Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (540)

Search Parameters:
Keywords = rock geochemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3872 KiB  
Article
Sr-Nd-Hf Isotopic Characteristics of Ore-Bearing Intrusive Rocks in the Chating Cu-Au Deposit and Magushan Cu-Mo Deposit of Nanling-Xuancheng Ore Concentration Area and Their Geological Significance
by Linsen Jin, Xiaochun Xu, Xinyue Xu, Ruyu Bai, Zhongyang Fu, Qiaoqin Xie and Zhaohui Song
Minerals 2025, 15(8), 837; https://doi.org/10.3390/min15080837 (registering DOI) - 7 Aug 2025
Abstract
The Chating Cu-Au and Magushan Cu-Mo deposits in Anhui province are two representative deposits within the recently defined Nanling-Xuancheng ore concentration area in the Middle and Lower Yangtze River Metallogenic Belt (MLYB). Magmatism and mineralization for the area are not well known at [...] Read more.
The Chating Cu-Au and Magushan Cu-Mo deposits in Anhui province are two representative deposits within the recently defined Nanling-Xuancheng ore concentration area in the Middle and Lower Yangtze River Metallogenic Belt (MLYB). Magmatism and mineralization for the area are not well known at present due to a lack of in-depth studies on the petrogenesis of ore-bearing intrusive rocks and their relationship with deposits. Here, the ore-bearing intrusive rocks of the two deposits are investigated through analyses of whole-rock geochemistry and Sr-Nd isotopes, zircon U-Pb ages, and zircon Hf isotopes. The results reflect the two intrusions, both formed in the Early Cretaceous (138.9 ± 0.8 Ma and 132.2 ± 1.3 Ma). They belong to the sub-alkaline high-K calc-alkaline series, while trace elements are enriched in LILEs and LREE and depleted in HFSEs. However, the intrusions of the Chating deposit (Isr = 0.7064–0.7068; εNd(t) = −8.5–−7.3; εHf(t) = −11.9–−7.0) have obviously different Sr-Nd-Hf isotopic compositions from the intrusions of the Magushan deposit (Isr = 0.7079–0.7081; εNd(t) = −5.7–−5.4; εHf(t) = −5.4–−3.6). The characteristics indicate that the two intrusions were formed in the same diagenetic ages and tectonic settings and derived from a crust–mantle mixture with predominant mantle-derived materials. But the crust materials of sources are different, which further leads to different metallogenic elements, showing that the Chating deposit is enriched in Cu and Au, while the Magushan deposit is enriched in Mo. Moreover, the characteristics and magma sources of two intrusions and metallogenic elements correspond respectively to the Tongling Cu-Au polymetallic ore concentration area in the MLYB and the southern Anhui Mo polymetallic ore concentration area in the Jiangnan orogen. The correlation implies differences in magmatism and mineralization between the northwestern and southeastern parts of the Nanling-Xuancheng ore concentration area, demarcated by the Jiangnan Deep Fault. These variations were mainly controlled by the Pre-Sinian crustal basement. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

39 pages, 8119 KiB  
Article
Magmatic Redox Evolution and Porphyry–Skarn Transition in Multiphase Cu-Mo-W-Au Systems of the Eocene Tavşanlı Belt, NW Türkiye
by Hüseyin Kocatürk, Mustafa Kumral, Hüseyin Sendir, Mustafa Kaya, Robert A. Creaser and Amr Abdelnasser
Minerals 2025, 15(8), 792; https://doi.org/10.3390/min15080792 - 28 Jul 2025
Viewed by 331
Abstract
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite [...] Read more.
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite mineral chemistry, the petrogenetic controls on mineralization across four spatially associated mineralized regions (Kirazgedik, Güneybudaklar, Kozbudaklar, and Delice) were examined. The earliest and thermally most distinct phase is represented by the Kirazgedik porphyry system, characterized by high temperature (~930 °C), oxidized quartz monzodioritic intrusions emplaced at ~2.7 kbar. Rising fO2 and volatile enrichment during magma ascent facilitated structurally focused Cu-Mo mineralization. At Güneybudaklar, Re–Os geochronology yields an age of ~49.9 Ma, linking Mo- and W-rich mineralization to a transitional porphyry–skarn environment developed under moderately oxidized (ΔFMQ + 1.8 to +0.5) and hydrous (up to 7 wt.% H2O) magmatic conditions. Kozbudaklar represents a more reduced, volatile-poor skarn system, leading to Mo-enriched scheelite mineralization typical of late-stage W-skarns. The Delice system, developed at the contact of felsic cupolas and carbonates, records the broadest range of redox and fluid compositions. Mixed oxidized–reduced fluid signatures and intense fluid–rock interaction reflect complex, multistage fluid evolution involving both magmatic and external inputs. Geochemical and mineralogical trends—from increasing silica and Rb to decreasing Sr and V—trace a systematic evolution from mantle-derived to felsic, volatile-rich magmas. Structurally, mineralization is controlled by oblique fault zones that localize magma emplacement and hydrothermal flow. These findings support a unified genetic model in which porphyry and skarn mineralization styles evolved continuously from multiphase magmatic systems during syn-to-post-subduction processes, offering implications for exploration models in the Western Tethyan domain. Full article
Show Figures

Figure 1

20 pages, 9529 KiB  
Article
Geochemistry and Geochronology of the Late Permian Linxi Formation in the Songliao Basin, China: Tectonic Implications for the Paleo-Asian Ocean
by Xin Huang, Haihua Zhang, Liang Qiu, Gongjian Li, Yujin Zhang, Wei Chen, Shuwang Chen and Yuejuan Zheng
Minerals 2025, 15(8), 784; https://doi.org/10.3390/min15080784 - 25 Jul 2025
Viewed by 146
Abstract
The Central Asian Orogenic Belt (CAOB) represents a crucial area for understanding the tectonic evolution of the Paleo-Asian Ocean and surrounding orogenic systems. This study investigates the petrology, geochronology, and geochemistry of volcanic and clastic rocks from Well HFD3 in the northern Songliao [...] Read more.
The Central Asian Orogenic Belt (CAOB) represents a crucial area for understanding the tectonic evolution of the Paleo-Asian Ocean and surrounding orogenic systems. This study investigates the petrology, geochronology, and geochemistry of volcanic and clastic rocks from Well HFD3 in the northern Songliao Basin, which provides key insights into the tectonic development of this region. Zircon U–Pb dating of tuff samples from the Linxi Formation provides an accurate age of 251.1 ± 1.1 Ma, corresponding to the late Permian. Geochemical analyses show that the clastic rocks are rich in SiO2 (63.5%) and Al2O3 (13.7%), with lower K2O/Na2O ratios (0.01–1.55), suggesting low compositional maturity. Additionally, the trace element data reveal enrichment in light rare earth elements (LREEs) and depletion in Nb, Sr, and Ta, with a negative Eu anomaly, which indicates a felsic volcanic arc origin. The Chemical Index of Alteration (CIA) values (53.2–65.8) reflect weak chemical weathering, consistent with cold and dry paleo-climatic conditions. These findings suggest that the Linxi Formation clastic rocks are derived from felsic volcanic arcs in an active continental margin environment, linked to the subduction of the Paleo-Asian Ocean slab. The sedimentary conditions reflect a gradual transition from brackish to freshwater environments, corresponding with the final stages of subduction or the onset of orogeny. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

23 pages, 30355 KiB  
Article
Controls on Stylolite Formation in the Upper Cretaceous Kometan Formation, Zagros Foreland Basin, Iraqi Kurdistan
by Hussein S. Hussein, Ondřej Bábek, Howri Mansurbeg, Juan Diego Martín-Martín and Enrique Gomez-Rivas
Minerals 2025, 15(7), 761; https://doi.org/10.3390/min15070761 - 20 Jul 2025
Viewed by 910
Abstract
Stylolites are ubiquitous diagenetic products in carbonate rocks. They play a significant role in enhancing or reducing fluid flow in subsurface reservoirs. This study unravels the relationship between stylolite networks, carbonate microfacies, and the elemental geochemistry of Upper Cretaceous limestones of the Kometan [...] Read more.
Stylolites are ubiquitous diagenetic products in carbonate rocks. They play a significant role in enhancing or reducing fluid flow in subsurface reservoirs. This study unravels the relationship between stylolite networks, carbonate microfacies, and the elemental geochemistry of Upper Cretaceous limestones of the Kometan Formation (shallow to moderately deep marine) in Northern Iraq. Stylolites exhibit diverse morphologies across mud- and grain-supported limestone facies. Statistical analyses of stylolite spacing, wavelength, amplitude, and their intersections and connectivity indicate that grain size, sorting, and mineral composition are key parameters that determine the geometrical properties of the stylolites and stylolite networks. Stylolites typically exhibit weak connectivity and considerable vertical spacing when hosted in packstone facies with moderate grain sorting. Conversely, mud-supported limestones, marked by poor sorting and high textural heterogeneity, host well-developed stylolite networks characterized by high amplitude and frequent intersections, indicating significant dissolution and deformation processes. Stylolites in mud-supported facies are closely spaced and present heightened amplitudes and intensified junctions, with suture and sharp-peak type. This study unveils that stylolites can potentially enhance porosity in the studied formation. Full article
(This article belongs to the Special Issue Stylolites: Development, Properties, Inversion and Scaling)
Show Figures

Figure 1

29 pages, 14630 KiB  
Article
Tectonic Evolution of the Eastern Central Asian Orogenic Belt: Evidence from Magmatic Activity in the Faku Area, Northern Liaoning, China
by Shaoshan Shi, Yi Shi, Xiaofan Zhou, Nan Ju, Yanfei Zhang and Shan Jiang
Minerals 2025, 15(7), 736; https://doi.org/10.3390/min15070736 - 15 Jul 2025
Viewed by 279
Abstract
The Permian–Triassic magmatic record in the eastern Central Asian Orogenic Belt (CAOB) provides critical insights into the terminal stages of the Paleo-Asian Ocean (PAO) evolution, including collisional and post-collisional processes following its Late Permian closure. The northeastern China region, tectonically situated within the [...] Read more.
The Permian–Triassic magmatic record in the eastern Central Asian Orogenic Belt (CAOB) provides critical insights into the terminal stages of the Paleo-Asian Ocean (PAO) evolution, including collisional and post-collisional processes following its Late Permian closure. The northeastern China region, tectonically situated within the eastern segment of the CAOB, is traditionally known as the Xingmeng Orogenic Belt (XOR). This study integrates zircon U-Pb geochronology, whole-rock geochemistry, and zircon Hf isotopic analyses of intermediate-acid volcanic rocks and intrusive rocks from the former “Tongjiatun Formation” in the Faku area of northern Liaoning. The main objective is to explore the petrogenesis of these igneous rocks and their implications for the regional tectonic setting. Zircon U-Pb ages of these rocks range from 260.5 to 230.1 Ma, indicating Permian–Triassic magmatism. Specifically, the Gongzhuling rhyolite (260.5 ± 2.2 Ma) and Gongzhuling dacite (260.3 ± 2.4 Ma) formed during the Middle-Late Permian (270–256 Ma); the Wangjiadian dacite (243 ± 3.0 Ma) and Wafangxi rhyolite (243.9 ± 3.0 Ma) were formed in the late Permian-early Middle Triassic (256–242 Ma); the Haoguantun rhyolite (240.9 ± 2.2 Ma) and Sheshangou pluton (230.1 ± 1.7 Ma) were formed during the Late Middle-Late Triassic (241–215 Ma). Geochemical studies, integrated with the geochronological results, reveal distinct tectonic settings during successive stages: (1) Middle-Late Permian (270–256 Ma): Magmatism included peraluminous A-type rhyolite with in calc-alkaline series (e.g., Gongzhuling) formed in an extensional environment linked to a mantle plume, alongside metaluminous, calc-alkaline I-type dacite (e.g., Gongzhuling) associated with the subduction of the PAO plate. (2) Late Permian-Early Middle Triassic (256–242 Ma): Calc-alkaline I-type magmatism dominated, represented by dacite (e.g., Wangjiadian) and rhyolite (e.g., Wafangxi), indicative of a collisional uplift environment. (3) Late Middle-Late Triassic (241–215 Ma): Magmatism transitioned to high-K calc-alkaline with A-type rocks affinities, including rhyolite (e.g., Haoguantun) and plutons (e.g., Sheshangou), formed in a post-collisional extensional environment. This study suggests that the closure of the PAO along the northern margin of the North China Craton (NCC) occurred before the Late Triassic. Late Triassic magmatic rocks in this region record a post-orogenic extensional setting, reflecting tectonic processes following NCC-XOR collision rather than PAO subduction. Combined with previously reported age data, the tectonic evolution of the eastern segment of the CAOB during the Permian-Triassic can be divided into four stages: active continental margin (293–274 Ma), plate disintegration (270–256 Ma), final collision and closure (256–241 Ma), and post-orogenic extension (241–215 Ma). Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

24 pages, 4663 KiB  
Article
Neoproterozoic Subduction Zone Fluids and Sediment Melt-Metasomatized Mantle Magmatism on the Northern Yangtze Block: Constraints from the Ca. 880 Ma Taoyuan Syenogranite
by Shilei Liu, Yiduo Li, Han Liu, Peng Wang, Shizhen Zhang and Fenglin Chen
Minerals 2025, 15(7), 730; https://doi.org/10.3390/min15070730 - 12 Jul 2025
Viewed by 199
Abstract
The Yangtze Block, with its widespread Neoproterozoic mafic–felsic magmatic rock series and volcanic–sedimentary rock assemblages, is one of the key windows for reconstructing the assembly and fragmentation process of Rodinia. This study focuses on the Taoyuan syenogranite from the Micangshan Massif on the [...] Read more.
The Yangtze Block, with its widespread Neoproterozoic mafic–felsic magmatic rock series and volcanic–sedimentary rock assemblages, is one of the key windows for reconstructing the assembly and fragmentation process of Rodinia. This study focuses on the Taoyuan syenogranite from the Micangshan Massif on the northern Yangtze Block, by conducting systematic chronology, mineralogy, and geochemistry analyses to investigate their source, petrogenesis, and tectonic setting. LA-ICP-MS U–Pb geochronology reveals that the medium- to coarse-grained and medium- to fine-grained syenogranites have crystallization ages of 878 ± 4.2 Ma and 880 ± 6.5 Ma, respectively. These syenogranites have aluminum saturation index (A/CNK) values ranging from 0.79 to 1.06, indicating quasi-aluminous to weakly peraluminous compositions, and are classified as calc-alkaline I-type granites. The geochemical indicators of these rocks, including Mg# (44–48, mean 46), Zr/Hf (40.07), Nb/La (0.4), and zircon εHf(t) values (+9.2 to +10.9), collectively indicate a depleted lithospheric mantle source. The mantle source was metasomatized by subduction-derived fluids and sediment melts prior to partial melting as evidenced by their higher Mg#, elevated Ba content, and distinctive ratios (Rb/Y, Nb/Y, Th/Yb, Th/Sm, Th/Ce, and Ba/La). Integrating regional data, this study confirms crust–mantle interaction along the northern Yangtze during the early Neoproterozoic, supporting a sustained subduction-related tectonic setting. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

26 pages, 2032 KiB  
Review
A Cross-Disciplinary Review of Rare Earth Elements: Deposit Types, Mineralogy, Machine Learning, Environmental Impact, and Recycling
by Mustafa Rezaei, Gabriela Sanchez-Lecuona and Omid Abdolazimi
Minerals 2025, 15(7), 720; https://doi.org/10.3390/min15070720 - 9 Jul 2025
Viewed by 975
Abstract
Rare-earth elements (REEs), including lanthanides, scandium, and yttrium, are important for advanced technologies such as renewable energy systems, electronics, medical diagnostics, and precision agriculture. Despite their relative crustal abundance, REE extraction is impeded by complex geochemical behavior, dispersed distribution, and environmental challenges. This [...] Read more.
Rare-earth elements (REEs), including lanthanides, scandium, and yttrium, are important for advanced technologies such as renewable energy systems, electronics, medical diagnostics, and precision agriculture. Despite their relative crustal abundance, REE extraction is impeded by complex geochemical behavior, dispersed distribution, and environmental challenges. This review presents a comprehensive overview of REE geochemistry, mineralogy, and major deposit types including carbonatites, alkaline igneous rocks, laterites, placer deposits, coal byproducts, and marine sediments. It also highlights the global distribution and economic potential of key REE projects. The integration of machine learning has further enhanced exploration by enabling deposit classification and geochemical modeling, especially in data-limited regions. Environmental and health challenges associated with REE mining, processing, and electronic waste (e-waste) recycling are studied, along with the expanding use of REEs in agriculture and medicine. Some recycling efforts offer promise for supply diversification, but significant technological and economic barriers remain. Ensuring a secure and sustainable REE supply will require integrated approaches combining advanced analytics, machine learning, responsible extraction, and coordinated policy efforts. The present review offers a general overview that can be useful for informing future studies and resource-related discussions. Full article
Show Figures

Figure 1

29 pages, 9532 KiB  
Article
Heterogeneity of the Triassic Lacustrine Yanchang Shale in the Ordos Basin, China, and Its Implications for Hydrocarbon Primary Migration
by Yuhong Lei, Likuan Zhang, Xiangzeng Wang, Naigui Liu, Ming Cheng, Zhenjia Cai and Jintao Yin
Appl. Sci. 2025, 15(13), 7392; https://doi.org/10.3390/app15137392 - 1 Jul 2025
Viewed by 437
Abstract
The pathways and mechanisms of primary hydrocarbon migration, which are still not well understood, are of great significance for evaluating both conventional and unconventional oil and gas resources, understanding the mechanisms of shale oil retention, and predicting sweet spots. To investigate the petrography, [...] Read more.
The pathways and mechanisms of primary hydrocarbon migration, which are still not well understood, are of great significance for evaluating both conventional and unconventional oil and gas resources, understanding the mechanisms of shale oil retention, and predicting sweet spots. To investigate the petrography, geochemistry, and pore systems of organic-rich mudstones and organic-lean sand-silt intervals in core samples from the Yanchang shale in the Ordos Basin, China, we conducted thin-section observation, X-ray diffraction, Rock-Eval pyrolysis, field emission scanning electron microscopy (FE-SEM), and porosity analysis. Sand-silt intervals are heterogeneously developed within the Yanchang shale. The petrology, mineral composition, geochemistry, type, and content of solid organic matter as well as the pore type, pore size, and porosity of these intervals differ significantly from those of mudstones. Compared with mudstones, sand-silt intervals typically have coarser detrital grain sizes, higher contents of quartz, feldspar, and migrated solid bitumen (MSB), larger pore sizes, higher porosity, and higher oil saturation index (OSI). In contrast, they have lower contents of clay minerals, total organic carbon (TOC), free liquid hydrocarbons (S1), and total residual hydrocarbons (S2). The sand-silt intervals in the Yanchang shale serve as both pathways for hydrocarbon primary migration and “micro reservoirs” for hydrocarbon storage. The interconnected inorganic and organic pore systems, organic matter networks, fractures, and sand-silt intervals form the hydrocarbons’ primary migration pathways within the Yanchang shale. A model for the primary migration of hydrocarbons within the Yanchang shale is proposed. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

32 pages, 7693 KiB  
Article
Genesis and Evolution of the Qieliekeqi Siderite Deposit in the West Kunlun Orogen: Constraints from Geochemistry, Zircon U–Pb Geochronology, and Carbon–Oxygen Isotopes
by Yue Song, Liang Li, Yuan Gao and Yang Luo
Minerals 2025, 15(7), 699; https://doi.org/10.3390/min15070699 - 30 Jun 2025
Viewed by 342
Abstract
The Qieliekeqi siderite deposit, located in the Tashkurgan block of western Kunlun, is a carbonate-hosted iron deposit with hydrothermal sedimentary features. This study integrates whole-rock geochemistry, stable isotopes, and zircon U–Pb–Hf data to investigate its metallogenic evolution. Coarse-grained siderite samples, formed in deeper [...] Read more.
The Qieliekeqi siderite deposit, located in the Tashkurgan block of western Kunlun, is a carbonate-hosted iron deposit with hydrothermal sedimentary features. This study integrates whole-rock geochemistry, stable isotopes, and zircon U–Pb–Hf data to investigate its metallogenic evolution. Coarse-grained siderite samples, formed in deeper water, exhibit average Al2O3/TiO2 ratios of 29.14, δEu of 2.69, and δCe of 0.83, indicating hydrothermal fluid dominance with limited seawater mixing. Banded samples from shallower settings show an average Al2O3/TiO2 of 17.07, δEu of 3.18, and δCe of 0.94, suggesting stronger seawater interaction under oxidizing conditions. Both types are enriched in Mn, Co, and Ba, with low Ti and Al contents. Stable isotope results (δ13CPDB = −6.0‰ to −4.6‰; δ18OSMOW = 16.0‰ to 16.9‰) point to seawater-dominated fluids with minor magmatic and meteoric contributions, formed under open-system conditions at avg. temperatures of 53 to 58 °C. Zircon U–Pb dating yields an age of 211.01 ± 0.82 Ma, with an average εHf(t) of −3.94, indicating derivation from the partially melted ancient crust. These results support a two-stage model involving Late Cambrian hydrothermal sedimentation and Late Triassic magmatic overprinting. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

31 pages, 34129 KiB  
Article
Prediction of Buried Cobalt-Bearing Arsenides Using Ionic Leach Geochemistry in the Bou Azzer-El Graara Inlier (Central Anti-Atlas, Morocco): Implications for Mineral Exploration
by Yassine Lmahfoudi, Houssa Ouali, Said Ilmen, Zaineb Hajjar, Ali El-Masoudy, Russell Birrell, Laurent Sapor, Mohamed Zouhair and Lhou Maacha
Minerals 2025, 15(7), 676; https://doi.org/10.3390/min15070676 - 24 Jun 2025
Viewed by 739
Abstract
The Aghbar-Bou Azzer East mining district (ABED) is located between the Bou Azzer East and Aghbar deposits. It is an area of approximately 7 km long towards ENE–WSW and 2 km wide towards N–S. In this barren area, volcano-sedimentary rocks are attributed to [...] Read more.
The Aghbar-Bou Azzer East mining district (ABED) is located between the Bou Azzer East and Aghbar deposits. It is an area of approximately 7 km long towards ENE–WSW and 2 km wide towards N–S. In this barren area, volcano-sedimentary rocks are attributed to the Ouarzazate group outcrop (Ediacarian age): they are composed of volcanic rocks (ignimbrite, andesite, rhyolite, dacite, etc.) covered by the Adoudou detritic formation in angular unconformity. Given the absence of serpentinite outcrops, exploration investigation in this area has been very limited. This paper aims to use ionic leach geochemistry (on samples of soil) to detect the presence of Co-bearing arsenides above hidden ore deposits in this unexplored area of the Bou Azzer inlier. In addition, a detailed structural analysis allowed the identification of four families of faults and fractures with or without filling. Three directional major fault systems of several kilometers in length and variable orientation in both the Cryogenian basement and the Ediacaran cover have been identified: (i) ENE–WSW, (ii) NE–SW, and (iii) NW–SE. Several geochemical anomalies for Co, As, Ni, Ag, and Cu are aligned along three main directions, including NE–SW, NW–SE, and ENE–WSW. They are particularly well-defined in the western zone but are only minor in the central and eastern zones. Some of these anomalies correlate with the primary structural features observed in the studied area. These trends are consistent with those known under mining exploitation in nearby ore deposits, supporting the potential for similar mineralization in the ABED. Based on structural analysis and ionic leach geochemistry, drilling programs were conducted in the study area, confirming the continuity of serpentinites at depth beneath the Ediacaran cover and the presence of Co–Fe-bearing arsenide ores. This validates the ionic geochemistry technique as a reliable method for exploring buried ore deposits. Full article
(This article belongs to the Special Issue Novel Methods and Applications for Mineral Exploration, Volume III)
Show Figures

Figure 1

26 pages, 4302 KiB  
Article
Volcanic Rocks from Western Limnos Island, Greece: Petrography, Magnetite Geochemistry, and Magnetic Susceptibility Constraints
by Christos L. Stergiou, Vasilios Melfos, Lambrini Papadopoulou, Anastasios Dimitrios Ladas and Elina Aidona
Minerals 2025, 15(7), 673; https://doi.org/10.3390/min15070673 - 23 Jun 2025
Viewed by 310
Abstract
This study contributes new mineralogical, whole-rock geochemical, and magnetic susceptibility data to the well-established petrogenesis of the Miocene of Limnos volcanic rocks in the Aegean region. The combined examination of volcanic samples from the Katalakon, Romanou, and Myrina units demonstrates that they belong [...] Read more.
This study contributes new mineralogical, whole-rock geochemical, and magnetic susceptibility data to the well-established petrogenesis of the Miocene of Limnos volcanic rocks in the Aegean region. The combined examination of volcanic samples from the Katalakon, Romanou, and Myrina units demonstrates that they belong to a genetically related high-K calc-alkaline to shoshonitic suite that was formed by fractional crystallization in a continental arc setting and derived from a subduction-modified mantle source, contaminated by continental sediments. Different magmatic processes and crystallization conditions are reflected in modest compositional differences in magnetite (Ti, Al substitution) and ilmenite (Mg, Al, Fe–Ti ratios), as well as variations in trace elements between the units (e.g., elevated Nb–Zr in Romanou, high LREE in Myrina, and Ba in Katalakon). According to the magnetic data, bulk magnetic susceptibility is largely determined by magnetite abundance, whereas magnetic domain states are influenced by the grain size and shape, as euhedral grains are associated with stronger responses. The coupled geochemical and magnetic results indicate the diversified and transitional character of the Agios Ioannis Subunit in the Katalakon Unit. Full article
Show Figures

Figure 1

34 pages, 12770 KiB  
Article
Immiscibility in Magma Conduits: Evidence from Granitic Enclaves
by Ya Tian, Guanglai Li, Yongle Yang, Chao Huang, Yinqiu Hu, Kai Xu and Ji Zhang
Minerals 2025, 15(7), 664; https://doi.org/10.3390/min15070664 - 20 Jun 2025
Viewed by 317
Abstract
Many granitic enclaves are developed in the volcanic channel of the Xiangshan volcanic basin. To explore their genesis, this study examined the petrography, geochemistry, LA-ICP-MS zircon U–Pb chronology, and zircon Hf isotopes of the granitic enclaves and compared them with the porphyroclastic lavas. [...] Read more.
Many granitic enclaves are developed in the volcanic channel of the Xiangshan volcanic basin. To explore their genesis, this study examined the petrography, geochemistry, LA-ICP-MS zircon U–Pb chronology, and zircon Hf isotopes of the granitic enclaves and compared them with the porphyroclastic lavas. In general, the granitic enclaves and porphyroclastic lavas have similar structures, and the rock-forming minerals and accessory minerals have relatively close compositions. In terms of rock geochemical characteristics, the granitic enclaves are richer in silicon and alkalis but have lower abundances of aluminum, magnesium, iron, and calcium than the porphyroclastic lavas. Rb, Th, K, Sm, and other elements are more enriched, whereas Ba, Ti, Nb, P, and other elements are more depleted. The granitic enclaves have lower rare earth contents (195.53 × 10−6–271.06 × 10−6) than the porphyroclastic lavas (246.67 × 10−6–314.27 × 10−6). The rare earth element distribution curves of the two are generally consistent, both right-leaning, and enriched with light rare earth patterns. The weighted average zircon U–Pb ages of two granitic enclave samples were 135.45 ± 0.54 Ma (MSWD = 0.62, n = 17) and 135.81 ± 0.60 Ma (MSWD = 0.40, n = 20), respectively, which are consistent with the weighted average age of a single porphyroclastic lava sample of 134.01 ± 0.53 Ma (MSWD = 2.0, n = 20). The zircons of the two kinds of rocks crystallize at almost the same temperature. The consistent trend of the rare earth element distribution curve of zircons in the granitic enclaves and the porphyroclastic lava samples indicates that the zircons of the two samples were formed in the same stage. The formation process of granitic enclaves may be that the lower crustal melt is induced to rise, and the crystallization differentiation occurs in the magma reservoir and is stored in the form of crystal mush, forming a shallow crystal mush reservoir. The crystal mush reservoir is composed of a large number of rock-forming minerals such as quartz, feldspar, and biotite, as well as accessory mineral crystals such as zircon and flowable intergranular melt. In the later stage of magma high evolution, a small and short-time magmatic activity caused a large amount of crystalline granitic crystal mush to pour into the volcanic pipeline. In the closed system of volcanic pipeline, the pressure and temperature decreased rapidly, and the supercooling degree increased, and the immiscibility finally formed pale granitic enclaves. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

25 pages, 9142 KiB  
Article
Petrogenesis and Tectonic Significance of Middle Jurassic Mafic–Ultramafic Cumulate Rocks in Weiyuanpu, Northern Liaoning, China: Insights from Zircon Geochronology and Isotope Geochemistry
by Yifan Zhang, Xu Ma, Jiafu Chen, Yuqi Liu, Yi Zhang and Yongwei Ma
Minerals 2025, 15(6), 651; https://doi.org/10.3390/min15060651 - 17 Jun 2025
Viewed by 433
Abstract
The tectonic evolution of the Paleo-Pacific Ocean and the destruction mechanism of the North China Craton (NCC) are still controversial. In this study, we conducted zircon U-Pb dating, whole-rock geochemistry, and Sr-Nd-Hf isotope analyses on the Weiyuanpu mafic–ultramafic intrusions in the eastern segment [...] Read more.
The tectonic evolution of the Paleo-Pacific Ocean and the destruction mechanism of the North China Craton (NCC) are still controversial. In this study, we conducted zircon U-Pb dating, whole-rock geochemistry, and Sr-Nd-Hf isotope analyses on the Weiyuanpu mafic–ultramafic intrusions in the eastern segment of the northern margin of the NCC to discuss their petrogenesis and tectonic implications. The Weiyuanpu mafic–ultramafic intrusions consist of troctolite, hornblendite, hornblende gabbro, gabbro, and minor diorite, anorthosite, characterized by cumulate structure. The main crystallization sequence of minerals is olivine → pyroxene → magnetite → hornblende. The zircon U-Pb ages of hornblendite, hornblende grabbro, and diorite are ~170Ma. Geochemical characteristics exhibit low-K tholeiitic to calc-alkaline series, enriched in light rare-earth elements (LREE) and significant large-ion lithophile elements (LILE), and depleted in high-field-strength elements (HFSE). Sr-Nd isotopic compositions are ISr = 0.7043–0.7055, εNd(t) = −0.7 to +0.9, and zircon εHf (t) values range from +3.4 to +8.7. These results suggest that the source region was a phlogopite-bearing garnet lherzolite mantle metasomatized by subduction fluids. The study reveals that the northeastern margin of the NCC was in a back-arc extensional setting due to the subduction of the Paleo-Pacific Ocean during the Middle Jurassic, which caused lithosphere thinning and mantle melting in this region. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

22 pages, 4738 KiB  
Article
The Orogeny Transition of the Southern Beishan Orogenic Belt During the Early–Middle Devonian: Evidence from the Wudaomingshui Volcanic Rocks and Granite
by Tongtong He, Yuxi Wang, Jing Yan, Zhiyong Yang, Kangning Li, Zirui Liu, Zixuan Wang and Lei Wu
Minerals 2025, 15(6), 632; https://doi.org/10.3390/min15060632 - 10 Jun 2025
Viewed by 330
Abstract
The Southern Beishan Orogenic Belt (SBOB), an integral part of the Southern Central Asian Orogenic Belt (CAOB), is characterized by extensive Late Paleozoic magmatism. These igneous rocks are the key to studying the tectonic evolution process and the ocean–continent tectonic transformation in the [...] Read more.
The Southern Beishan Orogenic Belt (SBOB), an integral part of the Southern Central Asian Orogenic Belt (CAOB), is characterized by extensive Late Paleozoic magmatism. These igneous rocks are the key to studying the tectonic evolution process and the ocean–continent tectonic transformation in the southern margin of the CAOB and Paleo-Asian Ocean. We present zircon U-Pb chronology, in situ Lu-Hf isotopes, and whole-rock geochemistry data for Early–Middle Devonian volcanic rocks in the Sangejing Formation and granites from the Shuangyingshan-Huaniushan (SH) unit in the SBOB. The Wudaomingshiu volcanic rocks (Ca. 411.5 Ma) are calc-alkaline basalt-basaltic andesites with low SiO2 (47.35~55.59 wt.%) and high TiO2 (1.46~4.16 wt.%) contents, and are enriched in LREEs and LILEs (e.g., Rb, Ba, and Th), depleted in HREEs and HFSEs (Nb, Ta, and Ti), and weakly enriched in Zr-Hf. These mafic rocks are derived from the partial melting of the depleted lithosphere metasomatized by subduction fluid and contaminated by the lower crust. Wudaomingshui’s high-K calc-alkaline I-type granite has a crystallization age of 383.6 ± 2.2 Ma (MSWD = 0.11, n = 13), high Na2O (3.46~3.96 wt.%) and MgO (1.25~1.68 wt.%) contents, and a high DI differentiation index (70.69~80.45); it is enriched in LREEs and LILEs (e.g., Rb, Ba, and Th) and depleted in HREEs and HFSEs (e.g., Nb, Ta, and Ti). Granites have variable zircon εHf(t) values (−2.5~3.3) with Mesoproterozoic TDM2 ages (1310~1013 Ma) and originated from lower crustal melting with mantle inputs and minor upper crustal assimilation. An integrated analysis of magmatic suites in the SBOB, including rock assemblages, geochemical signatures, and zircon εHf(t) values (−2.5 to +3.3), revealed a tectonic transition from advancing to retreating subduction during the Early–Middle Devonian. Full article
(This article belongs to the Special Issue Tectonic Evolution of the Tethys Ocean in the Qinghai–Tibet Plateau)
Show Figures

Figure 1

36 pages, 13118 KiB  
Article
Geochemical Halos in Wall Rocks and Overlying Soils as Indicators of Concealed Lithium Pegmatites
by Mona-Liza C. Sirbescu, Teagan R. Cox, Luiza M. P. Pierangeli, Joy O. Youngblood, David C. Weindorf and Thomas R. Benson
Minerals 2025, 15(6), 615; https://doi.org/10.3390/min15060615 - 8 Jun 2025
Viewed by 994
Abstract
Spodumene-bearing pegmatites are geochemically anomalous among crystalline rocks and important critical mineral resources in the green energy transition. However, prospecting is challenging due to their small size and the fact that they are often covered by soil and vegetation. This study demonstrates that, [...] Read more.
Spodumene-bearing pegmatites are geochemically anomalous among crystalline rocks and important critical mineral resources in the green energy transition. However, prospecting is challenging due to their small size and the fact that they are often covered by soil and vegetation. This study demonstrates that, rather than being a hindrance, soil cover can enhance geochemical exploration, at least at the prospect scale. This study examines the dispersion pathways of lithium (Li) and its pathfinder elements (Rb, B, Ga, and Sn) from pegmatites (<10 m thick) into metamorphic host rocks and further into overlying undisturbed soils in heavily forested, postglaciated terrain of northeastern Wisconsin, USA. Soil-sample traverses over the world-renowned, lepidolite-type Animikie Red Ace pegmatite and two nearby dikes reveal pronounced <20 m anomalies with up to 1400 ppm of Li, 450 ppm of Rb, 3100 ppm of B, 40 ppm of Ga, and 60 ppm of Sn, greatly exceeding the control soil concentrations from nonmineralized granite and pegmatites. Soils mirror both the magmatic fractionation and alteration of pegmatite bedrock and metasomatic halos in parent host rocks. Metasomatized amphibolite revealed the presence of a holmquistite-ferro-holmquistite mineral. This greenfield pilot exploration led to lithium-rich pegmatite discoveries within the district and demonstrates the applicability of proximal sensors for soil exploration in Wisconsin and beyond. Full article
Show Figures

Figure 1

Back to TopTop