Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (782)

Search Parameters:
Keywords = rocking curve

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 2439 KiB  
Article
Study on the Deformation Characteristics of the Surrounding Rock and Concrete Support Parameter Design for Deep Tunnel Groups
by Zhiyun Deng, Jianqi Yin, Peng Lin, Haodong Huang, Yong Xia, Li Shi, Zhongmin Tang and Haijun Ouyang
Appl. Sci. 2025, 15(15), 8295; https://doi.org/10.3390/app15158295 - 25 Jul 2025
Viewed by 77
Abstract
The deformation characteristics of the surrounding rock in tunnel groups are considered critical for the design of support structures and the assurance of the long-term safety of deep-buried diversion tunnels. The deformation behavior of surrounding rock in tunnel groups was investigated to guide [...] Read more.
The deformation characteristics of the surrounding rock in tunnel groups are considered critical for the design of support structures and the assurance of the long-term safety of deep-buried diversion tunnels. The deformation behavior of surrounding rock in tunnel groups was investigated to guide structural support design. Field tests and numerical simulations were performed to analyze the distribution of ground stress and the ground reaction curve under varying conditions, including rock type, tunnel spacing, and burial depth. A solid unit–structural unit coupled simulation approach was adopted to derive the two-liner support characteristic curve and to examine the propagation behavior of concrete cracks. The influences of surrounding rock strength, reinforcement ratio, and secondary lining thickness on the bearing capacity of the secondary lining were systematically evaluated. The following findings were obtained: (1) The tunnel group effect was found to be negligible when the spacing (D) was ≥65 m and the burial depth was 1600 m. (2) Both P0.3 and Pmax of the secondary lining increased linearly with reinforcement ratio and thickness. (3) For surrounding rock of grade III (IV), 95% ulim and 90% ulim were found to be optimal support timings, with secondary lining forces remaining well below the cracking stress during construction. (4) For surrounding rock of grade V in tunnels with a burial depth of 200 m, 90% ulim is recommended as the initial support timing. Support timings for tunnels with burial depths between 400 m and 800 m are 40 cm, 50 cm, and 60 cm, respectively. Design parameters should be adjusted based on grouting effects and monitoring data. Additional reinforcement is recommended for tunnels with burial depths between 1000 m and 2000 m to improve bearing capacity, with measures to enhance impermeability and reduce external water pressure. These findings contribute to the safe and reliable design of support structures for deep-buried diversion tunnels, providing technical support for design optimization and long-term operation. Full article
(This article belongs to the Section Civil Engineering)
17 pages, 3321 KiB  
Article
Multi-Objective Automated Machine Learning for Inversion of Mesoscopic Parameters in Discrete Element Contact Models
by Xu Ao, Shengpeng Hao, Yuyu Zhang and Wenyu Xu
Appl. Sci. 2025, 15(15), 8181; https://doi.org/10.3390/app15158181 - 23 Jul 2025
Viewed by 98
Abstract
Accurate calibration of mesoscopic contact model parameters is essential for ensuring the reliability of Particle Flow Code in Three Dimensions (PFC3D) simulations in geotechnical engineering. Trial-and-error approaches are often used to determine the parameters of the contact model, but they are time-consuming, labor-intensive, [...] Read more.
Accurate calibration of mesoscopic contact model parameters is essential for ensuring the reliability of Particle Flow Code in Three Dimensions (PFC3D) simulations in geotechnical engineering. Trial-and-error approaches are often used to determine the parameters of the contact model, but they are time-consuming, labor-intensive, and offer no guarantee of parameter validity or simulation credibility. Although conventional machine learning techniques have been applied to invert the contact model parameters, they are hampered by the difficulty of selecting the optimal hyperparameters and, in some cases, insufficient data, which limits both the predictive accuracy and robustness. In this study, a total of 361 PFC3D uniaxial compression simulations using a linear parallel bond model with varied mesoscopic parameters were generated to capture a wide range of rock and geotechnical material behaviors. From each stress–strain curve, eight characteristic points were extracted as inputs to a multi-objective Automated Machine Learning (AutoML) model designed to invert three key mesoscopic parameters, i.e., the elastic modulus (E), stiffness ratio (ks/kn), and degraded elastic modulus (Ed). The developed AutoML model, comprising two hidden layers of 256 and 32 neurons with ReLU activation function, achieved coefficients of determination (R2) of 0.992, 0.710, and 0.521 for E, ks/kn, and Ed, respectively, demonstrating acceptable predictive accuracy and generalizability. The multi-objective AutoML model was also applied to invert the parameters from three independent uniaxial compression tests on rock-like materials to validate its practical performance. The close match between the experimental and numerically simulated stress–strain curves confirmed the model’s reliability for mesoscopic parameter inversion in PFC3D. Full article
Show Figures

Figure 1

16 pages, 4597 KiB  
Article
Synthesis and Property Analysis of a High-Temperature-Resistant Polymeric Surfactant and Its Promoting Effect on Kerogen Pyrolysis Evaluated via Molecular Dynamics Simulation
by Jie Zhang, Zhen Zhao, Jinsheng Sun, Shengwei Dong, Dongyang Li, Yuanzhi Qu, Zhiliang Zhao and Tianxiang Zhang
Polymers 2025, 17(15), 2005; https://doi.org/10.3390/polym17152005 - 22 Jul 2025
Viewed by 144
Abstract
Surfactants can be utilized to improve oil recovery by changing the performance of reservoirs in rock pores. Kerogen is the primary organic matter in shale; however, high temperatures will affect the overall performance of this surfactant, resulting in a decrease in its activity [...] Read more.
Surfactants can be utilized to improve oil recovery by changing the performance of reservoirs in rock pores. Kerogen is the primary organic matter in shale; however, high temperatures will affect the overall performance of this surfactant, resulting in a decrease in its activity or even failure. The effect of surfactants on kerogen pyrolysis has rarely been researched. Therefore, this study synthesized a polymeric surfactant (PS) with high temperature resistance and investigated its effect on kerogen pyrolysis under the friction of drill bits or pipes via molecular dynamics. The infrared spectra and thermogravimetric and molecular weight curves of the PS were researched, along with its surface tension, contact angle, and oil saturation measurements. The results showed that PS had a low molecular weight, with an MW value of 124,634, and good thermal stability, with a main degradation temperature of more than 300 °C. It could drop the surface tension of water to less than 25 mN·m−1 at 25–150 °C, and the use of slats enhanced its surface activity. The PS also changed the contact angles from 127.96° to 57.59° on the surface of shale cores and reversed to a water-wet state. Additionally, PS reduced the saturated oil content of the shale core by half and promoted oil desorption, indicating a good cleaning effect on the shale oil reservoir. The kerogen molecules gradually broke down into smaller molecules and produced the final products, including methane and shale oil. The main reaction area in the system was the interface between kerogen and the surfactant, and the small molecules produced on the interface diffused to both ends. The kinetics of the reaction were controlled by two processes, namely, the step-by-step cleavage process of macromolecules and the side chain cleavage to produce smaller molecules in advance. PS could not only desorb oil in the core but also promote the pyrolysis of kerogen, suggesting that it has good potential for application in shale oil exploration and development. Full article
Show Figures

Figure 1

28 pages, 5586 KiB  
Article
Vertical Equilibrium Model Analysis for CO2 Storage
by Mohammadsajjad Zeynolabedini and Ashkan Jahanbani Ghahfarokhi
Gases 2025, 5(3), 16; https://doi.org/10.3390/gases5030016 - 16 Jul 2025
Viewed by 190
Abstract
This work uses the MATLAB Reservoir Simulation Toolbox (MRST) to reduce the 3D reservoir model into a 2D version in order to investigate CO2 storage in the Aurora model using the vertical equilibrium (VE) model. For this purpose, we used an open-source [...] Read more.
This work uses the MATLAB Reservoir Simulation Toolbox (MRST) to reduce the 3D reservoir model into a 2D version in order to investigate CO2 storage in the Aurora model using the vertical equilibrium (VE) model. For this purpose, we used an open-source reservoir simulator, MATLAB Reservoir Simulation Toolbox (MRST). MRST is an open-source reservoir simulator, with supplementary modules added to enhance its versatility in addition to a core set of procedures. A fully implicit discretization is used in the numerical formulation of MRST-co2lab enabling the integration of simulators with vertical equilibrium (VE) models to create hybrid models. This model is then compared with the Eclipse model in terms of properties and simulation results. The relative permeability of water and gas can be compared to verify that the model fits the original Eclipse model. Comparing the fluid viscosities used in MRST and Eclipse also reveals comparable tendencies. However, reservoir heterogeneity is the reason for variations in CO2 plume morphologies. The upper layers of the Eclipse model have lower permeability than the averaged MRST model, which has a substantial impact on CO2 transport. According to the study, after 530 years, about 17 MT of CO2 might be stored, whereas 28 MT might escape the reservoir, since after 530 years CO2 plume reaches completely the open northern boundary. Additionally, a sensitivity analysis study has been conducted on permeability, porosity, residual gas saturation, rock compressibility, and relative permeability curves which are the five uncertain factors in this model. Although plume migration is highly sensitive to permeability, porosity, and rock compressibility variation, it shows a slight change with residual gas saturation and relative permeability curve in this study. Full article
Show Figures

Figure 1

20 pages, 1539 KiB  
Article
The Impact of Rock Morphology on Gas Dispersion in Underground Hydrogen Storage
by Tri Pham, Rouhi Farajzadeh and Quoc P. Nguyen
Energies 2025, 18(14), 3693; https://doi.org/10.3390/en18143693 - 12 Jul 2025
Viewed by 199
Abstract
Fluid dispersion directly influences the transport, mixing, and efficiency of hydrogen storage in depleted gas reservoirs. Pore structure parameters, such as pore size, throat geometry, and connectivity, influence the complexity of flow pathways and the interplay between advective and diffusive transport mechanisms. Hence, [...] Read more.
Fluid dispersion directly influences the transport, mixing, and efficiency of hydrogen storage in depleted gas reservoirs. Pore structure parameters, such as pore size, throat geometry, and connectivity, influence the complexity of flow pathways and the interplay between advective and diffusive transport mechanisms. Hence, these factors are critical for predicting and controlling flow behavior in the reservoirs. Despite its importance, the relationship between pore structure and dispersion remains poorly quantified, particularly under elevated flow conditions. To address this gap, this study employs pore network modeling (PNM) to investigate the influence of sandstone and carbonate structures on fluid flow properties at the micro-scale. Eleven rock samples, comprising seven sandstone and four carbonate, were analyzed. Pore network extraction from CT images was used to obtain detailed pore structure parameters and their statistical measures. Pore-scale simulations were conducted across 60 scenarios with varying average interstitial velocities and water as the injected fluid. Effluent hydrogen concentrations were measured to generate elution curves as a function of injected pore volumes (PV). This approach enables the assessment of the relationship between the dispersion coefficient and pore structure parameters across all rock samples at consistent average interstitial velocities. Additionally, dispersivity and n-exponent values were calculated and correlated with pore structure parameters. Full article
(This article belongs to the Special Issue Green Hydrogen Energy Production)
Show Figures

Figure 1

14 pages, 6249 KiB  
Article
Application of the NOA-Optimized Random Forest Algorithm to Fluid Identification—Low-Porosity and Low-Permeability Reservoirs
by Qunying Tang, Yangdi Lu, Xiaojing Yang, Yuping Li, Wei Zhang, Qiangqiang Yang, Zhen Tian and Rui Deng
Processes 2025, 13(7), 2132; https://doi.org/10.3390/pr13072132 - 4 Jul 2025
Viewed by 294
Abstract
As an important unconventional oil and gas resource, tight oil exploration and development is of great significance to ensure energy supply under the background of continuous growth of global energy demand. Low-porosity and low-permeability reservoirs are characterized by tight rock properties, poor physical [...] Read more.
As an important unconventional oil and gas resource, tight oil exploration and development is of great significance to ensure energy supply under the background of continuous growth of global energy demand. Low-porosity and low-permeability reservoirs are characterized by tight rock properties, poor physical properties, and complex pore structure, and as a result the fine calculation of logging reservoir parameters faces great challenges. In addition, the crude oil in this area has high viscosity, the formation water salinity is low, and the oil reservoir resistivity shows significant spatial variability in the horizontal direction, which further increases the difficulty of oil and water reservoir identification and affects the accuracy of oil saturation calculation. Targeting the above problems, the Nutcracker Optimization Algorithm (NOA) was used to optimize the hyperparameters of the random forest classification model, and then the optimal hyperparameters were input into the random forest model, and the conventional logging curve and oil test data were combined to identify and classify the reservoir fluids, with the final accuracy reaching 94.92%. Compared with the traditional Hingle map intersection method, the accuracy of this method is improved by 14.92%, which verifies the reliability of the model for fluid identification of low-porosity and low-permeability reservoirs in the research block and provides reference significance for the next oil test and production test layer in this block. Full article
(This article belongs to the Special Issue Oil and Gas Drilling Processes: Control and Optimization, 2nd Edition)
Show Figures

Figure 1

23 pages, 8674 KiB  
Article
Characterization of Matrix Pore Structure of a Deep Coal-Rock Gas Reservoir in the Benxi Formation, NQ Block, ED Basin
by Guangfeng Liu, Dianyu Wang, Xiang Peng, Qingjiu Zhang, Bofeng Liu, Zhoujun Luo, Zeyu Zhang and Daoyong Yang
Eng 2025, 6(7), 142; https://doi.org/10.3390/eng6070142 - 30 Jun 2025
Viewed by 265
Abstract
In this study, a comprehensive experimental framework was developed to quantitatively characterize the pore structure of a deep coal-rock (DCR; reservoirs below [3000 m]) gas reservoir. Experimentally, petrological and mineral characteristics were determined by performing proximate analysis and scanning electron microscopy (SEM) as [...] Read more.
In this study, a comprehensive experimental framework was developed to quantitatively characterize the pore structure of a deep coal-rock (DCR; reservoirs below [3000 m]) gas reservoir. Experimentally, petrological and mineral characteristics were determined by performing proximate analysis and scanning electron microscopy (SEM) as well as by measuring vitrinite reflectance and maceral components. Additionally, physisorption and high-pressure mercury injection (HPMI) tests were conducted to quantitatively characterize the nano- to micron-scale pores in the DCR gas reservoir at multiple scales. The DCR in the NQ Block is predominantly composed of vitrinite, accounting for approximately 77.75%, followed by inertinite. The pore space is predominantly characterized by cellular pores, but porosity development is relatively limited as most of such pores are extensively filled with clay minerals. The isothermal adsorption curves of CO2 and N2 in the NQ Block and the DJ Block exhibit very similar variation patterns. The pore types and morphologies of the DCR reservoir are relatively consistent, with a significant development of nanoscale pores in both blocks. Notably, micropore metrics per unit mass (pore volume (PV): 0.0242 cm3/g; and specific surface area (SSA): 77.7545 m2/g) indicate 50% lower gas adsorption potential in the DJ Block. In contrast, the PV and SSA of the mesopores per unit mass in the NQ Block are relatively consistent with those in the DJ and SF Blocks. Additionally, the peak mercury intake in the NQ Block occurs within the pore diameter < 20 nm, with nearly 60% of the mercury beginning to enter in large quantities only when the pore size exceeds 20 nm. This indicates that nanoscale pores are predominantly developed in the DCR of the NQ block, which aligns with the findings from physical adsorption experiments and SEM analyses. Overall, the development characteristics of multi-scale pores in the DCR formations of the NQ Block and the eastern part of the Basin are relatively similar, with both total PV and total SSA showing an L-shaped distribution. Due to the disparity in micropore SSA, however, the total SSA of the DJ Block is approximately twice that of the NQ Block. This discovery has established a robust foundation for the subsequent exploitation of natural gas resources in DCR formations within the NQ Block. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

20 pages, 6888 KiB  
Article
A New Method for Calculating Carbonate Mineral Content Based on the Fusion of Conventional and Special Logging Data—A Case Study of a Carbonate Reservoir in the M Oilfield in the Middle East
by Baoxiang Gu, Kaijun Tong, Li Wang, Zuomin Zhu, Hengyang Lv, Zhansong Zhang and Jianhong Guo
Processes 2025, 13(7), 1954; https://doi.org/10.3390/pr13071954 - 20 Jun 2025
Viewed by 439
Abstract
In this study, we propose a self-adaptive weighted multi-mineral inversion model (SQP_AW) based on Sequential Quadratic Programming (SQP) and the Adam optimization algorithm for the accurate evaluation of mineral content in carbonate reservoir rocks, addressing the high costs of traditional experimental methods and [...] Read more.
In this study, we propose a self-adaptive weighted multi-mineral inversion model (SQP_AW) based on Sequential Quadratic Programming (SQP) and the Adam optimization algorithm for the accurate evaluation of mineral content in carbonate reservoir rocks, addressing the high costs of traditional experimental methods and the strong parameter dependence in geophysical inversion. The model integrates porosity curves (compensated density, compensated neutron, and acoustic time difference), elastic modulus parameters (shear and bulk moduli), and nuclear magnetic porosity data for the construction of a multi-dimensional linear equation system, with calibration coefficients derived from core X-ray diffraction (XRD) data. The Adam algorithm dynamically optimizes the weights, solving the overdetermined equation system. We applied the method to the Asmari Formation in the M oilfield in the Middle East with 40 core samples for calibration, achieving a 0.91 fit with the XRD data. For eight additional uncalibrated samples from Well A, the fit reaches 0.87. With the introduction of the elastic modulus and nuclear magnetic porosity, the average relative error in mineral content decreases from 9.45% to 6.59%, and that in porosity estimation decreases from 8.1% to 7.1%. The approach is also scalable to elemental logging data, yielding inversion precision comparable to that of commercial software. Although the method requires a complete set of logging data and further validation of regional applicability for weight parameters, in future research, transfer learning and missing curve prediction could be incorporated to enhance its practical utility. Full article
Show Figures

Figure 1

34 pages, 12770 KiB  
Article
Immiscibility in Magma Conduits: Evidence from Granitic Enclaves
by Ya Tian, Guanglai Li, Yongle Yang, Chao Huang, Yinqiu Hu, Kai Xu and Ji Zhang
Minerals 2025, 15(7), 664; https://doi.org/10.3390/min15070664 - 20 Jun 2025
Viewed by 278
Abstract
Many granitic enclaves are developed in the volcanic channel of the Xiangshan volcanic basin. To explore their genesis, this study examined the petrography, geochemistry, LA-ICP-MS zircon U–Pb chronology, and zircon Hf isotopes of the granitic enclaves and compared them with the porphyroclastic lavas. [...] Read more.
Many granitic enclaves are developed in the volcanic channel of the Xiangshan volcanic basin. To explore their genesis, this study examined the petrography, geochemistry, LA-ICP-MS zircon U–Pb chronology, and zircon Hf isotopes of the granitic enclaves and compared them with the porphyroclastic lavas. In general, the granitic enclaves and porphyroclastic lavas have similar structures, and the rock-forming minerals and accessory minerals have relatively close compositions. In terms of rock geochemical characteristics, the granitic enclaves are richer in silicon and alkalis but have lower abundances of aluminum, magnesium, iron, and calcium than the porphyroclastic lavas. Rb, Th, K, Sm, and other elements are more enriched, whereas Ba, Ti, Nb, P, and other elements are more depleted. The granitic enclaves have lower rare earth contents (195.53 × 10−6–271.06 × 10−6) than the porphyroclastic lavas (246.67 × 10−6–314.27 × 10−6). The rare earth element distribution curves of the two are generally consistent, both right-leaning, and enriched with light rare earth patterns. The weighted average zircon U–Pb ages of two granitic enclave samples were 135.45 ± 0.54 Ma (MSWD = 0.62, n = 17) and 135.81 ± 0.60 Ma (MSWD = 0.40, n = 20), respectively, which are consistent with the weighted average age of a single porphyroclastic lava sample of 134.01 ± 0.53 Ma (MSWD = 2.0, n = 20). The zircons of the two kinds of rocks crystallize at almost the same temperature. The consistent trend of the rare earth element distribution curve of zircons in the granitic enclaves and the porphyroclastic lava samples indicates that the zircons of the two samples were formed in the same stage. The formation process of granitic enclaves may be that the lower crustal melt is induced to rise, and the crystallization differentiation occurs in the magma reservoir and is stored in the form of crystal mush, forming a shallow crystal mush reservoir. The crystal mush reservoir is composed of a large number of rock-forming minerals such as quartz, feldspar, and biotite, as well as accessory mineral crystals such as zircon and flowable intergranular melt. In the later stage of magma high evolution, a small and short-time magmatic activity caused a large amount of crystalline granitic crystal mush to pour into the volcanic pipeline. In the closed system of volcanic pipeline, the pressure and temperature decreased rapidly, and the supercooling degree increased, and the immiscibility finally formed pale granitic enclaves. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

22 pages, 5887 KiB  
Article
Path Planning of Underground Robots via Improved A* and Dynamic Window Approach
by Jianlong Dai, Yinghao Chai and Peiyin Xiong
Appl. Sci. 2025, 15(13), 6953; https://doi.org/10.3390/app15136953 - 20 Jun 2025
Viewed by 311
Abstract
This paper addresses the limitations of the A* algorithm in underground roadway path planning, such as proximity to roadway boundaries, intersection with obstacle corners, trajectory smoothness, and timely obstacle avoidance (e.g., fallen rocks, miners, and moving equipment). To overcome these challenges, we propose [...] Read more.
This paper addresses the limitations of the A* algorithm in underground roadway path planning, such as proximity to roadway boundaries, intersection with obstacle corners, trajectory smoothness, and timely obstacle avoidance (e.g., fallen rocks, miners, and moving equipment). To overcome these challenges, we propose an improved path planning algorithm integrating an enhanced A* method with an improved Dynamic Window Approach (DWA). First, a diagonal collision detection mechanism is implemented within the A* algorithm to effectively avoid crossing obstacle corners, thus enhancing path safety. Secondly, roadway width is incorporated into the heuristic function to guide paths toward the roadway center, improving stability and feasibility. Subsequently, based on multiple global path characteristics—including path length, average curvature, fluctuation degree, and direction change rate—an adaptive B-spline curve smoothing method generates smoother paths tailored to the robot’s kinematic requirements. Furthermore, the global path is segmented into local reference points for DWA, ensuring seamless integration of global and local path planning. To prevent local optimization traps during obstacle avoidance, a distance-based cost function is introduced into DWA’s evaluation criteria, maintaining alignment with the global path. Experimental results demonstrate that the proposed method significantly reduces node expansions by 43.79%, computation time by 16.28%, and path inflection points by 80.70%. The resultant path is smoother, centered within roadways, and capable of effectively avoiding dynamic and static obstacles, thereby ensuring the safety and efficiency of underground robotic transport operations. Full article
Show Figures

Figure 1

24 pages, 10811 KiB  
Article
Research on the Shear Performance of Carbonaceous Mudstone Under Natural and Saturated Conditions and Numerical Simulation of Slope Stability
by Jian Zhao, Hongying Chen and Rusong Nie
Appl. Sci. 2025, 15(12), 6935; https://doi.org/10.3390/app15126935 - 19 Jun 2025
Viewed by 239
Abstract
Rainfall can easily cause local sliding and collapse of carbonaceous mudstone deep road cut slopes. In order to study the strength characteristics of carbonaceous mudstone under different water environments, large-scale horizontal push shear tests were conducted on carbonaceous mudstone rock masses in their [...] Read more.
Rainfall can easily cause local sliding and collapse of carbonaceous mudstone deep road cut slopes. In order to study the strength characteristics of carbonaceous mudstone under different water environments, large-scale horizontal push shear tests were conducted on carbonaceous mudstone rock masses in their natural state and after immersion in saturated water. The push shear force–displacement relationship curve and fracture surface shape characteristics of carbonaceous mudstone samples were analyzed, and the shear strength index of carbonaceous mudstone was obtained, and numerical simulations on the stability and support effect of carbonaceous mudstone slopes were conducted. The research results indicate that carbonaceous mudstone can exhibit good structural properties and typical strain softening characteristics under natural conditions. The fracture surface, shear strength, and shear deformation process of carbonaceous mudstone samples will undergo significant changes after being soaked in saturated water. The average cohesion decreases by 33% compared to the natural state, and the internal friction angle decreases by 15%. The numerical simulation results also fully verify the attenuation of mechanical properties of carbonaceous mudstone after immersion, as well as the effectiveness of prestressed anchor cables and frame beams in supporting carbonaceous mudstone slopes. The research results provide an effective method for understanding the shear performance of carbonaceous mudstone and practical guidance for evaluating the stability and reinforcement design of carbonaceous mudstone slopes. Full article
Show Figures

Figure 1

35 pages, 8248 KiB  
Article
Pre-Failure Deformation Response and Dilatancy Damage Characteristics of Beishan Granite Under Different Stress Paths
by Yang Han, Dengke Zhang, Zheng Zhou, Shikun Pu, Jianli Duan, Lei Gao and Erbing Li
Processes 2025, 13(6), 1892; https://doi.org/10.3390/pr13061892 - 15 Jun 2025
Viewed by 344
Abstract
Different from general underground engineering, the micro-damage prior to failure of the surrounding rock has a significant influence on the geological disposal of high-level radioactive waste. However, the quantitative research on pre-failure dilatancy damage characteristics and stress path influence of hard brittle rocks [...] Read more.
Different from general underground engineering, the micro-damage prior to failure of the surrounding rock has a significant influence on the geological disposal of high-level radioactive waste. However, the quantitative research on pre-failure dilatancy damage characteristics and stress path influence of hard brittle rocks under high stress levels is insufficient currently, and especially, the stress path under simultaneous unloading of axial and confining pressures is rarely discussed. Therefore, three representative mechanical experimental studies were conducted on the Beishan granite in the pre-selected area for high-level radioactive waste (HLW) geological disposal in China, including increasing axial pressure with constant confining pressure (path I), increasing axial pressure with unloading confining pressure (path II), and simultaneous unloading of axial and confining pressures (path III). Using the deviatoric stress ratio as a reference, the evolution laws and characteristics of stress–strain relationships, deformation modulus, generalized Poisson’s ratio, dilatancy index, and dilation angle during the path bifurcation stage were quantitatively analyzed and compared. The results indicate that macro-deformation and the plastic dilatancy process exhibit strong path dependency. The critical value and growth gradient of the dilatancy parameter for path I are both the smallest, and the suppressive effect of the initial confining pressure is the most significant. The dilation gradient of path II is the largest, but the degree of dilatancy before the critical point is the smallest due to its susceptibility to fracture. The critical values of the dilatancy parameters for path III are the highest and are minimally affected by the initial confining pressure, indicating the most significant dilatancy properties. Establish the relationship between the deformation parameters and the crack-induced volumetric strain and define the damage variable accordingly. The critical damage state and the damage accumulation process under various stress paths were examined in detail. The results show that the damage evolution is obviously differentiated with the bifurcation of the stress paths, and three different types of damage curve clusters are formed, indicating that the damage accumulation path is highly dependent on the stress path. The research findings quantitatively reveal the differences in deformation response and damage characteristics of Beishan granite under varying stress paths, providing a foundation for studying the nonlinear mechanical behavior and damage failure mechanisms of hard brittle rock under complex loading conditions. Full article
Show Figures

Figure 1

20 pages, 6844 KiB  
Article
Influence of Water Immersion on Coal Rocks and Failure Patterns of Underground Coal Pillars Considering Strength Reduction
by Haihua Zhu, Peitao Wang, Kewei Zhang, Yijun Gao, Zhenwu Qi and Meifeng Cai
Appl. Sci. 2025, 15(12), 6700; https://doi.org/10.3390/app15126700 - 14 Jun 2025
Viewed by 339
Abstract
The long-term immersion of coal rock may affect its mechanical properties and failure modes, potentially impacting the stability of coal pillars. This work aims to investigate the influence of the immersion duration on the mechanical properties and fracture evolution processes of coal, employing [...] Read more.
The long-term immersion of coal rock may affect its mechanical properties and failure modes, potentially impacting the stability of coal pillars. This work aims to investigate the influence of the immersion duration on the mechanical properties and fracture evolution processes of coal, employing acoustic emission detection and the digital image correlation (DIC) method. The work focuses on the weakening law of the coal pillar dam in contact with water and obtains a model of the strength deterioration after different periods of water immersion. The stress–strain curves of coal specimens with varying immersion durations are obtained. The results show that the peak absorption rate of coal samples immersed in water transpires within 24 h, with fundamental saturation being achieved at between 25 and 30 days at saturation moisture content of 1.97%. The specimen’s compressive stress after being immersed in water for 7 days is 3.34 MPa, with strain of 0.18%. The cracking stress is 15.60 MPa, with strain of 0.54%. The peak stress is recorded at 27.65 MPa, with strain of 0.92%. The complete rupture stress measures 23.37 MPa, with the maximum strain at 0.95%. During the yielding stage, the specimen has the highest strain increment of 0.38%. Short-term immersion brings about an increase in the coal sample’s plasticity, exhibiting a relatively minor softening impact of water, resulting in comparatively intact fragmentation and modest breakage. A negative exponential function relationship is observed between the compressive strength of coal and the immersion duration. The mechanical reduction relationship is utilized to analyze the failure patterns of coal pillars in underground reservoirs. With prolonged water immersion, the damage area expands to include the coal pillars and the surrounding rock of the excavation area. Full article
Show Figures

Figure 1

17 pages, 6826 KiB  
Article
Mechanical Behavior and Fracture Evolution of Artificial Rock Specimens Within 3D-Printed Fractures
by Yijun Gao, Peitao Wang, Xingwang Fan, Qingru Liu, Zhenwu Qi and Meifeng Cai
Appl. Sci. 2025, 15(12), 6662; https://doi.org/10.3390/app15126662 - 13 Jun 2025
Viewed by 302
Abstract
Coal rock is characterized by numerous cracks, which significantly impact its mechanical properties, such as fracture evolution and strength. In this study, various fracture network models were created using three-dimensional (3D) printing technology. Employing rigid adhesive and different proportions of coal powder, coal-like [...] Read more.
Coal rock is characterized by numerous cracks, which significantly impact its mechanical properties, such as fracture evolution and strength. In this study, various fracture network models were created using three-dimensional (3D) printing technology. Employing rigid adhesive and different proportions of coal powder, coal-like samples with intricate fracture networks were successfully fabricated. To replicate the mechanical properties of natural coal rocks, uniaxial compression tests were conducted to investigate the mechanical characteristics and failure modes of samples with different coal powder ratios. Additionally, the mechanical response of samples with discrete fracture network (DFN) models was evaluated after freezing treatment. Findings revealed that increasing the coal powder content enhanced the strength of the samples, whereas the introduction of the DFN model reduced their compressive strength. Samples containing the DFN model predominantly exhibited longitudinal fractures as their failure mode, contrasting with the shear fractures observed in the solid model samples. Furthermore, under low-temperature conditions, the artificial specimens exhibited a distinct trend, where brittleness increased proportionally with coal powder content, a phenomenon attributed to the influence of AB adhesive. After applying freezing treatment to DFN model coal-like samples, stress–strain curves resembling those of actual coal rocks were observed, along with a slightly reduced compressive strength and a brittle failure mode characterized by oblique shear failure. Full article
Show Figures

Figure 1

22 pages, 6273 KiB  
Article
Numerical Simulation of In-Situ Direct Shear Test and Damage Failure Mechanism Study of Concrete-Bedrock Cementation Surface
by Hexin Ye, Jinlin Huang, Jianwei Zhang, Yu Lai, Kelei Cao, Yong Wang and Wenxuan Wang
Materials 2025, 18(12), 2718; https://doi.org/10.3390/ma18122718 - 10 Jun 2025
Viewed by 370
Abstract
Owing to the insufficient understanding of the mechanical properties and damage mechanisms of concrete-rock bonding interfaces in dam foundations, this study establishes a refined three-dimensional simulation model for direct shear tests of concrete-rock bonding interfaces based on in-situ direct shear tests conducted at [...] Read more.
Owing to the insufficient understanding of the mechanical properties and damage mechanisms of concrete-rock bonding interfaces in dam foundations, this study establishes a refined three-dimensional simulation model for direct shear tests of concrete-rock bonding interfaces based on in-situ direct shear tests conducted at a reservoir. The damage evolution process and failure mechanisms of the concrete-rock interface under different loading conditions are investigated. The results indicate that under varying normal stresses, the shear stress-shear displacement curve exhibits an initial increase followed by a gradual decrease, with peak shear strength ranging from 1.074 MPa to 2.073 MPa and a maximum error of 8.48%, meeting engineering requirements. The damage evolution process of the concrete-rock interface under different normal forces was simulated and compared with in-situ direct shear test results, confirming the accuracy of the simulation. The failure modes of the concrete-rock interface under different loading conditions can be categorized into three types: bonding interface failure, mixed shear failure, and rock failure. The failure mode is closely related to the magnitude of normal stress—as normal stress increases, the area of shear fracture along the bonding interface expands, and the fracture surface becomes smoother. The findings provide a theoretical basis for the design, anti-sliding stability, and risk analysis of similar concrete gravity dams. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

Back to TopTop