Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (432)

Search Parameters:
Keywords = robust feasible solution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 8323 KB  
Article
EmotiCloud: Cloud System to Monitor Patients Using AI Facial Emotion Recognition
by Ana-María López-Echeverry, Sebastián López-Flórez, Jovany Bedoya-Guapacha and Fernando De-La-Prieta
Systems 2025, 13(9), 750; https://doi.org/10.3390/systems13090750 - 29 Aug 2025
Abstract
Comprehensive healthcare seeks to uphold the right to health by providing patient-centred care in both personal and work environments. However, the unequal distribution of healthcare services significantly restricts access in remote or underserved areas—a challenge that is particularly critical in mental health care [...] Read more.
Comprehensive healthcare seeks to uphold the right to health by providing patient-centred care in both personal and work environments. However, the unequal distribution of healthcare services significantly restricts access in remote or underserved areas—a challenge that is particularly critical in mental health care within low-income countries. On average, there is only one psychiatrist for every 200,000 people, which severely limits early diagnosis and continuous monitoring in patients’ daily environments. In response to these challenges, this research explores the feasibility of implementing an information system that integrates cloud computing with an intelligent Facial Expression Recognition (FER) module to enable psychologists to remotely and periodically monitor patients’ emotional states. This approach enhances comprehensive clinical assessments, supporting early detection, ongoing management, and personalised treatment in mental health care. This applied research follows a descriptive and developmental approach, aiming to design, implement, and evaluate an intelligent cloud-based solution that enables remote monitoring of patients’ emotional states through Facial Expression Recognition (FER). The methodology integrates principles of user-centred design, software engineering best practices, and machine learning model development, ensuring a robust and scalable solution aligned with clinical and technological requirements. The development process followed the Software Development Life Cycle (SDLC) and included functional, performance, and integration testing. To assess overall system quality, we defined an evaluation framework based on ISO/IEC 25010 quality characteristics: functional suitability, performance efficiency, usability, and security. The intelligent FER model achieved strong validation results, with a loss of 0.1378 and an accuracy of 96%, as confirmed by the confusion matrix and associated performance metrics. Full article
(This article belongs to the Section Artificial Intelligence and Digital Systems Engineering)
12 pages, 1430 KB  
Article
Investigation and Analysis of Microbial Diversity in Rice Husk-Based Fermentation Bed Material
by Jinbo Gao, Wei Liu, Fuwei Li, Zhaohong Wang, Guang Guo, Bing Geng, Jingshi Sun and Genglin Guo
Agriculture 2025, 15(17), 1828; https://doi.org/10.3390/agriculture15171828 - 28 Aug 2025
Abstract
The rapid expansion of the meat duck industry in China has intensified environmental challenges, particularly those related to managing high-moisture duck manure. Fermentation bed systems, utilizing rice husks as a primary substrate, offer a sustainable solution by promoting waste decomposition and improving animal [...] Read more.
The rapid expansion of the meat duck industry in China has intensified environmental challenges, particularly those related to managing high-moisture duck manure. Fermentation bed systems, utilizing rice husks as a primary substrate, offer a sustainable solution by promoting waste decomposition and improving animal welfare. This study investigated microbial diversity in rice husk-based fermentation bed materials across different usage durations to assess their ecological feasibility. Samples were collected from a duck farm in Linyi, China, after one, three, five and seven batches of duck rearing (21 days per batch). Microbial communities were analyzed using polymerase chain reaction–denaturing gradient gel electrophoresis (PCR-DGGE), followed by cluster analysis, principal component analysis (PCA) and sequencing of recovered DGGE bands. The results revealed significant shifts in microbial composition, with low similarity (18% overall) and distinct abundance patterns among groups. Bacteroidetes abundance increased with prolonged usage, while Staphylococcus aureus was only detected in the first batch. A total of 32 sequenced bands identified dominant phyla, including Actinobacteria, Proteobacteria, Firmicutes and Bacteroidetes. Group 4 (seven batches) exhibited the highest microbial diversity and richness (Shannon index: 2.68; mean abundance: 16.33 bands), which was attributed to organic matter accumulation and nutrient release during fermentation. These findings demonstrate that rice husk-based fermentation beds maintain robust microbial diversity over time, effectively supporting waste degradation and duck health. We conclude that rice husks are a viable, eco-friendly substrate for waterfowl fermentation bed systems, with periodic microbial supplementation recommended to enhance long-term efficacy. This work provides critical insights for optimizing sustainable livestock farming practices. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

21 pages, 10482 KB  
Article
Evaluation of Advanced Control Strategies for Offshore Produced Water Treatment Systems: Insights from Pilot Plant Data
by Mahsa Kashani, Stefan Jespersen and Zhenyu Yang
Processes 2025, 13(9), 2738; https://doi.org/10.3390/pr13092738 - 27 Aug 2025
Abstract
Produced water treatment (PWT) is a critical process in offshore oil and gas production, ensuring compliance with stringent environmental discharge regulations and minimizing environmental impact. This process is characterized by inherent nonlinearities, coupled system dynamics, and the presence of significant disturbances that can [...] Read more.
Produced water treatment (PWT) is a critical process in offshore oil and gas production, ensuring compliance with stringent environmental discharge regulations and minimizing environmental impact. This process is characterized by inherent nonlinearities, coupled system dynamics, and the presence of significant disturbances that can impede operational efficiency and separation performance. Effective control strategies are essential to maintain stable operation and high separation efficiency under dynamic and uncertain conditions. This paper presents a comprehensive evaluation of advanced control methods applied to a pilot-scaled PWT facility designed to replicate offshore conditions. Four control solutions are assessed, i.e., (i) baseline approach using PID controllers; (ii) Multi-Input–Multi-Output (MIMO) H control; (iii) MIMO Model Predictive Control (MPC); and (iv) MIMO Model Reference Adaptive Control (MRAC). The motivation lies in their differing capabilities for disturbance rejection, tracking accuracy, robustness, and computational feasibility. Real-world operational data were used to assess each strategy in regulating critical process variables, the interface water level in the three-phase gravity separator, and the pressure drop ratio (PDR) in the hydrocyclone, both closely linked to de-oiling efficiency. The results highlight the distinct advantages and limitations of each method. In general, the baseline PID solution offers simplicity but limited adaptability, while advanced strategies such as MIMO H, MPC, and MRAC solutions demonstrate enhanced reference-tracking and de-oiling performances subject to diverse operating conditions and disturbances, though different control solutions still exhibit different dynamic characteristics. The findings provide systematic insights into selecting optimal control architectures for offshore PWT systems, supporting improved operational performance and reduced environmental footprint. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control in Energy Systems)
Show Figures

Figure 1

29 pages, 3323 KB  
Article
Development of a Dynamic Path Planning System for Autonomous Mobile Robots Using a Multi-Agent System Approach
by Bradley Fourie, Louis Louw and Günter Bitsch
Sensors 2025, 25(17), 5317; https://doi.org/10.3390/s25175317 - 27 Aug 2025
Viewed by 46
Abstract
Autonomous Mobile Robots (AMRs) are increasingly important in Industry 4.0 intralogistics but creating path planning systems that adapt to dynamic and uncertain Flexible Manufacturing Systems (FMS), especially managing conflicts among multiple AMRs with a need for scalable decentralised solutions, remains a significant challenge. [...] Read more.
Autonomous Mobile Robots (AMRs) are increasingly important in Industry 4.0 intralogistics but creating path planning systems that adapt to dynamic and uncertain Flexible Manufacturing Systems (FMS), especially managing conflicts among multiple AMRs with a need for scalable decentralised solutions, remains a significant challenge. This research introduces a dynamic path planning system for AMRs designed for reactive adaptation to FMS disturbances and generalisation across factory layouts, incorporating support for multiple AMRs with integrated conflict avoidance. The system is built on a Multi-Agent Systems (MAS) architecture, where software AMR agents independently calculate their paths using a hybrid Genetic Algorithm (GA) that employs Cell-Based Decomposition (CBD) and optimises path length, smoothness, and overlap via a multi-objective fitness function. Multi-AMR conflict avoidance is implemented using the Iterative Exclusion Principle (IEP), which facilitates priority-based planning, knowledge sharing through Predictive Collision Avoidance (PCA), and iterative replanning among agents communicating via a blackboard agent. Verification demonstrated the system’s ability to successfully avoid deadlocks for up to nine AMRs and exhibit good scalability. Validation in a simulated FMS environment confirmed robust adaptation to various disturbances, including static and dynamic obstacles, while maintaining stable run times and consistent path quality. These results affirm the practical feasibility of this hybrid GA and MAS-based approach for dynamic AMR control in complex industrial settings. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

33 pages, 8494 KB  
Article
Enhanced Multi-Class Brain Tumor Classification in MRI Using Pre-Trained CNNs and Transformer Architectures
by Marco Antonio Gómez-Guzmán, Laura Jiménez-Beristain, Enrique Efren García-Guerrero, Oscar Adrian Aguirre-Castro, José Jaime Esqueda-Elizondo, Edgar Rene Ramos-Acosta, Gilberto Manuel Galindo-Aldana, Cynthia Torres-Gonzalez and Everardo Inzunza-Gonzalez
Technologies 2025, 13(9), 379; https://doi.org/10.3390/technologies13090379 - 22 Aug 2025
Viewed by 313
Abstract
Early and accurate identification of brain tumors is essential for determining effective treatment strategies and improving patient outcomes. Artificial intelligence (AI) and deep learning (DL) techniques have shown promise in automating diagnostic tasks based on magnetic resonance imaging (MRI). This study evaluates the [...] Read more.
Early and accurate identification of brain tumors is essential for determining effective treatment strategies and improving patient outcomes. Artificial intelligence (AI) and deep learning (DL) techniques have shown promise in automating diagnostic tasks based on magnetic resonance imaging (MRI). This study evaluates the performance of four pre-trained deep convolutional neural network (CNN) architectures for the automatic multi-class classification of brain tumors into four categories: Glioma, Meningioma, Pituitary, and No Tumor. The proposed approach utilizes the publicly accessible Brain Tumor MRI Msoud dataset, consisting of 7023 images, with 5712 provided for training and 1311 for testing. To assess the impact of data availability, subsets containing 25%, 50%, 75%, and 100% of the training data were used. A stratified five-fold cross-validation technique was applied. The CNN architectures evaluated include DeiT3_base_patch16_224, Xception41, Inception_v4, and Swin_Tiny_Patch4_Window7_224, all fine-tuned using transfer learning. The training pipeline incorporated advanced preprocessing and image data augmentation techniques to enhance robustness and mitigate overfitting. Among the models tested, Swin_Tiny_Patch4_Window7_224 achieved the highest classification Accuracy of 99.24% on the test set using 75% of the training data. This model demonstrated superior generalization across all tumor classes and effectively addressed class imbalance issues. Furthermore, we deployed and benchmarked the best-performing DL model on embedded AI platforms (Jetson AGX Xavier and Orin Nano), demonstrating their capability for real-time inference and highlighting their feasibility for edge-based clinical deployment. The results highlight the strong potential of pre-trained deep CNN and transformer-based architectures in medical image analysis. The proposed approach provides a scalable and energy-efficient solution for automated brain tumor diagnosis, facilitating the integration of AI into clinical workflows. Full article
Show Figures

Figure 1

31 pages, 2557 KB  
Article
A Simulated Annealing Solution Approach for the Urban Rail Transit Rolling Stock Rotation Planning Problem with Deadhead Routing and Maintenance Scheduling
by Alyaa Mohammad Younes, Amr Eltawil and Islam Ali
Logistics 2025, 9(3), 120; https://doi.org/10.3390/logistics9030120 - 22 Aug 2025
Viewed by 627
Abstract
Background: Urban rail transit ensures efficient mobility in densely populated metropolitan areas. This study focuses on the Cairo Metro Network and addresses the Rolling Stock Rotation Planning Problem (RSRPP), aiming to improve operational efficiency and service quality. Methods: A Mixed-Integer Linear [...] Read more.
Background: Urban rail transit ensures efficient mobility in densely populated metropolitan areas. This study focuses on the Cairo Metro Network and addresses the Rolling Stock Rotation Planning Problem (RSRPP), aiming to improve operational efficiency and service quality. Methods: A Mixed-Integer Linear Programming (MILP) model is developed to integrate rolling stock rotation, deadhead routing, and maintenance scheduling. Two single-objective formulations are introduced to separately minimize denied passengers and the number of Electric Multiple Units (EMUs) used. To address scalability for larger instances, a Simulated Annealing (SA) metaheuristic is designed using a list-based solution representation and customized neighborhood operators that preserve feasibility. Results: Computational experiments based on real-world data validate the practical relevance of the model. The MILP achieves optimal solutions for small and medium-sized instances but becomes computationally infeasible for larger ones. In contrast, the SA algorithm consistently produces high-quality solutions with significantly reduced solve times. Conclusions: To the best of the authors’ knowledge, this is the first study to apply SA to the urban rail RSRPP while jointly integrating deadhead routing and maintenance scheduling. The proposed approach proves to be robust and scalable for large metro systems such as Cairo’s. Full article
Show Figures

Figure 1

26 pages, 2389 KB  
Article
Application of a Heuristic Model (PSO—Particle Swarm Optimization) for Optimizing Surface Water Allocation in the Machángara River Basin, Ecuador
by Jaime Veintimilla-Reyes, Berenice Guerrero, Daniel Maldonado-Segarra and Raúl Ortíz-Gaona
Water 2025, 17(16), 2481; https://doi.org/10.3390/w17162481 - 21 Aug 2025
Viewed by 561
Abstract
Efficient surface water allocation in reservoir-equipped basins is essential for balancing competing demands within the Water–Energy–Food (WEF) nexus. This study investigated the applicability of Particle Swarm Optimization (PSO) for optimizing water distribution in the Machángara River Basin, Ecuador; a complex, constraint-rich hydrological system. [...] Read more.
Efficient surface water allocation in reservoir-equipped basins is essential for balancing competing demands within the Water–Energy–Food (WEF) nexus. This study investigated the applicability of Particle Swarm Optimization (PSO) for optimizing water distribution in the Machángara River Basin, Ecuador; a complex, constraint-rich hydrological system. Implemented via the Pymoo package in Python, the PSO model was evaluated across calibration, validation, and execution phases, and benchmarked against exact methods, including Linear Programming (LP) and Mixed Integer Linear Programming (MILP). The results revealed that standard PSO struggled to satisfy equality constraints and yielded suboptimal solutions, with elevated penalty costs. Despite incorporating MILP-inspired encoding and repair functions, the algorithm failed to identify feasible solutions that met operational requirements. The execution phase, which includes reservoir construction decisions, resulted in a total penalty exceeding EUR 164.95 billion, with no improvement observed from adding reservoirs. Comparative analysis confirmed that LP and MILP outperformed PSO in constraint compliance and penalty minimization. Nonetheless, the study contributes a reproducible implementation framework and a comprehensive benchmarking strategy, including synthetic test functions, performance metrics, and diagnostic visualizations. These tools can facilitate systematic evaluation of PSO’s behavior in high-dimensional, nonlinear environments and provide a foundation for future hybrid or adaptive heuristic models. The findings underscore the limitations of standard PSO in hydrological optimization but also highlight its potential when enhanced through hybridization. Future research should explore PSO variants that integrate exact solvers, adaptive control mechanisms, or cooperative search strategies to improve feasibility and convergence. This work advances the methodological understanding of metaheuristics in environmental resource management and supports the development of robust optimization tools under the WEF-nexus paradigm. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
Show Figures

Figure 1

20 pages, 5417 KB  
Article
Effectiveness of Installing a Photovoltaic System on a High-Density Building in a Hot Climate Zone
by Bashar Alfalah
Sustainability 2025, 17(16), 7523; https://doi.org/10.3390/su17167523 - 20 Aug 2025
Viewed by 497
Abstract
There is a growing global emphasis on reducing environmental pollution through innovative clean energy technologies, with photovoltaic systems gaining prominence as a sustainable solution. This study presents an integrated approach, combining advanced architectural modeling and dynamic energy simulation to evaluate the utilization of [...] Read more.
There is a growing global emphasis on reducing environmental pollution through innovative clean energy technologies, with photovoltaic systems gaining prominence as a sustainable solution. This study presents an integrated approach, combining advanced architectural modeling and dynamic energy simulation to evaluate the utilization of rooftop photovoltaic panels on a high-density higher educational building in Saudi Arabia. Utilizing detailed modeling involving Autodesk Revit and energy simulation through DesignBuilder to Level of Detail 3, the research provides unprecedented accuracy, validated against actual energy consumption data with a remarkable 92.28% precision. Notably, approximately 60% of the rooftop area is identified as suitable for photovoltaic installation, demonstrating a significant capacity to generate 1,028,494.50 kWh annually, covering 61.7% of the building’s energy needs. Financial analysis reveals robust economic benefits, including annual savings of USD 74,938.84, a payback period of under 7 years, and lifetime savings exceeding USD 1.87 million over 25 years. Seasonal variations and surplus energy during winter months are also detailed, highlighting the system’s resilience. Importantly, this study aligns with Saudi Arabia’s “Vision 2030” by showcasing the feasibility and strategic importance of rooftop photovoltaic solutions in urban educational settings within hot-climate regions, offering a pioneering contribution to sustainable urban energy planning. Full article
Show Figures

Figure 1

23 pages, 6113 KB  
Article
Visual Quantitative Characterization of External Corrosion in 3LPE Coated Pipes Based on Microwave Near-Field Reflectometry and Phase Unwrapping
by Wenjia Li
Sensors 2025, 25(16), 5126; https://doi.org/10.3390/s25165126 - 18 Aug 2025
Viewed by 363
Abstract
Three-layer polyethylene (3LPE) coated steel pipelines are currently the preferred solution for global oil and gas transmission. However, external corrosion beneath the 3LPE coating poses a serious threat to pipeline operations. The pressing concern for pipeline safety and integrity involves non-destructive evaluation techniques [...] Read more.
Three-layer polyethylene (3LPE) coated steel pipelines are currently the preferred solution for global oil and gas transmission. However, external corrosion beneath the 3LPE coating poses a serious threat to pipeline operations. The pressing concern for pipeline safety and integrity involves non-destructive evaluation techniques for the non-invasive and quantitative interrogation of such defects. This study therefore explores linear frequency-sweeping microwave near-field non-destructive testing (NDT) techniques for imaging and evaluating the pitting corrosion beneath 3LPE coating. An improved branch-cut method is proposed for the high-precision phase unwrapping of the microwave phase image sequence, and its superiority over traditional methods in terms of accuracy and robustness is validated. A background subtraction method based on kernel density estimation (KDE) is presented to suppress the lift-off effect on the pipeline geometry. In addition, the principal-component-analysis-wavelet-based principal component extraction and fusion enhance the detection signal-to-noise ratio (SNR) and image contrast, while mitigating the annular artifacts around the corrosion. The experimental results demonstrate the feasibility of the proposed approach for the detection, imaging, and characterization of external corrosion beneath the 3LPE coating of pipelines. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

23 pages, 1657 KB  
Article
High-Precision Pest Management Based on Multimodal Fusion and Attention-Guided Lightweight Networks
by Ziye Liu, Siqi Li, Yingqiu Yang, Xinlu Jiang, Mingtian Wang, Dongjiao Chen, Tianming Jiang and Min Dong
Insects 2025, 16(8), 850; https://doi.org/10.3390/insects16080850 - 16 Aug 2025
Viewed by 657
Abstract
In the context of global food security and sustainable agricultural development, the efficient recognition and precise management of agricultural insect pests and their predators have become critical challenges in the domain of smart agriculture. To address the limitations of traditional models that overly [...] Read more.
In the context of global food security and sustainable agricultural development, the efficient recognition and precise management of agricultural insect pests and their predators have become critical challenges in the domain of smart agriculture. To address the limitations of traditional models that overly rely on single-modal inputs and suffer from poor recognition stability under complex field conditions, a multimodal recognition framework has been proposed. This framework integrates RGB imagery, thermal infrared imaging, and environmental sensor data. A cross-modal attention mechanism, environment-guided modality weighting strategy, and decoupled recognition heads are incorporated to enhance the model’s robustness against small targets, intermodal variations, and environmental disturbances. Evaluated on a high-complexity multimodal field dataset, the proposed model significantly outperforms mainstream methods across four key metrics, precision, recall, F1-score, and mAP@50, achieving 91.5% precision, 89.2% recall, 90.3% F1-score, and 88.0% mAP@50. These results represent an improvement of over 6% compared to representative models such as YOLOv8 and DETR. Additional ablation studies confirm the critical contributions of key modules, particularly under challenging scenarios such as low light, strong reflections, and sensor data noise. Moreover, deployment tests conducted on the Jetson Xavier edge device demonstrate the feasibility of real-world application, with the model achieving a 25.7 FPS inference speed and a compact size of 48.3 MB, thus balancing accuracy and lightweight design. This study provides an efficient, intelligent, and scalable AI solution for pest surveillance and biological control, contributing to precision pest management in agricultural ecosystems. Full article
Show Figures

Figure 1

29 pages, 2640 KB  
Article
Brain–Computer Interface for EEG-Based Authentication: Advancements and Practical Implications
by Lamia Alahaideb, Abeer Al-Nafjan, Hessah Aljumah and Mashael Aldayel
Sensors 2025, 25(16), 4946; https://doi.org/10.3390/s25164946 - 10 Aug 2025
Viewed by 644
Abstract
Authentication is a critical component of digital security, and traditional methods often encounter significant vulnerabilities and limitations. This study addresses the emerging field of EEG-based authentication systems, highlighting their theoretical advancements and practical applicability. We conducted a systematic review of the existing literature, [...] Read more.
Authentication is a critical component of digital security, and traditional methods often encounter significant vulnerabilities and limitations. This study addresses the emerging field of EEG-based authentication systems, highlighting their theoretical advancements and practical applicability. We conducted a systematic review of the existing literature, followed by an experimental evaluation to assess the feasibility, limitations, and scalability of these systems in real-world scenarios. Data were collected from nine subjects using various approaches. Our results indicate that the CNN model achieved the highest accuracy of 99%, while Random Forest (RF) and Gradient Boosting (GB) classifiers also demonstrated strong performance with 94% and 93%, respectively. In contrast, classifiers such as Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) displayed significantly lower effectiveness, underscoring their limitations in capturing the complexities of EEG data. The findings suggest that EEG-based authentication systems have significant potential to enhance security measures, offering a promising alternative to traditional methods and paving the way for more robust and user-friendly authentication solutions. Full article
Show Figures

Figure 1

23 pages, 8569 KB  
Article
Evidential K-Nearest Neighbors with Cognitive-Inspired Feature Selection for High-Dimensional Data
by Yawen Liu, Yang Zhang, Xudong Wang and Xinyuan Qu
Big Data Cogn. Comput. 2025, 9(8), 202; https://doi.org/10.3390/bdcc9080202 - 6 Aug 2025
Viewed by 385
Abstract
The Evidential K-Nearest Neighbor (EK-NN) classifier has demonstrated robustness in handling incomplete and uncertain data; however, its application in high-dimensional big data for feature selection, such as genomic datasets with tens of thousands of gene features, remains underexplored. Our proposed Granular–Elastic Evidential K-Nearest [...] Read more.
The Evidential K-Nearest Neighbor (EK-NN) classifier has demonstrated robustness in handling incomplete and uncertain data; however, its application in high-dimensional big data for feature selection, such as genomic datasets with tens of thousands of gene features, remains underexplored. Our proposed Granular–Elastic Evidential K-Nearest Neighbor (GEK-NN) approach addresses this gap. In the context of big data, GEK-NN integrates an Elastic Net within the Genetic Algorithm’s fitness function to efficiently sift through vast amounts of data, identifying relevant feature subsets. This process mimics human cognitive behavior of filtering and refining information, similar to concepts in cognitive computing. A granularity metric is further employed to optimize subset size, maximizing its impact. GEK-NN consists of two crucial phases. Initially, an Elastic Net-based feature evaluation is conducted to pinpoint relevant features from the high-dimensional data. Subsequently, granularity-based optimization refines the subset size, adapting to the complexity of big data. Before applying to genomic big data, experiments on UCI datasets demonstrated the feasibility and effectiveness of GEK-NN. By using an Evidence Theory framework, GEK-NN overcomes feature-selection challenges in both low-dimensional UCI datasets and high-dimensional genomic big data, significantly enhancing pattern recognition and classification accuracy. Comparative analyses with existing EK-NN feature-selection methods, using both UCI and high-dimensional gene datasets, underscore GEK-NN’s superiority in handling big data for feature selection and classification. These results indicate that GEK-NN not only enriches EK-NN applications but also offers a cognitive-inspired solution for complex gene data analysis, effectively tackling high-dimensional feature-selection challenges in the realm of big data. Full article
Show Figures

Figure 1

30 pages, 16226 KB  
Article
A Dual-Stage and Dual-Population Algorithm Based on Chemical Reaction Optimization for Constrained Multi-Objective Optimization
by Tianyu Zhang, Xin Guo, Yan Li, Na Li, Ruochen Zheng, Wenbo Dong and Weichao Ding
Processes 2025, 13(8), 2484; https://doi.org/10.3390/pr13082484 - 6 Aug 2025
Viewed by 255
Abstract
Constrained multi-objective optimization problems (CMOPs) require optimizing multiple conflicting objectives while satisfying complex constraints. These constraints generate infeasible regions that challenge traditional algorithms in balancing feasibility and Pareto frontier diversity. chemical reaction optimization (CRO) effectively balances global exploration and local exploitation through molecular [...] Read more.
Constrained multi-objective optimization problems (CMOPs) require optimizing multiple conflicting objectives while satisfying complex constraints. These constraints generate infeasible regions that challenge traditional algorithms in balancing feasibility and Pareto frontier diversity. chemical reaction optimization (CRO) effectively balances global exploration and local exploitation through molecular collision reactions and energy management, thereby enhancing search efficiency. However, standard CRO variants often struggle with CMOPs due to the absence of specialized constraint-handling mechanisms. To address these challenges, this paper integrates the CRO collision reaction mechanism with an existing evolutionary computational framework to design a dual-stage and dual-population chemical reaction optimization (DDCRO) algorithm. This approach employs a staged optimization strategy, which divides population evolution into two phases. The first phase focuses on objective optimization to enhance population diversity, and the second prioritizes constraint satisfaction to accelerate convergence toward the constrained Pareto front. Furthermore, to leverage the infeasible solutions’ guiding potential during the search, DDCRO adopts a two-population strategy. At each stage, the main population tackles the original constrained problem, while the auxiliary population addresses the corresponding unconstrained version. A weak complementary mechanism facilitates information sharing between populations, which enhances search efficiency and algorithmic robustness. Comparative tests on multiple test suites reveal that DDCRO achieves optimal IGD/HV values in 53% of test problems. The proposed algorithm outperforms other state-of-the-art algorithms in both convergence and population diversity. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

35 pages, 3122 KB  
Article
Blockchain-Driven Smart Contracts for Advanced Authorization and Authentication in Cloud Security
by Mohammed Naif Alatawi
Electronics 2025, 14(15), 3104; https://doi.org/10.3390/electronics14153104 - 4 Aug 2025
Viewed by 701
Abstract
The increasing reliance on cloud services demands advanced security mechanisms to protect sensitive data and ensure robust access control. This study addresses critical challenges in cloud security by proposing a novel framework that integrates blockchain-based smart contracts to enhance authorization and authentication processes. [...] Read more.
The increasing reliance on cloud services demands advanced security mechanisms to protect sensitive data and ensure robust access control. This study addresses critical challenges in cloud security by proposing a novel framework that integrates blockchain-based smart contracts to enhance authorization and authentication processes. Smart contracts, as self-executing agreements embedded with predefined rules, enable decentralized, transparent, and tamper-proof mechanisms for managing access control in cloud environments. The proposed system mitigates prevalent threats such as unauthorized access, data breaches, and identity theft through an immutable and auditable security framework. A prototype system, developed using Ethereum blockchain and Solidity programming, demonstrates the feasibility and effectiveness of the approach. Rigorous evaluations reveal significant improvements in key metrics: security, with a 0% success rate for unauthorized access attempts; scalability, maintaining low response times for up to 100 concurrent users; and usability, with an average user satisfaction rating of 4.4 out of 5. These findings establish the efficacy of smart contract-based solutions in addressing critical vulnerabilities in cloud services while maintaining operational efficiency. The study underscores the transformative potential of blockchain and smart contracts in revolutionizing cloud security practices. Future research will focus on optimizing the system’s scalability for higher user loads and integrating advanced features such as adaptive authentication and anomaly detection for enhanced resilience across diverse cloud platforms. Full article
Show Figures

Figure 1

31 pages, 1737 KB  
Article
Trajectory Optimization for Autonomous Highway Driving Using Quintic Splines
by Wael A. Farag and Morsi M. Mahmoud
World Electr. Veh. J. 2025, 16(8), 434; https://doi.org/10.3390/wevj16080434 - 3 Aug 2025
Viewed by 726
Abstract
This paper introduces a robust and efficient Localized Spline-based Path-Planning (LSPP) algorithm designed to enhance autonomous vehicle navigation on highways. The LSPP approach prioritizes smooth maneuvering, obstacle avoidance, passenger comfort, and adherence to road constraints, including lane boundaries, through optimized trajectory generation using [...] Read more.
This paper introduces a robust and efficient Localized Spline-based Path-Planning (LSPP) algorithm designed to enhance autonomous vehicle navigation on highways. The LSPP approach prioritizes smooth maneuvering, obstacle avoidance, passenger comfort, and adherence to road constraints, including lane boundaries, through optimized trajectory generation using quintic spline functions and a dynamic speed profile. Leveraging real-time data from the vehicle’s sensor fusion module, the LSPP algorithm accurately interprets the positions of surrounding vehicles and obstacles, creating a safe, dynamically feasible path that is relayed to the Model Predictive Control (MPC) track-following module for precise execution. The theoretical distinction of LSPP lies in its modular integration of: (1) a finite state machine (FSM)-based decision-making layer that selects maneuver-specific goal states (e.g., keep lane, change lane left/right); (2) quintic spline optimization to generate smooth, jerk-minimized, and kinematically consistent trajectories; (3) a multi-objective cost evaluation framework that ranks competing paths according to safety, comfort, and efficiency; and (4) a closed-loop MPC controller to ensure real-time trajectory execution with robustness. Extensive simulations conducted in diverse highway scenarios and traffic conditions demonstrate LSPP’s effectiveness in delivering smooth, safe, and computationally efficient trajectories. Results show consistent improvements in lane-keeping accuracy, collision avoidance, enhanced materials wear performance, and planning responsiveness compared to traditional path-planning methods. These findings confirm LSPP’s potential as a practical and high-performance solution for autonomous highway driving. Full article
(This article belongs to the Special Issue Motion Planning and Control of Autonomous Vehicles)
Show Figures

Figure 1

Back to TopTop