fabricated. Seismic [...] Read more.
This study investigates two novel prefabricated frame joints: prestressed steel sleeve-connected prefabricated reinforced concrete joints (PSFRC) and non-prestressed steel sleeve-connected prefabricated reinforced concrete joints (SSFRC). A total of three PSFRC specimens, four SSFRC specimens, and one cast-in-place joint were designed and fabricated. Seismic performance tests were conducted using different end-plate thicknesses, grout strengths, stiffener configurations, and prestressing tendon configurations. The experimental results showed that all specimens experienced beam end failures, and three failure modes occurred: (1) failure of the end plate of the beam sleeve, (2) failure of the variable cross-section of the prefabricated beam, and (3) failure of prefabricated beams at the connection with the steel sleeves. The load-bearing capacity and initial stiffness of the structure are increased by 35.41% and 32.64%, respectively, by increasing the thickness of the end plate. Specimens utilizing C80 grout exhibited a 39.05% higher load capacity than those with lower-grade materials. Adding stiffening ribs improved the initial stiffness substantially. Specimen XF2 had 219.08% higher initial stiffness than XF1, confirming the efficacy of stiffeners in enhancing joint rigidity. The configuration of the prestressed tendons significantly influenced the load-bearing capacity. Specimen YL2 with symmetrical double tendon bundles demonstrated a 27.27% higher ultimate load capacity than specimen YL1 with single centrally placed tendon bundles. An analytical model to calculate the moment–rotation relationship was established following the evaluation criteria specified in Eurocode 3. The results demonstrated a good agreement, providing empirical references for practical engineering applications. Full article
(This article belongs to the Special Issue Research on Industrialization and Intelligence in Building Structures)
Show Figures

Figure 1

20 pages, 5009 KiB  
Article
Combined Behavior of Reinforced Concrete Out-of-Plane Parts Beams Encased with Steel Section
by Hasan M. A. Albegmprli, Doaa T. Hashim and Muthanna A. N. Abbu
Buildings 2025, 15(14), 2473; https://doi.org/10.3390/buildings15142473 - 15 Jul 2025
Viewed by 388
Abstract
This research investigated and compared the structural behavior of reinforced concrete straight beams and beams made with out-of-plane parts. This study focused on the influence of the location and number of out-of-plane parts, as well as encasing the beams with a steel section, [...] Read more.
This research investigated and compared the structural behavior of reinforced concrete straight beams and beams made with out-of-plane parts. This study focused on the influence of the location and number of out-of-plane parts, as well as encasing the beams with a steel section, on the ultimate strength, deflection, and rotation in addition to the ductility, energy absorption, and failure mode. A total of nine beams were modelized numerically, divided into three series. The first one included one straight beam, while the remaining two series included four beams each made with out-of-plane parts with and without steel sections. The beams with out-of-plane parts connected the two, three, four, and five concrete segments. The outcomes revealed that the beams made with out-of-plane parts showed less strength than straight beams, which increased the connected segments and reduced the ultimate strength capacity. The regular beam’s linearity was dissimilar to the zigzag beams, which showed a linearity of 32% and was reduced to 22%, 20%, 19.67%, and 16% for beam out-of-plane parts made with two, three, four, and five segments, respectively. Forming a zigzag in the plane of the beams reduced the cracking load, but the decrement depended on the number of parts, which led to more reduction in the yielding load. Concerning the deflection and deformations, the concrete straight beams failed in flexure, with maximum deflection occurring at the midspan of the beam, which was different for beams without plane parts, which showed a combined shear-torsional failure for which the maximum deformation occurred at the midspan with inclination of connected parts on the interior perpendicular axis. Encasing the beams’ out-of-plane parts with steel sections enhanced the structural behavior. The ductility and energy absorption of the out-of-plane parts beams were less than the straight ones, but encasing the beams with a steel section improved the ductility and energy absorption twice. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

6 pages, 488 KiB  
Proceeding Paper
Optimizing Safety Net Installation on Construction Sites Using YOLO and the Novel Linear Intersection over Union
by Yu-Hung Tsai, Meng-Hsiun Tsai, Yun-Hui Lai and Hsien-Chung Huang
Eng. Proc. 2025, 98(1), 27; https://doi.org/10.3390/engproc2025098027 - 30 Jun 2025
Viewed by 250
Abstract
This study aims to evaluate whether safety nets on construction sites are correctly installed using an image processing and deep learning technique. The developed method performs data preprocessing, including horizontal flipping, rotation, and contrast-limited adaptive histogram equalization, and then applies the YOLO model [...] Read more.
This study aims to evaluate whether safety nets on construction sites are correctly installed using an image processing and deep learning technique. The developed method performs data preprocessing, including horizontal flipping, rotation, and contrast-limited adaptive histogram equalization, and then applies the YOLO model to estimate the accuracy of safety net installation. The developed method significantly improved the accuracy of the YOLO model detection and mitigated errors associated with large safety net surfaces and slanted steel beams using the novel linear intersection over union as a metric. The proposed method effectively improved the assessment of safety net installation. Full article
Show Figures

Figure 1

Back to TopTop