Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (128)

Search Parameters:
Keywords = romaine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1161 KiB  
Article
Power Ultrasound and Organic Acid-Based Hurdle Technology to Reduce Listeria monocytogenes and Salmonella enterica on Fresh Produce
by Megan L. Fay, Priya Biswas, Xinyi Zhou, Bashayer A. Khouja, Diana S. Stewart, Catherine W. Y. Wong, Wei Zhang and Joelle K. Salazar
Microbiol. Res. 2025, 16(8), 172; https://doi.org/10.3390/microbiolres16080172 - 1 Aug 2025
Viewed by 161
Abstract
The increasing demand for fresh fruits and vegetables has been accompanied by a rise in foodborne illness outbreaks linked to fresh produce. Traditional antimicrobial washing treatments, such as chlorine and peroxyacetic acid, have limitations in efficacy and pose environmental and worker health concerns. [...] Read more.
The increasing demand for fresh fruits and vegetables has been accompanied by a rise in foodborne illness outbreaks linked to fresh produce. Traditional antimicrobial washing treatments, such as chlorine and peroxyacetic acid, have limitations in efficacy and pose environmental and worker health concerns. This study evaluated the effectiveness of organic acids (citric, malic, and lactic acid) and power ultrasound, individually and in combination, for the reduction in Salmonella enterica and Listeria monocytogenes on four fresh produce types: romaine lettuce, cucumber, tomato, and strawberry. Produce samples were inoculated with bacterial cocktails at 8–9 log CFU/unit and treated with organic acids at 2 or 5% for 2 or 5 min, with or without power ultrasound (40 kHz). Results showed that pathogen reductions varied based on the produce matrix with smoother surfaces such as tomato, exhibiting greater reductions than rougher surfaces (e.g., romaine lettuce and strawberry). Lactic and malic acids were the most effective treatments, with 5% lactic acid achieving a reduction of >5 log CFU/unit for S. enterica and 4.53 ± 0.71 log CFU/unit for L. monocytogenes on tomatoes. The combination of organic acids and power ultrasound demonstrated synergistic effects, further enhancing pathogen reduction by <1.87 log CFU/unit. For example, S. enterica on cucumbers was reduced by an additional 1.87 log CFU/unit when treated with 2% malic acid and power ultrasound for 2 min compared to malic acid alone. Similarly, L. monocytogenes on strawberries was further reduced by 1.84 log CFU/unit when treated with 5% malic acid and power ultrasound for 2 min. These findings suggest that organic acids, particularly malic and lactic acids, combined with power ultrasound, may serve as an effective hurdle technology for enhancing the microbial safety of fresh produce. Future research can include validating these treatments in an industrial processing environment. Full article
Show Figures

Figure 1

15 pages, 1173 KiB  
Article
Efficacy and Safety of a Balanced Gelatine Solution for Fluid Resuscitation in Sepsis: A Prospective, Randomised, Controlled, Double-Blind Trial-GENIUS Trial
by Gernot Marx, Jan Benes, Ricard Ferrer, Dietmar Fries, Johannes Ehler, Rolf Dembinski, Peter Rosenberger, Kai Zacharowski, Manuel Sanchez, Karim Asehnoune, Bernd Bachmann-Mennenga, Carole Ichai and Tim-Philipp Simon
J. Clin. Med. 2025, 14(15), 5323; https://doi.org/10.3390/jcm14155323 - 28 Jul 2025
Viewed by 339
Abstract
Background/Objective: Sepsis is a leading cause of death in noncoronary intensive care units (ICUs). Fluids for intravascular resuscitation include crystalloids and colloids. There is extensive clinical evidence on colloid use, but large trials comparing gelatine with crystalloid regimens in ICU and septic [...] Read more.
Background/Objective: Sepsis is a leading cause of death in noncoronary intensive care units (ICUs). Fluids for intravascular resuscitation include crystalloids and colloids. There is extensive clinical evidence on colloid use, but large trials comparing gelatine with crystalloid regimens in ICU and septic patients are lacking. This study aimed to determine whether early, protocol-driven volume resuscitation using a gelatine-based regimen achieves hemodynamic stability (HDS) more rapidly than a crystalloid-based regimen in septic patients. Methods: This prospective, controlled, randomised, double-blind, multinational phase IV study compared two parallel groups of septic patients receiving a gelatine-based regimen (Gelaspan® 4% and Sterofundin® ISO, B. Braun Melsungen AG each, at a 1:1 ratio) or a crystalloid regimen (Sterofundin® ISO). Primary endpoint was time to first HDS within 48 h after randomisation. Secondary endpoints included fluid overload, fluid balance, and patient outcomes. Results: 167 patients were randomised. HDS was achieved after 4.7 h in the gelatine group and after 5.8 h in the crystalloid group (p = 0.3716). The gelatine group had a more favourable fluid balance at 24 h (medians: 3463.00 mL vs. 4164.00 mL; p = 0.0395) and less fluid overload (medians: 4296.05 vs. 5218.75%; p = 0.0217). No differences were observed in serious adverse events or mortality. Conclusions: The study provided clinical evidence of balanced gelatine solution for volume resuscitation in septic patients, although it was terminated prematurely. The early and protocol-based administration of gelatine was safe and effective in the enrolled patient population. Time to HDS was not different between groups but the gelatine-based regimen led to better fluid balance and less fluid overload. Full article
(This article belongs to the Section Hematology)
Show Figures

Figure 1

18 pages, 4458 KiB  
Article
Intelligent Hybrid SHM-NDT Approach for Structural Assessment of Metal Components
by Romaine Byfield, Ahmed Shabaka, Milton Molina Vargas and Ibrahim Tansel
Infrastructures 2025, 10(7), 174; https://doi.org/10.3390/infrastructures10070174 - 6 Jul 2025
Viewed by 382
Abstract
Structural health monitoring (SHM) plays a pivotal role in ensuring the integrity and safety of critical infrastructure and mechanical components. While traditional non-destructive testing (NDT) methods offer high-resolution data, they typically require periodic access and disassembly of equipment to conduct inspections. In contrast, [...] Read more.
Structural health monitoring (SHM) plays a pivotal role in ensuring the integrity and safety of critical infrastructure and mechanical components. While traditional non-destructive testing (NDT) methods offer high-resolution data, they typically require periodic access and disassembly of equipment to conduct inspections. In contrast, SHM employs permanently installed, cost-effective sensors to enable continuous monitoring, though often with reduced detail. This study presents an integrated hybrid SHM-NDT methodology enhanced by deep learning to enable the real-time monitoring and classification of mechanical stresses in structural components. As a case study, a 6-foot-long parallel flange I-beam, representing bridge truss elements, was subjected to variable bending loads to simulate operational conditions. The hybrid system utilized an ultrasonic transducer (NDT) for excitation and piezoelectric sensors (SHM) for signal acquisition. Signal data were analyzed using 1D and 2D convolutional neural networks (CNNs), long short-term memory (LSTM) models, and random forest classifiers to detect and classify load magnitudes. The AI-enhanced approach achieved 100% accuracy in 47 out of 48 tests and 94% in the remaining tests. These results demonstrate that the hybrid SHM-NDT framework, combined with machine learning, offers a powerful and adaptable solution for continuous monitoring and precise damage assessment of structural systems, significantly advancing maintenance practices and safety assurance. Full article
Show Figures

Figure 1

26 pages, 11049 KiB  
Article
Dynamics of Physiological Changes of Shiga Toxin-Producing Escherichia coli O157:H7 on Romaine Lettuce During Pre-Processing Cold Storage, and Subsequent Effects on Virulence and Stress Tolerance
by Dimple Sharma, Joshua O. Owade, Corrine J. Kamphuis, Avery Evans, E. Shaney Rump, Cleary Catur, Jade Mitchell and Teresa M. Bergholz
Appl. Microbiol. 2025, 5(2), 45; https://doi.org/10.3390/applmicrobiol5020045 - 6 May 2025
Viewed by 695
Abstract
If lettuce is contaminated in the field, Shiga toxin-producing E. coli (STEC) O157:H7 can survive through the distribution chain. Prolonged cold storage during transportation may impact pathogen physiology, affecting subsequent stress survival and virulence. Greenhouse-grown Romaine lettuce, inoculated with three STEC O157:H7 strains, [...] Read more.
If lettuce is contaminated in the field, Shiga toxin-producing E. coli (STEC) O157:H7 can survive through the distribution chain. Prolonged cold storage during transportation may impact pathogen physiology, affecting subsequent stress survival and virulence. Greenhouse-grown Romaine lettuce, inoculated with three STEC O157:H7 strains, was harvested after 24 h and stored at 2 °C for 5 d following 4 h at harvest temperature (9 °C or 17 °C). Culturable, persister, and viable but non-culturable (VBNC) cells were quantified. Virulence was evaluated using Galleria mellonella and acid tolerance at pH 2.5 and tolerance to 20–25 ppm free chlorine were quantified. Colder harvest temperature (9 °C) before cold storage led to greater transformation of STEC O157:H7 into dormant states and decreased virulence in most cases. Increasing length of cold storage led to decreased virulence and acid tolerance of STEC O157:H7 on lettuce, while having no significant effect on chlorine tolerance. These findings highlight that entry of STEC O157:H7 into dormant states during harvest and transportation at cold temperatures leads to decreased stress tolerance and virulence with increasing cold storage. Changes in STEC O157:H7 physiology on lettuce during cold storage can be integrated into risk assessment tools for producers, which can assist in identifying practices that minimize risk of STEC O157:H7 from consumption of lettuce. Full article
(This article belongs to the Special Issue Applied Microbiology of Foods, 3rd Edition)
Show Figures

Figure 1

21 pages, 2233 KiB  
Article
Effect of Organic and Synthetic Fertilizers on Nitrate, Nitrite, and Vitamin C Levels in Leafy Vegetables and Herbs
by Nga Thi Thu Nguyen, Bac Xuan Nguyen, Nasratullah Habibi, Maryam Dabirimirhosseinloo, Leonardo de Almeida Oliveira, Naoki Terada, Atsushi Sanada, Atsushi Kamata and Kaihei Koshio
Plants 2025, 14(6), 917; https://doi.org/10.3390/plants14060917 - 14 Mar 2025
Viewed by 994
Abstract
This study investigated the accumulation of nitrate and nitrite, as well as the vitamin C content, in various leafy vegetables, including amaranth greens, katuk, morning glory, squash leaves, vine spinach, leaf lettuce, romaine lettuce, Vietnamese basil, Vietnamese perilla, komatsuna, leeks, and spinach, grown [...] Read more.
This study investigated the accumulation of nitrate and nitrite, as well as the vitamin C content, in various leafy vegetables, including amaranth greens, katuk, morning glory, squash leaves, vine spinach, leaf lettuce, romaine lettuce, Vietnamese basil, Vietnamese perilla, komatsuna, leeks, and spinach, grown with either organic or synthetic fertilizers. The findings indicate that the type of fertilizer significantly influences nitrate accumulation and vitamin C content in these vegetables. Organic fertilizers were found to reduce nitrate levels and increase vitamin C content in amaranth greens, katuk, morning glory, squash leaves, vine spinach, leaf lettuce, Vietnamese basil, Vietnamese perilla, and spinach compared to the results for synthetic fertilizers. However, high nitrate concentrations in leaf lettuce, komatsuna, and spinach pose potential health risks. The study also identified elevated nitrate levels in vegetables that are not currently regulated. Furthermore, more than half of the samples contained nitrite, for which no maximum permissible level has been established. These findings underscore the importance of organic vegetable cultivation in enhancing both human health and environmental sustainability. Full article
(This article belongs to the Special Issue Nutrient Management for Better Crop Production)
Show Figures

Figure 1

11 pages, 1209 KiB  
Article
Association of Escherichia coli O157:H7 Density Change with Hydrogen Peroxide but Not Carbohydrate Concentration in the Leaf Content of Different Lettuce Types and Spinach
by Maria T. Brandl, Sui S. T. Hua and Siov B. L. Sarreal
Foods 2025, 14(4), 709; https://doi.org/10.3390/foods14040709 - 19 Feb 2025
Cited by 1 | Viewed by 623
Abstract
Leafy greens injuries occur from farm to table, causing leakage of cellular contents that promote the multiplication of foodborne pathogens and impose oxidative stress. Fresh beverages made from blended uncooked fruit and vegetables have become a popular food. The effect of cellular contents [...] Read more.
Leafy greens injuries occur from farm to table, causing leakage of cellular contents that promote the multiplication of foodborne pathogens and impose oxidative stress. Fresh beverages made from blended uncooked fruit and vegetables have become a popular food. The effect of cellular contents of different leafy greens on the multiplication of the important pathogen Escherichia coli O157:H7 (EcO157) under temperature abuse was investigated. Leafy greens consisted of spinach and different lettuce types (romaine, iceberg, butterhead, green leaf, and red leaf). Fructose, glucose, and sucrose concentrations in the leaves were quantified by HPLC. H2O2 concentration was measured via a peroxidase-based assay. Young leaves of iceberg, romaine, and green leaf lettuce held significantly greater total amounts of the three carbohydrates than middle-aged leaves. Except for iceberg and red leaf lettuce, all middle-aged leaves contained greater H2O2 than young leaves. EcO157 density change in leaf contents over 5 h incubation related neither to individual nor total carbohydrate concentration but was negatively associated with H2O2 concentration (regression analysis; p < 0.05). Given the common use of antioxidants to maintain the organoleptic aspects of homogenized produce beverages and certain fresh-cut produce, the antimicrobial effect of reactive oxygen species may be important to preserve in ensuring their microbial safety. Full article
Show Figures

Figure 1

18 pages, 1948 KiB  
Article
An Improved Method for Agrobacterium-Mediated Genetic Transformation of Three Types of Lettuce
by Meghan C. Roche, Wusheng Liu and Ricardo Hernández
Plants 2025, 14(4), 620; https://doi.org/10.3390/plants14040620 - 18 Feb 2025
Cited by 1 | Viewed by 1246
Abstract
Lettuce genetic transformation is genotype-dependent. In the present study, we have successfully developed an optimized Agrobacterium-mediated transformation protocol for elite lettuce cultivars, which belong to the romaine, leaf, and butterhead cultivar types. We optimized the type and concentration of plant growth regulators [...] Read more.
Lettuce genetic transformation is genotype-dependent. In the present study, we have successfully developed an optimized Agrobacterium-mediated transformation protocol for elite lettuce cultivars, which belong to the romaine, leaf, and butterhead cultivar types. We optimized the type and concentration of plant growth regulators (PGRs) and selection antibiotics and found that the use of 1-naphthaleneacetic acid (NAA; 0.10 mg/L) and 6-benzyladenine (BA; 0.25 mg/L) as plant growth regulators, the use of hygromycin (15 mg/L) for transgenic plant selection, and the use of cotyledons and the first true leaf as explants efficiently yielded transformed plants for seven out of the eleven tested cultivars, achieving a 24.3–100% transformation efficiency. These seven cultivars include two romaine-type cultivars, three leaf-type cultivars, and two butterhead-type cultivars, and mark the first successful genetic transformation of the romaine cultivars ‘Kahu’ and ‘Rosalita’, the leaf cultivars ‘Red Sails’ and ‘Royal Oak Leaf’, and the butterhead cultivar ‘Lollo Biondo’. We also observed that substituting hygromycin selection with kanamycin selection (40 mg/L) resulted in a 64.3% transformation efficiency in the butterhead-type ‘Mariska’, one of the remaining four cultivars. Our newly optimized protocols are applicable in elite lettuce cultivars for Agrobacterium-mediated genetic transformation and regeneration, enabling hygromycin or kanamycin selection. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Graphical abstract

9 pages, 1395 KiB  
Article
Association of the PhoQ/PhoP Stress Response System with the Internalization of Escherichia coli O157:H7 in Romaine Lettuce
by Fnu Chenggeer, Guolu Zheng and Azlin Mustapha
Microorganisms 2025, 13(2), 232; https://doi.org/10.3390/microorganisms13020232 - 22 Jan 2025
Viewed by 903
Abstract
Foodborne illness associated with Escherichia coli O157:H7 (E. coli O157) and romaine lettuce is a serious and persistent food safety issue. This study investigated the ability and associated genetic traits of five E. coli O157 strains—namely 86-24, 93-111, C7927, MF1847, and 505B—to [...] Read more.
Foodborne illness associated with Escherichia coli O157:H7 (E. coli O157) and romaine lettuce is a serious and persistent food safety issue. This study investigated the ability and associated genetic traits of five E. coli O157 strains—namely 86-24, 93-111, C7927, MF1847, and 505B—to internalize in romaine lettuce grown in soil and hydroponic systems. The results showed significant variations in the strains’ ability to internalize, with soil cultivation being more susceptible to E. coli O157 internalization relative to hydroponics. Whole-genome comparisons and an analysis of the five E. coli O157 strains revealed insights into the potential genetic traits associated with internalization capacity. A single unique gene, ORF-4296, was found to be present in all four internalizing strains (86-24, 93-111, C7927, and MF1847), but absent in the non-internalizing strain 505B. Immediately downstream of OFR-4296 is the PhoQ/PhoP operon, which regulates the important stress responses of E. coli O157. Our data showed that this operon was identical in the four internalizing strains but different in strain 505B. Specifically, the C-terminal of PhoQ in strain 505B had a distinct amino acid sequence. The inability of 505B to internalize may be linked to its lack of ORF-4296 and its distinctive C-terminal sequence of PhoQ. Full article
Show Figures

Figure 1

12 pages, 1990 KiB  
Article
Enhanced Detection of Viable Escherichia coli O157:H7 in Romaine Lettuce Wash Water Using On-Filter Propidium Monoazide-Quantitative PCR
by Zhao Chen
Microorganisms 2025, 13(1), 34; https://doi.org/10.3390/microorganisms13010034 - 27 Dec 2024
Viewed by 1227
Abstract
Accurate detection of viable Escherichia coli O157:H7 in fresh produce wash water is critical for ensuring food safety and mitigating foodborne illnesses. This study evaluated an optimized on-filter propidium monoazide (PMA)-quantitative PCR (qPCR) method for detecting viable E. coli O157:H7 in romaine lettuce [...] Read more.
Accurate detection of viable Escherichia coli O157:H7 in fresh produce wash water is critical for ensuring food safety and mitigating foodborne illnesses. This study evaluated an optimized on-filter propidium monoazide (PMA)-quantitative PCR (qPCR) method for detecting viable E. coli O157:H7 in romaine lettuce wash water, involving PMA pretreatment on a filter to block DNA amplification from dead cells. The method consistently detected viable cells across chemical oxygen demand (COD) levels of 1000 and 200 mg O2/L, with no significant differences (p > 0.05), indicating its tolerance to organic matter interference. Optimization experiments identified 10 µM PMA with a 10 min exposure time as the most effective pretreatment, achieving efficient inhibition of DNA from dead cells while preserving viable cell integrity. The limit of detection (LOD) was 1.3 CFU/mL, confirming its suitability for detecting low bacterial loads. Performance evaluations revealed that PMA-qPCR was accurate at viable-to-dead cell ratios of 1:10 or higher but became less reliable when dead cells outnumbered viable cells by a factor of 10 or more. The study demonstrates the potential of on-filter PMA-qPCR for routine food safety monitoring protocols in the fresh produce industry, while highlighting the critical role of viable-to-dead cell ratios in ensuring accurate detection, particularly in challenging samples with high dead cell loads. Full article
Show Figures

Figure 1

16 pages, 593 KiB  
Article
Dietary Risk Assessment of Cadmium Exposure Through Commonly Consumed Foodstuffs in Mexico
by Alejandra Cantoral, Sonia Collado-López, Larissa Betanzos-Robledo, Héctor Lamadrid-Figueroa, Betzabeth A. García-Martínez, Camilo Ríos, Araceli Díaz-Ruiz, Rosa María Mariscal-Moreno and Martha María Téllez-Rojo
Foods 2024, 13(22), 3649; https://doi.org/10.3390/foods13223649 - 16 Nov 2024
Cited by 4 | Viewed by 5956
Abstract
Cadmium (Cd) is a toxic heavy metal widely distributed in foodstuffs. In Mexico, few studies have evaluated Cd content in foods. This study aimed to determine Cd concentrations in foodstuffs that are highly consumed and bought in Mexico City to identify foods exceeding [...] Read more.
Cadmium (Cd) is a toxic heavy metal widely distributed in foodstuffs. In Mexico, few studies have evaluated Cd content in foods. This study aimed to determine Cd concentrations in foodstuffs that are highly consumed and bought in Mexico City to identify foods exceeding the Maximum Level (ML) and to assess the health risks of theoretical Cd intake from a diet following the Mexican Dietary Guidelines. A total of 143 foodstuffs were analyzed by atomic absorption spectrophotometry. Theoretical Cd intake was estimated in portions per week and compared with the Cd Tolerable Weekly Intake (TWI = 2.5 μg/kg per body weight). A total of 68.5% of the foodstuffs had detectable Cd concentrations. Higher concentrations were found in oyster mushrooms (0.575 mg/kg), romaine lettuce (0.335 mg/kg), and cocoa powder (0.289 mg/kg). Food groups with higher mean concentrations were vegetables (0.084 mg/kg) and snacks, sweets, and desserts (0.049 mg/kg). Ancho chili and romaine lettuce exceed the ML. The theoretical Cd intake estimation was 1.80, 2.05, and 3.82 μg/kg per body weight for adults, adolescents, and school-age children, respectively. This theoretical Cd intake represents a health risk only for school children exceeding the TWI by 53.2%. Our study confirms the presence and risk of Cd in Mexican foodstuffs and highlights the importance of monitoring programs. Full article
Show Figures

Figure 1

17 pages, 2150 KiB  
Review
Liquid and Tissue Biopsies for Lung Cancer: Algorithms and Perspectives
by Paul Hofman
Cancers 2024, 16(19), 3340; https://doi.org/10.3390/cancers16193340 - 29 Sep 2024
Cited by 3 | Viewed by 3119
Abstract
The targeted therapies and immunotherapies in thoracic oncology, particularly for NS-NSCLC, are associated with an increase in the number of predictive biomarkers to be assessed in routine clinical practice. These treatments are administered thanks to marketing authorization for use in daily practice or [...] Read more.
The targeted therapies and immunotherapies in thoracic oncology, particularly for NS-NSCLC, are associated with an increase in the number of predictive biomarkers to be assessed in routine clinical practice. These treatments are administered thanks to marketing authorization for use in daily practice or are evaluated during clinical trials. Since the molecular targets to be identified are more and more complex and numerous, it is now mandatory to use NGS. NGS can be developed from both tissue and fluid (mainly blood). The blood tests in oncology, so-called “liquid biopsies” (LB), are performed with plasmatic circulating free DNA (cf-DNA) and are complementary to the molecular testing performed with a TB. LB use in lung cancer is associated with international guidelines, but additional algorithms could be set up. However, even if useful for better care of patients, notably with advanced and metastatic NS-NSCLC, until now LB are not often integrated into daily practice, at least in Europe and notably in France. The purpose of this review is to describe the different opportunities and algorithms leading to the identification of the molecular signature of NS-NSCLC, using both tissue and liquid biopsies, and to introduce the principle limitations but also some perspectives in this field. Full article
Show Figures

Figure 1

22 pages, 2684 KiB  
Article
Aggregative Swab Sampling Method for Romaine Lettuce Show Similar Quality and Safety Indicators and Microbial Profiles Compared to Composite Produce Leaf Samples in a Pilot Study
by Rachel J. Gathman, Jorge Quintanilla Portillo, Gustavo A. Reyes, Genevieve Sullivan and Matthew J. Stasiewicz
Foods 2024, 13(19), 3080; https://doi.org/10.3390/foods13193080 - 27 Sep 2024
Cited by 1 | Viewed by 1385
Abstract
Composite produce leaf samples from commercial production rarely test positive for pathogens, potentially due to low pathogen prevalence or the relatively small number of plants sampled. Aggregative sampling may offer a more representative alternative. This pilot study investigated whether aggregative swab samples performed [...] Read more.
Composite produce leaf samples from commercial production rarely test positive for pathogens, potentially due to low pathogen prevalence or the relatively small number of plants sampled. Aggregative sampling may offer a more representative alternative. This pilot study investigated whether aggregative swab samples performed similarly to produce leaf samples in their ability to recover quality indicators (APCs and coliforms), detect Escherichia coli, and recover representative microbial profiles. Aggregative swabs of the outer leaves of romaine plants (n = 12) and composite samples consisting of various grabs of produce leaves (n = 14) were collected from 60 by 28 ft sections of a one-acre commercial romaine lettuce field. Aerobic plate counts were 9.17 ± 0.43 and 9.21 ± 0.42 log(CFU/g) for produce leaf samples and swabs, respectively. Means and variance were not significantly different (p = 0.38 and p = 0.92, respectively). Coliform recoveries were 3.80 ± 0.76 and 4.19 ± 1.15 log(CFU/g) for produce leaf and swabs, respectively. Means and variances were not significantly different (p = 0.30 and p = 0.16, respectively). Swabs detected generic E. coli in 8 of 12 samples, more often than produce leaf samples (3 of 14 positive, Fisher’s p = 0.045). Full-length 16S rRNA microbial profiling revealed that swab and produce leaf samples did not show significantly different alpha diversities (p = 0.75) and had many of the most prevalent bacterial taxa in common and in similar abundances. These data suggest that aggregative swabs perform similarly to, if not better than, produce leaf samples in recovering indicators of quality (aerobic and coliform bacteria) and food safety (E. coli), justifying further method development and validation. Full article
(This article belongs to the Special Issue Advances in Foodborne Pathogen Analysis and Detection)
Show Figures

Figure 1

17 pages, 5119 KiB  
Article
Application of a Real-Time Field-Programmable Gate Array-Based Image-Processing System for Crop Monitoring in Precision Agriculture
by Sabiha Shahid Antora, Mohammad Ashik Alahe, Young K. Chang, Tri Nguyen-Quang and Brandon Heung
AgriEngineering 2024, 6(3), 3345-3361; https://doi.org/10.3390/agriengineering6030191 - 14 Sep 2024
Cited by 1 | Viewed by 1726
Abstract
Precision agriculture (PA) technologies combined with remote sensors, GPS, and GIS are transforming the agricultural industry while promoting sustainable farming practices with the ability to optimize resource utilization and minimize environmental impact. However, their implementation faces challenges such as high computational costs, complexity, [...] Read more.
Precision agriculture (PA) technologies combined with remote sensors, GPS, and GIS are transforming the agricultural industry while promoting sustainable farming practices with the ability to optimize resource utilization and minimize environmental impact. However, their implementation faces challenges such as high computational costs, complexity, low image resolution, and limited GPS accuracy. These issues hinder timely delivery of prescription maps and impede farmers’ ability to make effective, on-the-spot decisions regarding farm management, especially in stress-sensitive crops. Therefore, this study proposes field programmable gate array (FPGA)-based hardware solutions and real-time kinematic GPS (RTK-GPS) to develop a real-time crop-monitoring system that can address the limitations of current PA technologies. Our proposed system uses high-accuracy RTK and real-time FPGA-based image-processing (RFIP) devices for data collection, geotagging real-time field data via Python and a camera. The acquired images are processed to extract metadata then visualized as a heat map on Google Maps, indicating green area intensity based on romaine lettuce leafage. The RFIP system showed a strong correlation (R2 = 0.9566) with a reference system and performed well in field tests, providing a Lin’s concordance correlation coefficient (CCC) of 0.8292. This study demonstrates the potential of the developed system to address current PA limitations by providing real-time, accurate data for immediate decision making. In the future, this proposed system will be integrated with autonomous farm equipment to further enhance sustainable farming practices, including real-time crop health monitoring, yield assessment, and crop disease detection. Full article
Show Figures

Figure 1

19 pages, 2298 KiB  
Article
Agricultural Mitigation Strategies to Reduce the Impact of Romaine Lettuce Contamination
by Walid El Kayal, Linda Darwiche, Yasmine A. Farhat, Mariane Hdeib, Roaa AlJardaly, Mostapha Shbaro and Christelle F. Iskandar
Plants 2024, 13(17), 2460; https://doi.org/10.3390/plants13172460 - 3 Sep 2024
Cited by 1 | Viewed by 3710
Abstract
Background: Leafy greens, particularly romaine lettuce, are often associated with outbreaks due to their susceptibility to contamination from various environmental sources. This study aimed to evaluate the presence of E. coli, Salmonella, copper, nickel, zinc, and manganese in irrigation water, lettuce [...] Read more.
Background: Leafy greens, particularly romaine lettuce, are often associated with outbreaks due to their susceptibility to contamination from various environmental sources. This study aimed to evaluate the presence of E. coli, Salmonella, copper, nickel, zinc, and manganese in irrigation water, lettuce leaves, and agricultural soil in the Litani River Basin (LRB), Lebanon. Method: Samples were collected from five demonstration plots employing different agricultural practices. Heavy metal concentrations were determined using atomic absorption spectrometry, while E. coli and Salmonella testing were conducted through conventional culturing techniques. The impact of E. coli contamination on seed germination and the interaction effects between E. coli and heavy metals were also examined. The study also compared the effectiveness of various irrigation systems in reducing bacterial contamination. Results: The results demonstrated that contamination levels varied significantly across the plots and irrigation types. This variation underscores the necessity of site-specific mitigation strategies to enhance food safety. Our findings highlight the importance of selecting appropriate irrigation methods and implementing tailored agricultural practices to minimize the risk of contamination. Conclusion: This research provides valuable insights for optimizing agricultural practices in the LRB to ensure food safety and environmental sustainability. Full article
Show Figures

Figure 1

26 pages, 5557 KiB  
Article
Changes in Spectral Reflectance, Photosynthetic Performance, Chlorophyll Fluorescence, and Growth of Mini Green Romaine Lettuce According to Various Light Qualities in Indoor Cultivation
by Joo Hwan Lee, Yong Beom Kwon, In-Lee Choi, Hyuk Sung Yoon, Jidong Kim, Yongduk Kim and Ho-Min Kang
Horticulturae 2024, 10(8), 860; https://doi.org/10.3390/horticulturae10080860 - 14 Aug 2024
Cited by 3 | Viewed by 1325
Abstract
Light quality can be stated to be the identity of an artificial light source, and although the response of light quality may vary depending on the crop, the effect is clearly visible and can produce various results depending on the combination of an [...] Read more.
Light quality can be stated to be the identity of an artificial light source, and although the response of light quality may vary depending on the crop, the effect is clearly visible and can produce various results depending on the combination of an artificial light source. This study investigated the spectral reflectance, photosynthetic performance, and chlorophyll fluorescence of mini green romaine lettuce based on light quality. Most parameters related to spectral reflectance showed the best results under blue light, and photosynthetic performance was more effective with mixed light than with single-colored light, among which blue + red (BR)-LED was the most suitable. Red light was ineffective, showing mostly low results in parameters of spectral reflectance and photosynthetic performance. In the case of chlorophyll fluorescence, the light quality influenced photomorphogenesis, resulting in increased leaf length and width with R- and quantum dot (QD)-LED, which expanded the leaf area and allowed for more external light to be captured (ABS/RC and TRo/RC). However, the ratio of electronized energy (ETo/RC) was low, and the amount of energy dissipated as heat (DIo/RC) was high. Consequently, the degree of electron acceptor reduction and overall photosynthetic performance (PIABS and PItotal) were lower compared to other light qualities. Additionally, the contrasting results of QD-LED and BR-LED were attributed to the form of red light and the presence or absence of far-red light when comparing spectra. Principal component analysis also clearly distinguished light qualities for photosynthesis and growth. Growth was increased by red (R)- and QD-LED, while photosynthetic performance was increased by BR- and blue (B)-LED. Full article
(This article belongs to the Special Issue Use and Management of Artificial Light in Horticultural Plants)
Show Figures

Figure 1

Back to TopTop