Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,456)

Search Parameters:
Keywords = root growth and quality

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7087 KB  
Article
Modulation of Sorghum-Associated Fungal Communities by Trichoderma Bioinoculants: Insights from ITS Amplicon Sequencing
by Mariana Petkova, Stefan Shilev, Ivelina Neykova and Angel Angelov
Agronomy 2026, 16(2), 217; https://doi.org/10.3390/agronomy16020217 (registering DOI) - 16 Jan 2026
Abstract
Sorghum (Sorghum bicolor L. Moench) is a major cereal crop cultivated in semi-arid regions, but its yield is often constrained by soilborne fungal pathogens that affect plant growth and grain quality. This study explored how Trichoderma-based bioinoculants restructure the structure and [...] Read more.
Sorghum (Sorghum bicolor L. Moench) is a major cereal crop cultivated in semi-arid regions, but its yield is often constrained by soilborne fungal pathogens that affect plant growth and grain quality. This study explored how Trichoderma-based bioinoculants restructure the structure and functional composition of fungal communities in distinct sorghum compartments (soil, root, seed, and stem) using ITS amplicon sequencing. Two cultivars, Kalatur and Foehn, were evaluated under control and inoculated conditions. Alpha diversity indices revealed that inoculation reduced overall fungal richness and evenness, particularly in seed and stem tissues, while selectively enhancing beneficial taxa. Beta diversity analyses (PERMANOVA, p < 0.01) confirmed significant treatment-driven shifts in community composition. LEfSe analysis identified Trichoderma and Mortierella as biomarkers of inoculated samples, whereas Fusarium, Alternaria, and Penicillium predominated in controls. The enrichment of saprotrophic and symbiotrophic taxa in treated samples, coupled with the decline of pathogenic genera, indicates a transition toward functionally beneficial microbial assemblages. These results demonstrate that Trichoderma bioinoculants not only suppress fungal pathogens but also promote the establishment of beneficial ecological groups contributing to plant and soil health. The present work provides insight into the mechanisms through which microbial inoculants modulate host-associated fungal communities, supporting their use as sustainable tools for crop protection and microbiome management in sorghum-based agroecosystems. Full article
(This article belongs to the Special Issue Research Progress on Pathogenicity of Fungi in Crops—2nd Edition)
Show Figures

Figure 1

19 pages, 2380 KB  
Article
OsIPK2 Regulates Seed Vigor by Integrating IP6 Biosynthesis, Auxin Signaling, and H3K27me3 Deposition in Japonica Rice
by Yao Chen, Ya Li and Sihong Sang
Biology 2026, 15(2), 155; https://doi.org/10.3390/biology15020155 - 15 Jan 2026
Abstract
Seed vigor is a key agronomic trait that integrates germination capacity and seedling establishment, critically influencing rice productivity. Inositol hexakisphosphate (IP6) serves as a major phosphorus reservoir in seeds, yet its regulatory mechanism in seed vigor remains unclear. Here, we demonstrate [...] Read more.
Seed vigor is a key agronomic trait that integrates germination capacity and seedling establishment, critically influencing rice productivity. Inositol hexakisphosphate (IP6) serves as a major phosphorus reservoir in seeds, yet its regulatory mechanism in seed vigor remains unclear. Here, we demonstrate that exogenous IP6 application inhibited seed germination and seedling growth of japonica rice (Oryza sativa L. ssp. japonica cv. Zhonghua11) in a dose-dependent manner; 10 mM IP6 reduced seed germination by 100%, while 100 μM IP6 suppressed primary root length by 33.6% compared to the control. This inhibitory effect is likely mediated by antagonizing auxin signaling, as supported by suppressed DR5::GUS expression and altered transcription of auxin-responsive genes. OsIPK2, a key enzyme in IP6 biosynthesis, showed high expression during early development in rice. RNA interference of OsIPK2 led to a 40.8–61.7% reduction in seed IP6 content, 45.3–65% higher zinc (Zn) and iron (Fe) accumulation, and a 35.4–53.5% lower germination rate compared to wild-type (WT). Conversely, OsIPK2-RNAi seedlings exhibited enhanced growth and resistance to IP6, which was associated with misregulation of auxin-responsive genes and a decrease in the repressive histone mark H3K27me3 at their loci. Furthermore, endogenous indole-3-acetic acid (IAA) levels significantly reduced in Ri-1 but unchanged in Ri-2, while abscisic acid (ABA) content and the IAA/ABA ratio remained unaltered compared to wild-type. Our findings reveal that OsIPK2 balances seed vigor and seedling development by modulating inositol phosphate metabolism, auxin responses, and epigenetic regulation, providing insights for improving seed quality in cereals. Whether the regulatory role of OsIPK2 in seed vigor is conserved across other rice subspecies requires further investigation. Full article
(This article belongs to the Special Issue Advancing Crop Nutritional Quality Through Genomic Approaches)
Show Figures

Figure 1

29 pages, 13178 KB  
Article
Effects of Substrate-Based Root Restriction on Tomato Growth, Fruit Quality, Yield, and Microbial Communities in a Simplified Automatic Soilless Cultivation System
by Yecheng Jin, Siqi Xia, Haili Zhang, Lingyu Wang, Ying Zhou, Jie Zhou, Xiaojian Xia, Nianqiao Shen and Zhenyu Qi
Agronomy 2026, 16(2), 212; https://doi.org/10.3390/agronomy16020212 - 15 Jan 2026
Abstract
Root restriction is an agronomic technique that influences plant morphology, physiology, and productivity. This study investigates the effects of root restriction on tomato growth, fruit quality, yield, and rhizosphere microbial communities using three distinct substrates: sand, soil, and peanut shell substrate (PSS), within [...] Read more.
Root restriction is an agronomic technique that influences plant morphology, physiology, and productivity. This study investigates the effects of root restriction on tomato growth, fruit quality, yield, and rhizosphere microbial communities using three distinct substrates: sand, soil, and peanut shell substrate (PSS), within a Simplified Automatic Soilless Culture System (SAS). Results demonstrated that root restriction at 8 cm height significantly enhanced fruit quality indicators: soluble sugar content increased by 69.01% (sand), 53.84% (soil), and 37.67% (PSS); soluble protein increased by 77.23%, 48.14%, and 66.51%; and lycopene increased by 100.03%, 62.33%, and 74.59%, respectively, compared to the 24 cm baseline. However, single-plant yield declined by 28.30% (sand), 64.28% (soil), and 22.06% (PSS). TOPSIS analysis (Technique for Order Preference by Similarity to Ideal Solution) identified PSS at 8 cm as the optimal combination for balancing quality and yield (Cj = 0.631). Microbial amplicon sequencing revealed higher rhizosphere microbial diversity in tomatoes grown in soil and peanut shell substrate compared to sand. These three types of growing media (soil, sand, and peanut shell substrate) establish the rhizosphere of bacterial and fungal communities by selecting specific microbial taxa. Changes in container height drive the reduction–oxidation functional divergence of bacterial communities, affecting the connectivity and complexity of microbial networks. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
17 pages, 839 KB  
Review
Adjunctive Use of Platelet-Derived Concentrates (Platelet-Rich Plasma, Platelet-Rich Fibrin, Concentrated Growth Factor, Platelet-Poor Plasma) in Non-Surgical Periodontal Therapy: Current Evidence and Comparative Analysis
by Sebastian Gawlak-Socka, Kinga Jeżewska, Natalia Bielecka-Kowalska and Sebastian Kłosek
J. Clin. Med. 2026, 15(2), 554; https://doi.org/10.3390/jcm15020554 - 9 Jan 2026
Viewed by 152
Abstract
Background: Periodontitis is a multifactorial, chronic inflammatory disease that leads to progressive destruction of the periodontal apparatus. Despite the effectiveness of scaling and root planing (SRP), residual inflammation and limited regenerative potential justify the search for adjunctive biologic therapies. Platelet-derived concentrates, including [...] Read more.
Background: Periodontitis is a multifactorial, chronic inflammatory disease that leads to progressive destruction of the periodontal apparatus. Despite the effectiveness of scaling and root planing (SRP), residual inflammation and limited regenerative potential justify the search for adjunctive biologic therapies. Platelet-derived concentrates, including platelet-rich plasma (PRP), platelet-rich fibrin (PRF), concentrated growth factors (CGF), and platelet-poor plasma (PPP), have gained attention as autologous sources of growth factors enhancing periodontal regeneration. Aim: This narrative review provides a comparative analysis of the biological mechanisms, preparation protocols, and clinical outcomes associated with the adjunctive use of platelet-derived concentrates in non-surgical periodontal therapy. Methods: A narrative literature review was conducted using English-language publications retrieved from PubMed and Google Scholar, covering studies published from 2012 onward. The search strategy was based on combinations of keywords related to platelet-derived concentrates and non-surgical periodontal therapy. In vitro, in vivo, and clinical studies, as well as relevant narrative, systematic, and umbrella reviews evaluating the adjunctive use of platelet-derived concentrates (PRP, PRF, CGF, and PPP) were considered. Studies focusing on biological mechanisms, preparation protocols, and clinical periodontal outcomes were included, whereas case reports, studies unrelated to periodontal therapy, and publications lacking relevant clinical or biological outcome data were excluded. Results: Most clinical studies reported improvements in probing depth reduction, clinical attachment level gain, and bleeding indices following adjunctive use of platelet-derived concentrates with SRP. PRF tended to demonstrate more consistent clinical outcomes compared to PRP, potentially related to its simplified preparation and sustained release of bioactive molecules. CGF showed promising osteogenic and angiogenic properties in preclinical and early clinical studies. PPP, although less extensively investigated, exhibited regenerative and antimicrobial potential in preliminary reports. Conclusions: Platelet-derived concentrates may serve as valuable adjuncts in non-surgical periodontal therapy; however, the current evidence is characterized by methodological heterogeneity and variable study quality. While PRF appears to yield more consistent clinical results, definitive conclusions regarding superiority among different platelet concentrates cannot be drawn. Further well-designed randomized controlled trials are required, particularly for CGF and PPP. Full article
(This article belongs to the Special Issue Advances in Periodontitis and Other Periodontal Diseases)
Show Figures

Figure 1

20 pages, 3603 KB  
Article
Dynamic Modeling and Performance Assessment of Khorshed Wastewater Treatment Plant Using GPS-X: A Case Study, Alexandria, Egypt
by Ahmed H. El Hawary, Nadia Badr ElSayed, Chérifa Abdelbaki, Mohamed Youssef Omar, Mohamed A. Awad, Bernhard Tischbein, Navneet Kumar and Maram El-Nadry
Water 2026, 18(2), 174; https://doi.org/10.3390/w18020174 - 8 Jan 2026
Viewed by 254
Abstract
Water scarcity continues to challenge arid regions such as Egypt, where growing population demands, climate change impacts, and increasing agricultural pressures intensify the need for sustainable water management. Treated wastewater has emerged as a viable alternative resource, provided that the effluent meets stringent [...] Read more.
Water scarcity continues to challenge arid regions such as Egypt, where growing population demands, climate change impacts, and increasing agricultural pressures intensify the need for sustainable water management. Treated wastewater has emerged as a viable alternative resource, provided that the effluent meets stringent quality standards for safe reuse. The purpose of this study was to develop a comprehensive model of the Khorshed Wastewater Treatment Plant (KWWTP) to depict the processes used for biological nutrient removal. Operational data was gathered and examined over a period of 18 months to describe the quality of wastewater discharged by the Advanced Sequencing Batch Reactor (ASBR) of the plant, using specific physicochemical parameters like TSS, COD, BOD5, and N-NO3. A process flow diagram integrating the Activated Sludge Model No. 1 (ASM1) for biological nutrient removal was created using the GPS-X. The study determined the parameters influencing the nutrient removal efficiency by analyzing the responsiveness of kinetic and stoichiometric parameters. Variables related to denitrification, autotrophic growth, and yield for heterotrophic biomass were the main focus of the calibration modifications. The results showed that the Root Mean Square Error (RMSE) for the dynamic-state was COD (0.02), BOD5 (0.07), N-NO3 (0.75), and TSS (0.82), and for the steady state was COD (0.04), BOD5 (0.11), N-NO3 (0.67), and TSS (0.10). Since the model’s accuracy was deemed acceptable, it provides a validated foundation for future scenario analysis and operational decision support that produces a trustworthy model for predicting effluent data for the concentrations of TSS, COD, BOD5, and N-NO3 in steady state conditions. Dynamic validation further confirmed model reliability, despite modest discrepancies in TSS and nitrate predictions; addressing this issue necessitates further research. Full article
Show Figures

Figure 1

19 pages, 3298 KB  
Article
Detection of Cadmium Content in Pak Choi Using Hyperspectral Imaging Combined with Feature Selection Algorithms and Multivariate Regression Models
by Yongkuai Chen, Tao Wang, Shanshan Lin, Shuilan Liao and Songliang Wang
Appl. Sci. 2026, 16(2), 670; https://doi.org/10.3390/app16020670 - 8 Jan 2026
Viewed by 107
Abstract
Pak choi (Brassica chinensis L.) has a strong adsorption capacity for the heavy metal cadmium (Cd), which is a big threat to human health. Traditional detection methods have drawbacks such as destructiveness, time-consuming processes, and low efficiency. Therefore, this study aimed to [...] Read more.
Pak choi (Brassica chinensis L.) has a strong adsorption capacity for the heavy metal cadmium (Cd), which is a big threat to human health. Traditional detection methods have drawbacks such as destructiveness, time-consuming processes, and low efficiency. Therefore, this study aimed to construct a non-destructive prediction model for Cd content in pak choi leaves using hyperspectral technology combined with feature selection algorithms and multivariate regression models. Four different cadmium concentration treatments (0 (CK), 25, 50, and 100 mg/L) were established to monitor the apparent characteristics, chlorophyll content, cadmium content, chlorophyll fluorescence parameters, and spectral features of pak choi. Competitive adaptive reweighted sampling (CARS), the successive projections algorithm (SPA), and random frog (RF) were used for feature wavelength selection. Partial least squares regression (PLSR), random forest regression (RFR), the Elman neural network, and bidirectional long short-term memory (BiLSTM) models were established using both full spectra and feature wavelengths. The results showed that high-concentration Cd (100 mg/L) significantly inhibited pak choi growth, leaf Cd content was significantly higher than that in the control group, chlorophyll content decreased by 16.6%, and damage to the PSII reaction centre was aggravated. Among the models, the FD–RF–BiLSTM model demonstrated the best prediction performance, with a determination coefficient of the prediction set (Rp2) of 0.913 and a root mean square error of the prediction set (RMSEP) of 0.032. This study revealed the physiological, ecological, and spectral response characteristics of pak choi under Cd stress. It is feasible to detect leaf Cd content in pak choi using hyperspectral imaging technology, and non-destructive, high-precision detection was achieved by combining chemometric methods. This provides an efficient technical means for the rapid screening of Cd pollution in vegetables and holds important practical significance for ensuring the quality and safety of agricultural products. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

23 pages, 803 KB  
Systematic Review
Role of Biostimulants in Sustainable Soybean (Glycine max L.) Production: A Systematic Review
by Ebenezer Ayew Appiah, Muhoja Sylivester Nyandi, Akasairi Ocwa, Enoch Jeffery Duodu and Erika Tünde Kutasy
Sustainability 2026, 18(2), 636; https://doi.org/10.3390/su18020636 - 8 Jan 2026
Viewed by 249
Abstract
This systematic review critically evaluates and synthesizes current evidence on the efficacy of biostimulants in enhancing soybean seed yield and quality. A comprehensive literature search was conducted following the PRISMA approach using the Web of Science (WoS) database, focusing on peer-reviewed studies from [...] Read more.
This systematic review critically evaluates and synthesizes current evidence on the efficacy of biostimulants in enhancing soybean seed yield and quality. A comprehensive literature search was conducted following the PRISMA approach using the Web of Science (WoS) database, focusing on peer-reviewed studies from 2014 to 2025 reporting on the effects of biostimulants applied alone or in combination with other agro-inputs on soybean performance. Over 500 publications were retrieved from the database, of which 72 were included in this review. Extracted data were used to calculate changes in yield (kg ha−1), percentage yield increase (%), oil content (%), and protein concentration (%). Our synthesis demonstrated that the sole application of biostimulants, including seaweed extracts, humic acids, amino acids, and beneficial microbes (Bradyrhizobium, PGPR, AMF), consistently enhanced soybean yield by 4% to 65%, while their interaction with other agro-inputs was shown to be capable of increasing yield by more than 150% under abiotic stress conditions, indicating strong synergistic effects. These improvements are mediated through various physiological mechanisms such as enhanced nutrient uptake, improved root growth, increased photosynthetic efficiency, and elevated stress tolerance. Furthermore, biostimulant application positively affects seed quality, increasing oil and protein content by 0.4–5.5% and 0.5–7.3%, respectively, by optimizing source–sink relationships and metabolic pathways. Overall, the greatest benefits are frequently observed through synergistic combinations of biostimulants with one another or with reduced rates of mineral fertilizers, highlighting a promising pathway toward sustainable crop intensification in soybean systems. Full article
Show Figures

Figure 1

25 pages, 2932 KB  
Article
Pain Hypersensitivity in a Mouse Model of Marfan Syndrome
by Rebecca Kordikowski, Joana Coutinho, Ignacio Martínez-Martel, Clara Penas, Beatriz Martín-Mur, Belén Pérez, Francesc Jiménez-Altayó and Olga Pol
Antioxidants 2026, 15(1), 80; https://doi.org/10.3390/antiox15010080 - 8 Jan 2026
Viewed by 235
Abstract
Marfan syndrome (MFS) is a genetic disorder caused by mutations in the fibrillin-1 (Fbn1) gene, leading to structurally abnormal elastic fibers and diverse clinical manifestations. Aortic root dilation represents the most serious threat, often requiring prophylactic surgical repair. Emerging evidence suggests that MFS [...] Read more.
Marfan syndrome (MFS) is a genetic disorder caused by mutations in the fibrillin-1 (Fbn1) gene, leading to structurally abnormal elastic fibers and diverse clinical manifestations. Aortic root dilation represents the most serious threat, often requiring prophylactic surgical repair. Emerging evidence suggests that MFS patients experience increased pain sensitivity, contributing to functional impairment and reduced quality of life. Here, we used C57BL/6 wild-type and Fbn1C1041G/+ (MFS) mice to examine brain transcriptomics, aortic histology, nociceptive behaviors, grip strength, and spinal cord gene expression in both sexes at 2, 4, 6, 8, and 16 months of age. Transcriptomic analysis revealed reduced activation of pain-related pathways in young males and aged females, with a reversal in aged males, suggesting age- and sex-dependent differences in pain modulation. Behavioral testing showed progressive mechanical and thermal hypersensitivity in MFS mice, with cold allodynia as the earliest manifestation with late-onset muscle weakness. In the spinal cord of 16-month-old MFS mice, increased expression of key excitatory and nociceptive markers was observed, consistent with the pain hypersensitivity phenotype. In addition, aged female MFS mice exhibited elevated spinal expression of pro-inflammatory cytokines, inducible nitric oxide synthase, and Nox4, whereas males showed increased transforming growth factor-β1 and Nox1, reflecting distinct inflammatory and oxidative stress profiles. These findings demonstrate that Fbn1C1041G/+ mice reproduce pain hypersensitivity and muscle deficits observed in MFS patients, supporting their use as a preclinical model. Our results suggest that enhanced spinal excitatory/nociceptive signaling, together with neuroinflammation and oxidative stress, contributes to sex- and age-specific pain mechanisms in MFS. Full article
(This article belongs to the Special Issue Chronic Pain and Oxidative Stress)
Show Figures

Figure 1

27 pages, 13612 KB  
Article
Effects of Effective Microorganism (EM) Inoculation on Co-Composting of Auricularia heimuer Residue with Chicken Manure and Subsequent Maize Growth
by Yuting Feng, Yinzhen Zhai, Jiangyan Ao, Keqing Qian, Ying Wang, Miaomiao Ma, Peinan Sun, Yu Li, Bo Zhang, Xiao Li and Han Yu
Microorganisms 2026, 14(1), 106; https://doi.org/10.3390/microorganisms14010106 - 4 Jan 2026
Viewed by 256
Abstract
This study investigated the effects of different Effective Microorganism (EM) inoculation concentrations (0%, 0.5%, 2%, 5%, 10%, 15%) on the co-composting of Auricularia heimuer residue with chicken manure and the subsequent growth of maize. The aim was to enhance composting efficiency and promote [...] Read more.
This study investigated the effects of different Effective Microorganism (EM) inoculation concentrations (0%, 0.5%, 2%, 5%, 10%, 15%) on the co-composting of Auricularia heimuer residue with chicken manure and the subsequent growth of maize. The aim was to enhance composting efficiency and promote maize productivity. Results showed that EM addition, particularly at medium concentrations, significantly accelerated the composting process by shortening the heating phase and prolonging the thermophilic period, with the 10% treatment reaching >50 °C by day 2. The 5–10% EM treatments markedly promoted the degradation of cellulose and hemicellulose, and enhanced key enzyme activities (e.g., cellulase and hemicellulase) during composting and maize growth stages. Regarding soil nutrients, the 5% EM treatment led to the most balanced increases in total nitrogen (TN), total phosphorus (TP), and total potassium (TK) contents, with rises of 58.7%, 47.8%, and 130.4%, respectively, during the seedling stage. For maize yield, this treatment enhanced total grain weight, hundred-grain weight, and root activity by 25.7%, 30.9%, and 53.2%, respectively, while also increasing dry matter and root weight. Redundancy and correlation analyses indicated strong positive relationships among root activity, soil TN, cellulase activity, and final yield. In conclusion, EM inoculation at 5–10% optimizes the composting process, improves substrate quality and nutrient supply, and promotes maize root development and yield, with 5% EM offering the most comprehensive benefits. This study provides a practical approach for agricultural waste recycling and sustainable maize cultivation. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

11 pages, 435 KB  
Article
Feeding Time Optimization Enhances Aquaponic Performance: Growth, Water Quality, and Nutrient Removal in Systems Integrating Cyprinus carpio and Lactuca sativa
by Ivaylo Sirakov, Snezhana Georgieva, Stefka Stoyanova, Katya Velichkova and Desislava Slavcheva-Sirakova
Agriculture 2026, 16(1), 122; https://doi.org/10.3390/agriculture16010122 - 3 Jan 2026
Viewed by 213
Abstract
Feeding time is a critical but understudied factor influencing nutrient dynamics and overall productivity in aquaponic systems. This study examined the effects of two feeding schedules on growth performance of common carp (Cyprinus carpio L.), hydrochemical parameters, and the growth of lettuce [...] Read more.
Feeding time is a critical but understudied factor influencing nutrient dynamics and overall productivity in aquaponic systems. This study examined the effects of two feeding schedules on growth performance of common carp (Cyprinus carpio L.), hydrochemical parameters, and the growth of lettuce (Lactuca sativa) cultivated in an integrated aquaponic system. Two 60-day trials were conducted over consecutive years under identical greenhouse conditions. Carp were fed either in the morning and early afternoon (T1: 08:00, 11:00, 14:00) or later in the day (T2: 11:00, 14:00, 17:00). Hydrochemical indicators, including dissolved oxygen, turbidity, ammonium ions (NH4+), and nitrates (NO3), were continuously monitored through online measurement. Carp reared under T2 displayed significantly higher specific growth rate, final body mass, and improved feed conversion ratio (p < 0.05). The T2 variant also showed higher dissolved oxygen levels and lower turbidity compared to T1, indicating enhanced system stability. Although NH4+ concentrations were higher and NO3 levels lower in T2, these differences did not compromise water quality due to efficient plant nutrient uptake. Lettuce grown under T2 exhibited greater stem and root development and higher biomass accumulation, suggesting improved nitrogen utilization linked to the NH4+/NO3 ratio and enhanced root oxygenation. Overall, aligning feeding time with fish circadian rhythms improved fish performance, plant growth, and nutrient cycling efficiency. These findings demonstrate that feeding schedule is a key management factor capable of enhancing sustainability and productivity in aquaponic systems. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

17 pages, 4451 KB  
Article
Influence of Arbuscular Mycorrhizal Fungi on Soybean Growth and Yield: A Metabarcoding Approach
by Wasan Seemakram, Thanapat Suebrasri, Sompong Chankaew and Sophon Boonlue
Plants 2026, 15(1), 131; https://doi.org/10.3390/plants15010131 - 2 Jan 2026
Viewed by 252
Abstract
This study evaluated the efficiency of arbuscular mycorrhizal fungi (AMF) in promoting the growth, yield, protein, and phytochemical contents of Glycine max cv. Morkhor 60. A completely randomized pot experiment was conducted for 90 days in non-sterile soil with nine replications. Three AMF [...] Read more.
This study evaluated the efficiency of arbuscular mycorrhizal fungi (AMF) in promoting the growth, yield, protein, and phytochemical contents of Glycine max cv. Morkhor 60. A completely randomized pot experiment was conducted for 90 days in non-sterile soil with nine replications. Three AMF species were tested and compared with two non-mycorrhizal controls, with and without NPK fertilizer. All AMF treatments enhanced plant growth, photosynthetic rate, and water-use efficiency compared with the unfertilized control. Inoculation with Acaulospora dilatata KKU-SK202 produced the highest pod number and increased 100-seed weight by 27.00% and 4.13% over the non-inoculated and NPK treatments, respectively. Gigaspora margarita KKU-SK210 yielded the highest total protein and phenolic contents, while A. dilatata KKU-SK401 showed the highest antioxidant activity (72.09%). Metabarcoding analysis revealed that AMF inoculation reduced root colonization by pathogenic fungi, with G. margarita KKU-SK210 and A. dilatata KKU-SK202 being the most effective. These results suggest that AMF inoculation can enhance soybean productivity and seed quality while reducing chemical fertilizer dependency and pathogenic fungal incidence. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

12 pages, 4407 KB  
Article
Pomegranate Peel and Curly Dock Root Extracts for a Smart Use of Packaging
by Domenico Rongai and Maria Gabriella Di Serio
Processes 2026, 14(1), 106; https://doi.org/10.3390/pr14010106 - 28 Dec 2025
Viewed by 211
Abstract
Packaging plays a crucial role in extending the shelf life of fresh fruits and vegetables, thereby preserving their quality characteristics throughout the supply chain. Packaging systems treated with natural compounds can replace synthetic packaging systems. This study aimed to evaluate the potential application [...] Read more.
Packaging plays a crucial role in extending the shelf life of fresh fruits and vegetables, thereby preserving their quality characteristics throughout the supply chain. Packaging systems treated with natural compounds can replace synthetic packaging systems. This study aimed to evaluate the potential application of active cardboard packaging (ACP) in preserving fruit quality and extending its shelf life. We observed the effect of cardboard packaging containing Punica granatum peel extract (PPGE) and Rumex crispus root extract (RRCE) on the shelf life of strawberries, tomatoes, and table grapes. In vitro and in vivo tests demonstrated the ability of RRCE + PPGE (group A) and PPGE (group B), once incorporated into the packaging at a concentration of 8%, to create a system capable of inhibiting microbial growth, thus prolonging the freshness and marketability of the fruit. Conventional packaging (group C) was taken as control. Strawberry groups A and B showed disease severity (DS) values of 55.9 and 51.8%, significantly lower than the 87.7% found in group C. Similar findings were observed in table grapes and datterini tomatoes. Quality was also assessed by measuring the surface color of homogenized strawberries, grapes and tomatoes, using a spectrophotometer. In strawberries, after 4 days, the colorimetric values in groups A and B were 26.86 and 34.50, respectively, much higher than the 13.99 recorded in untreated strawberries (group C). In table grapes and datterini tomatoes, the same results as those obtained in strawberries were confirmed. This study offers a novel approach to extending the shelf life of fruits and vegetables. We believe this technology, in addition to being an excellent bioactive packaging solution capable of reducing losses and improving quality in the fruit supply chain, is also economically viable since PPGE is derived from pomegranate processing waste and RRCE is obtained from the roots of a weed. Full article
Show Figures

Figure 1

23 pages, 1264 KB  
Article
Fermented Kiwifruit By-Product as Experimental Biostimulant for Soilless Mini-Plum Tomato Cultivation
by Anna Agosti, Alessia Levante, Jasmine Hadj Saadoun, Samreen Nazeer, Lorenzo Del Vecchio, Leandra Leto, Massimiliano Rinaldi, Rohini Dhenge, Martina Cirlini, Camilla Lazzi and Benedetta Chiancone
Plants 2026, 15(1), 82; https://doi.org/10.3390/plants15010082 - 26 Dec 2025
Viewed by 259
Abstract
Biostimulants boost plant growth, productivity, and nutrient retention, and can be produced from agri-food waste via microbial fermentation. In this study, undersized and unsold kiwifruits were fermented with Lactiplantibacillus plantarum to produce a fermented kiwifruit-based biostimulant (FKB). FKB was applied to soilless tomato [...] Read more.
Biostimulants boost plant growth, productivity, and nutrient retention, and can be produced from agri-food waste via microbial fermentation. In this study, undersized and unsold kiwifruits were fermented with Lactiplantibacillus plantarum to produce a fermented kiwifruit-based biostimulant (FKB). FKB was applied to soilless tomato plants (cv. Solarino) at two concentrations (50 and 100 mL L−1) at the root level, every two weeks throughout the crop cycle. Fruits were analyzed for technological and chemical parameters, including color, texture, total soluble solids, titratable acidity, sugar/acid ratio, pH, electrical conductivity, total polyphenol content, antioxidant activity, and lycopene concentration. Additionally, metataxonomic analysis characterized the substrate microbial community at the beginning and the end of cultivation. Overall, the results indicate a dose-dependent effect of FKB on fruit quality parameters, with the highest concentration showing the most pronounced effects, specifically for the fruit firmness (8.02 N for FKB at 100 mL L−1 vs. 7.25 N for the Control). Moreover, both tested concentrations were associated with increased antioxidant activity (on average +28%), and lycopene content (on average +57%) compared with the Control fruits. While overall microbial diversity remained largely unchanged, the relative abundance of bacterial taxa associated with nutrient cycling and plant–microbe interactions was modulated by the biostimulant, indicating subtle but potentially functionally relevant shifts in the rhizosphere microbiota. These findings suggest that fermented kiwifruit biomass can serve as an effective biostimulant, improving both fruit quality and the functional structure of the rhizosphere microbial community in soilless tomato cultivation. Full article
Show Figures

Graphical abstract

18 pages, 2408 KB  
Article
Unlocking the Potential of Bacillus Strains for a Two-Front Attack on Wireworms and Fungal Pathogens in Oat
by Aneta Buntić, Marina Dervišević Milenković, Jelena Pavlović, Uroš Buzurović, Jelena Maksimović, Marina Jovković and Magdalena Knežević
Insects 2026, 17(1), 28; https://doi.org/10.3390/insects17010028 - 24 Dec 2025
Viewed by 464
Abstract
(1) Background: Oat (Avena sativa L.) is a crop that is widely used in human nutrition, while it also plays an important role in animal husbandry as a high-quality forage crop. However, this crop is particularly susceptible to combined biotic stressors, including [...] Read more.
(1) Background: Oat (Avena sativa L.) is a crop that is widely used in human nutrition, while it also plays an important role in animal husbandry as a high-quality forage crop. However, this crop is particularly susceptible to combined biotic stressors, including insect pests (Agriotes lineatus) and fungal infections (Fusarium spp.). These stresses act synergistically: root damage caused by wireworms increases the plant’s susceptibility to fungal infection, while pathogens further limit nutrient uptake and root system development. In recent years, the reduced efficacy of chemical pesticides against both insect pests and fungal pathogens has highlighted the need for alternative strategies in oat protection, leading to an increased focus on developing bacterial bio-inoculants as sustainable and effective biocontrol agents. (2) Methods: This study aimed to identify bacterial strains capable of suppressing wireworms (Agriotes lineatus) and Fusarium spp. in oats, while simultaneously promoting plant growth. Bacterial isolates were screened for key Plant Growth Promoting (PGP) and biocontrol traits, including IAA and siderophore production, phosphate solubilization, and the presence of toxin- and antibiotic-coding genes. (3) Results: The highest insecticidal effect against wireworms was recorded for Bacillus velezensis BHC 3.1 (63.33%), while this isolate also suppressed the growth of F. proliferatum for 59%, F. oxysporum for 65%, F. poae for 71%, and F. graminearum for 15%. The most effective Bacillus strains (with insecticidal and antifungal activity) were identified and tested in two pot experiments, where their ability to enhance plant growth in the presence of insects and fungi was evaluated under semi-controlled conditions. An increase in plant biomass, grain yield, and nitrogen content was observed in oat inoculated with B. velezensis BHC 3.1 and B. thuringiensis BHC 2.4. (4) Conclusions: These results demonstrate the strong potential of both strains as multifunctional bio-inoculants for enhancing oat growth and mitigating the adverse effects of wireworm damage and Fusarium infection. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

18 pages, 7767 KB  
Article
Genome Mining and Molecular Networking-Targeted Discovery of Siderophores with Plant Growth-Promoting Activities from the Marine-Derived Streptomonospora nanhaiensis 12A09T
by Yan Bai, Weixian Gao, Wendian Zhao, Amr A. Arishi, Zhuo Shang, Jiangchun Hu and Huaqi Pan
Mar. Drugs 2026, 24(1), 7; https://doi.org/10.3390/md24010007 - 22 Dec 2025
Viewed by 444
Abstract
Plant growth regulators (PGRs) significantly contribute to enhancing crop quality and yield. There is an urgent market demand for innovative natural PGRs. Marine natural products have the potential to serve as valuable sources of PGRs. To discover natural siderophore-type PGRs from marine natural [...] Read more.
Plant growth regulators (PGRs) significantly contribute to enhancing crop quality and yield. There is an urgent market demand for innovative natural PGRs. Marine natural products have the potential to serve as valuable sources of PGRs. To discover natural siderophore-type PGRs from marine natural products, according to a systematic pipeline for efficient lead-structure discovery from microbial natural products (SPLSD), a unique desferrioxamine-like siderophore biosynthetic gene cluster was discovered and activated by genome mining and culture regulation from a novel species, Streptomonospora nanhaiensis 12A09T. Some potentially new desferrioxamine derivatives were further discovered by the LC-MS/MS molecular network. Three new desferrioxamine derivatives, desferrioxamines C1, C2, and G3 (13) and three known ones, terragine E (4) and desferrioxamines E and D2 (56), were selectively isolated and identified using chromatography and spectroscopy techniques from S. nanhaiensis 12A09T. In the ferric iron-chelating assay, 4 and 5 showed moderate Fe (III)-complexing capability, compared with desferrioxamine mesylate. In the plant growth-regulatory assay, 1, 5, and 6 potently boosted the root length of Oryza sativa and Brassica campestris seedlings, equivalent to gibberellin. This study reports the first discovery of desferrioxamine derivatives exhibiting plant growth-promoting activity. These findings offer valuable lead compounds for PGRs. Full article
(This article belongs to the Special Issue Genome Mining and Discovery of Marine Bioactive Secondary Metabolites)
Show Figures

Graphical abstract

Back to TopTop