Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (514)

Search Parameters:
Keywords = robotic cooperation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3506 KiB  
Review
A Review of Spatial Positioning Methods Applied to Magnetic Climbing Robots
by Haolei Ru, Meiping Sheng, Jiahui Qi, Zhanghao Li, Lei Cheng, Jiahao Zhang, Jiangjian Xiao, Fei Gao, Baolei Wang and Qingwei Jia
Electronics 2025, 14(15), 3069; https://doi.org/10.3390/electronics14153069 (registering DOI) - 31 Jul 2025
Abstract
Magnetic climbing robots hold significant value for operations in complex industrial environments, particularly for the inspection and maintenance of large-scale metal structures. High-precision spatial positioning is the foundation for enabling autonomous and intelligent operations in such environments. However, the existing literature lacks a [...] Read more.
Magnetic climbing robots hold significant value for operations in complex industrial environments, particularly for the inspection and maintenance of large-scale metal structures. High-precision spatial positioning is the foundation for enabling autonomous and intelligent operations in such environments. However, the existing literature lacks a systematic and comprehensive review of spatial positioning techniques tailored to magnetic climbing robots. This paper addresses this gap by categorizing and evaluating current spatial positioning approaches. Initially, single-sensor-based methods are analyzed with a focus on external sensor approaches. Then, multi-sensor fusion methods are explored to overcome the shortcomings of single-sensor-based approaches. Multi-sensor fusion methods include simultaneous localization and mapping (SLAM), integrated positioning systems, and multi-robot cooperative positioning. To address non-uniform noise and environmental interference, both analytical and learning-based reinforcement approaches are reviewed. Common analytical methods include Kalman-type filtering, particle filtering, and correlation filtering, while typical learning-based approaches involve deep reinforcement learning (DRL) and neural networks (NNs). Finally, challenges and future development trends are discussed. Multi-sensor fusion and lightweight design are the future trends in the advancement of spatial positioning technologies for magnetic climbing robots. Full article
(This article belongs to the Special Issue Advancements in Robotics: Perception, Manipulation, and Interaction)
Show Figures

Figure 1

19 pages, 41284 KiB  
Article
Coordinated Dual-Fin Actuation of Bionic Ocean Sunfish Robot for Multi-Modal Locomotion
by Lidong Huang, Zhong Huang, Quanchao Liu, Zhihao Song, Yayi Shen and Mengxing Huang
Biomimetics 2025, 10(8), 489; https://doi.org/10.3390/biomimetics10080489 - 24 Jul 2025
Viewed by 370
Abstract
This paper presents a bionic dual-fin underwater robot, inspired by the ocean sunfish, that achieves multiple swimming motions using only two vertically arranged fins. This work demonstrates that a mechanically simple platform can execute complex 2-D and 3-D motions through advanced control strategies, [...] Read more.
This paper presents a bionic dual-fin underwater robot, inspired by the ocean sunfish, that achieves multiple swimming motions using only two vertically arranged fins. This work demonstrates that a mechanically simple platform can execute complex 2-D and 3-D motions through advanced control strategies, eliminating the need for auxiliary actuators. We control the two fins independently so that they can perform cooperative actions in the water, enabling the robot to perform various motions, including high-speed cruising, agile turning, controlled descents, proactive ascents, and continuous spiraling. The swimming performance of the dual-fin robot in executing multi-modal locomotion is experimentally analyzed through visual measurement methods and onboard sensors. Experimental results demonstrate that a minimalist dual-fin propulsion system of the designed ocean sunfish robot can provide speed (maximum cruising speed of 1.16 BL/s), stability (yaw amplitude less than 4.2°), and full three-dimensional maneuverability (minimum turning radius of 0.89 BL). This design, characterized by its simple structure, multiple motion capabilities, and excellent motion performance, offers a promising pathway for developing robust and versatile robots for diverse underwater applications. Full article
(This article belongs to the Special Issue Bionic Robotic Fish: 2nd Edition)
Show Figures

Figure 1

19 pages, 1563 KiB  
Review
Autonomous Earthwork Machinery for Urban Construction: A Review of Integrated Control, Fleet Coordination, and Safety Assurance
by Zeru Liu and Jung In Kim
Buildings 2025, 15(14), 2570; https://doi.org/10.3390/buildings15142570 - 21 Jul 2025
Viewed by 225
Abstract
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers [...] Read more.
Autonomous earthwork machinery is gaining traction as a means to boost productivity and safety on space-constrained urban sites, yet the fast-growing literature has not been fully integrated. To clarify current knowledge, we systematically searched Scopus and screened 597 records, retaining 157 peer-reviewed papers (2015–March 2025) that address autonomy, integrated control, or risk mitigation for excavators, bulldozers, and loaders. Descriptive statistics, VOSviewer mapping, and qualitative synthesis show the output rising rapidly and peaking at 30 papers in 2024, led by China, Korea, and the USA. Four tightly linked themes dominate: perception-driven machine autonomy, IoT-enabled integrated control systems, multi-sensor safety strategies, and the first demonstrations of fleet-level collaboration (e.g., coordinated excavator clusters and unmanned aerial vehicle and unmanned ground vehicle (UAV–UGV) site preparation). Advances include centimeter-scale path tracking, real-time vision-light detection and ranging (LiDAR) fusion and geofenced safety envelopes, but formal validation protocols and robust inter-machine communication remain open challenges. The review distils five research priorities, including adaptive perception and artificial intelligence (AI), digital-twin integration with building information modeling (BIM), cooperative multi-robot planning, rigorous safety assurance, and human–automation partnership that must be addressed to transform isolated prototypes into connected, self-optimizing fleets capable of delivering safer, faster, and more sustainable urban construction. Full article
(This article belongs to the Special Issue Automation and Robotics in Building Design and Construction)
Show Figures

Figure 1

45 pages, 11380 KiB  
Article
Application of Multi-Strategy Controlled Rime Algorithm in Path Planning for Delivery Robots
by Haokai Lv, Qian Qian, Jiawen Pan, Miao Song, Yong Feng and Yingna Li
Biomimetics 2025, 10(7), 476; https://doi.org/10.3390/biomimetics10070476 - 19 Jul 2025
Viewed by 399
Abstract
As a core component of automated logistics systems, delivery robots hold significant application value in the field of unmanned delivery. This research addresses the robot path planning problem, aiming to enhance delivery efficiency and reduce operational costs through systematic improvements to the RIME [...] Read more.
As a core component of automated logistics systems, delivery robots hold significant application value in the field of unmanned delivery. This research addresses the robot path planning problem, aiming to enhance delivery efficiency and reduce operational costs through systematic improvements to the RIME optimization algorithm. Through in-depth analysis, we identified several major drawbacks in the standard RIME algorithm for path planning: insufficient global exploration capability in the initial stages, a lack of diversity in the hard RIME search mechanism, and oscillatory phenomena in soft RIME step size adjustment. These issues often lead to undesirable phenomena in path planning, such as local optima traps, path redundancy, or unsmooth trajectories. To address these limitations, this study proposes the Multi-Strategy Controlled Rime Algorithm (MSRIME), whose innovation primarily manifests in three aspects: first, it constructs a multi-strategy collaborative optimization framework, utilizing an infinite folding Fuch chaotic map for intelligent population initialization to significantly enhance the diversity of solutions; second, it designs a cooperative mechanism between a controlled elite strategy and an adaptive search strategy that, through a dynamic control factor, autonomously adjusts the strategy activation probability and adaptation rate, expanding the search space while ensuring algorithmic convergence efficiency; and finally, it introduces a cosine annealing strategy to improve the step size adjustment mechanism, reducing parameter sensitivity and effectively preventing path distortions caused by abrupt step size changes. During the algorithm validation phase, comparative tests were conducted between two groups of algorithms, demonstrating their significant advantages in optimization capability, convergence speed, and stability. Further experimental analysis confirmed that the algorithm’s multi-strategy framework effectively suppresses the impact of coordinate and dimensional differences on path quality during iteration, making it more suitable for delivery robot path planning scenarios. Ultimately, path planning experimental results across various Building Coverage Rate (BCR) maps and diverse application scenarios show that MSRIME exhibits superior performance in key indicators such as path length, running time, and smoothness, providing novel technical insights and practical solutions for the interdisciplinary research between intelligent logistics and computer science. Full article
Show Figures

Figure 1

23 pages, 5173 KiB  
Article
Improvement of Cooperative Localization for Heterogeneous Mobile Robots
by Efe Oğuzhan Karcı, Ahmet Mustafa Kangal and Sinan Öncü
Drones 2025, 9(7), 507; https://doi.org/10.3390/drones9070507 - 19 Jul 2025
Viewed by 324
Abstract
This research focuses on enhancing cooperative localization for heterogeneous mobile robots composed of a quadcopter and an unmanned ground vehicle. The study employs sensor fusion techniques, particularly the Extended Kalman Filter, to fuse data from various sensors, including GPSs, IMUs, and cameras. By [...] Read more.
This research focuses on enhancing cooperative localization for heterogeneous mobile robots composed of a quadcopter and an unmanned ground vehicle. The study employs sensor fusion techniques, particularly the Extended Kalman Filter, to fuse data from various sensors, including GPSs, IMUs, and cameras. By integrating these sensors and optimizing fusion strategies, the research aims to improve the precision and reliability of cooperative localization in complex and dynamic environments. The primary objective is to develop a practical framework for cooperative localization that addresses the challenges posed by the differences in mobility and sensing capabilities among heterogeneous robots. Sensor fusion is used to compensate for the limitations of individual sensors, providing more accurate and robust localization results. Moreover, a comparative analysis of different sensor combinations and fusion strategies helps to identify the optimal configuration for each robot. This research focuses on the improvement of cooperative localization, path planning, and collaborative tasks for heterogeneous robots. The findings have broad applications in fields such as autonomous transportation, agricultural operation, and disaster response, where the cooperation of diverse robotic platforms is crucial for mission success. Full article
Show Figures

Figure 1

17 pages, 2319 KiB  
Article
Coordinating the Redundant DOFs of Humanoid Robots
by Pietro Morasso
Actuators 2025, 14(7), 354; https://doi.org/10.3390/act14070354 - 18 Jul 2025
Viewed by 133
Abstract
The new generation of robots (Industry 5.0 and beyond) is expected to be accompanied by the massive introduction of autonomous and cooperative agents in our society, both in the industrial and service sectors. Cooperation with humans will be simplified by humanoid robots with [...] Read more.
The new generation of robots (Industry 5.0 and beyond) is expected to be accompanied by the massive introduction of autonomous and cooperative agents in our society, both in the industrial and service sectors. Cooperation with humans will be simplified by humanoid robots with a similar kinematic outline and a similar kinematic redundancy, which is required by the diversity of tasks that will be performed. A bio-inspired approach is proposed for coordinating the redundant DOFs of such agents. This approach is based on the ideomotor theory of action, combined with the passive motion paradigm, to implicitly address the degrees of freedom problem, without any kinematic inversion, while producing coordinated motor patterns structured according to the typical features of biological motion. At the same time, since the approach is force-field-based, it allows us to integrate the computational loop parallel modules that exploit the redundancy of the system for satisfying geometric or kinematic constraints implemented by appropriate repulsive force fields. Moreover, the model is expanded to include dynamic constraints associated with the Lagrangian dynamics of the humanoid robot to improve the energetic efficiency of the generated actions. Full article
Show Figures

Figure 1

33 pages, 4382 KiB  
Article
A Distributed Multi-Robot Collaborative SLAM Method Based on Air–Ground Cross-Domain Cooperation
by Peng Liu, Yuxuan Bi, Caixia Wang and Xiaojiao Jiang
Drones 2025, 9(7), 504; https://doi.org/10.3390/drones9070504 - 18 Jul 2025
Viewed by 359
Abstract
To overcome the limitations in the perception performance of individual robots and homogeneous robot teams, this paper presents a distributed multi-robot collaborative SLAM method based on air–ground cross-domain cooperation. By integrating environmental perception data from UAV and UGV teams across air and ground [...] Read more.
To overcome the limitations in the perception performance of individual robots and homogeneous robot teams, this paper presents a distributed multi-robot collaborative SLAM method based on air–ground cross-domain cooperation. By integrating environmental perception data from UAV and UGV teams across air and ground domains, this method enables more efficient, robust, and globally consistent autonomous positioning and mapping. First, to address the challenge of significant differences in the field of view between UAVs and UGVs, which complicates achieving a unified environmental understanding, this paper proposes an iterative registration method based on semantic and geometric features assistance. This method calculates the correspondence probability of the air–ground loop closure keyframes using these features and iteratively computes the rotation angle and translation vector to determine the coordinate transformation matrix. The resulting matrix provides strong initialization for back-end optimization, which helps to significantly reduce global pose estimation errors. Next, to overcome the convergence difficulties and high computational complexity of large-scale distributed back-end nonlinear pose graph optimization, this paper introduces a multi-level partitioning majorization–minimization DPGO method incorporating loss kernel optimization. This method constructs a multi-level, balanced pose subgraph based on the coupling degree of robot nodes. Then, it uses the minimization substitution function of non-trivial loss kernel optimization to gradually converge the distributed pose graph optimization problem to a first-order critical point, thereby significantly improving global pose estimation accuracy. Finally, experimental results on benchmark SLAM datasets and the GRACO dataset demonstrate that the proposed method effectively integrates environmental feature information from air–ground cross-domain UAV and UGV teams, achieving high-precision global pose estimation and map construction. Full article
Show Figures

Figure 1

26 pages, 8154 KiB  
Article
Investigation into the Efficient Cooperative Planning Approach for Dual-Arm Picking Sequences of Dwarf, High-Density Safflowers
by Zhenguo Zhang, Peng Xu, Binbin Xie, Yunze Wang, Ruimeng Shi, Junye Li, Wenjie Cao, Wenqiang Chu and Chao Zeng
Sensors 2025, 25(14), 4459; https://doi.org/10.3390/s25144459 - 17 Jul 2025
Viewed by 198
Abstract
Path planning for picking safflowers is a key component in ensuring the efficient operation of robotic safflower-picking systems. However, existing single-arm picking devices have become a bottleneck due to their limited operating range, and a breakthrough in multi-arm cooperative picking is urgently needed. [...] Read more.
Path planning for picking safflowers is a key component in ensuring the efficient operation of robotic safflower-picking systems. However, existing single-arm picking devices have become a bottleneck due to their limited operating range, and a breakthrough in multi-arm cooperative picking is urgently needed. To address the issue of inadequate adaptability in current path planning strategies for dual-arm systems, this paper proposes a novel path planning method for dual-arm picking (LTSACO). The technique centers on a dynamic-weight heuristic strategy and achieves optimization through the following steps: first, the K-means clustering algorithm divides the target area; second, the heuristic mechanism of the Ant Colony Optimization (ACO) algorithm is improved by dynamically adjusting the weight factor of the state transition probability, thereby enhancing the diversity of path selection; third, a 2-OPT local search strategy eliminates path crossings through neighborhood search; finally, a cubic Bézier curve heuristically smooths and optimizes the picking trajectory, ensuring the continuity of the trajectory’s curvature. Experimental results show that the length of the parallelogram trajectory, after smoothing with the Bézier curve, is reduced by 20.52% compared to the gantry trajectory. In terms of average picking time, the LTSACO algorithm reduces the time by 2.00%, 2.60%, and 5.60% compared to DCACO, IACO, and the traditional ACO algorithm, respectively. In conclusion, the LTSACO algorithm demonstrates high efficiency and strong robustness, providing an effective optimization solution for multi-arm cooperative picking and significantly contributing to the advancement of multi-arm robotic picking systems. Full article
Show Figures

Figure 1

22 pages, 3768 KiB  
Article
A Collaborative Navigation Model Based on Multi-Sensor Fusion of Beidou and Binocular Vision for Complex Environments
by Yongxiang Yang and Zhilong Yu
Appl. Sci. 2025, 15(14), 7912; https://doi.org/10.3390/app15147912 - 16 Jul 2025
Viewed by 328
Abstract
This paper addresses the issues of Beidou navigation signal interference and blockage in complex substation environments by proposing an intelligent collaborative navigation model based on Beidou high-precision navigation and binocular vision recognition. The model is designed with Beidou navigation providing global positioning references [...] Read more.
This paper addresses the issues of Beidou navigation signal interference and blockage in complex substation environments by proposing an intelligent collaborative navigation model based on Beidou high-precision navigation and binocular vision recognition. The model is designed with Beidou navigation providing global positioning references and binocular vision enabling local environmental perception through a collaborative fusion strategy. The Unscented Kalman Filter (UKF) is used to integrate data from multiple sensors to ensure high-precision positioning and dynamic obstacle avoidance capabilities for robots in complex environments. Simulation results show that the Beidou–Binocular Cooperative Navigation (BBCN) model achieves a global positioning error of less than 5 cm in non-interference scenarios, and an error of only 6.2 cm under high-intensity electromagnetic interference, significantly outperforming the single Beidou model’s error of 40.2 cm. The path planning efficiency is close to optimal (with an efficiency factor within 1.05), and the obstacle avoidance success rate reaches 95%, while the system delay remains within 80 ms, meeting the real-time requirements of industrial scenarios. The innovative fusion approach enables unprecedented reliability for autonomous robot inspection in high-voltage environments, offering significant practical value in reducing human risk exposure, lowering maintenance costs, and improving inspection efficiency in power industry applications. This technology enables continuous monitoring of critical power infrastructure that was previously difficult to automate due to navigation challenges in electromagnetically complex environments. Full article
(This article belongs to the Special Issue Advanced Robotics, Mechatronics, and Automation)
Show Figures

Figure 1

39 pages, 1775 KiB  
Article
A Survey on UAV Control with Multi-Agent Reinforcement Learning
by Chijioke C. Ekechi, Tarek Elfouly, Ali Alouani and Tamer Khattab
Drones 2025, 9(7), 484; https://doi.org/10.3390/drones9070484 - 9 Jul 2025
Viewed by 1243
Abstract
Unmanned Aerial Vehicles (UAVs) have become increasingly prevalent in both governmental and civilian applications, offering significant reductions in operational costs by minimizing human involvement. There is a growing demand for autonomous, scalable, and intelligent coordination strategies in complex aerial missions involving multiple Unmanned [...] Read more.
Unmanned Aerial Vehicles (UAVs) have become increasingly prevalent in both governmental and civilian applications, offering significant reductions in operational costs by minimizing human involvement. There is a growing demand for autonomous, scalable, and intelligent coordination strategies in complex aerial missions involving multiple Unmanned Aerial Vehicles (UAVs). Traditional control techniques often fall short in dynamic, uncertain, or large-scale environments where decentralized decision-making and inter-agent cooperation are crucial. A potentially effective technique used for UAV fleet operation is Multi-Agent Reinforcement Learning (MARL). MARL offers a powerful framework for addressing these challenges by enabling UAVs to learn optimal behaviors through interaction with the environment and each other. Despite significant progress, the field remains fragmented, with a wide variety of algorithms, architectures, and evaluation metrics spread across domains. This survey aims to systematically review and categorize state-of-the-art MARL approaches applied to UAV control, identify prevailing trends and research gaps, and provide a structured foundation for future advancements in cooperative aerial robotics. The advantages and limitations of these techniques are discussed along with suggestions for further research to improve the effectiveness of MARL application to UAV fleet management. Full article
Show Figures

Figure 1

40 pages, 2250 KiB  
Review
Comprehensive Comparative Analysis of Lower Limb Exoskeleton Research: Control, Design, and Application
by Sk Hasan and Nafizul Alam
Actuators 2025, 14(7), 342; https://doi.org/10.3390/act14070342 - 9 Jul 2025
Viewed by 539
Abstract
This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric [...] Read more.
This review provides a comprehensive analysis of recent advancements in lower limb exoskeleton systems, focusing on applications, control strategies, hardware architecture, sensing modalities, human-robot interaction, evaluation methods, and technical innovations. The study spans systems developed for gait rehabilitation, mobility assistance, terrain adaptation, pediatric use, and industrial support. Applications range from sit-to-stand transitions and post-stroke therapy to balance support and real-world navigation. Control approaches vary from traditional impedance and fuzzy logic models to advanced data-driven frameworks, including reinforcement learning, recurrent neural networks, and digital twin-based optimization. These controllers support personalized and adaptive interaction, enabling real-time intent recognition, torque modulation, and gait phase synchronization across different users and tasks. Hardware platforms include powered multi-degree-of-freedom exoskeletons, passive assistive devices, compliant joint systems, and pediatric-specific configurations. Innovations in actuator design, modular architecture, and lightweight materials support increased usability and energy efficiency. Sensor systems integrate EMG, EEG, IMU, vision, and force feedback, supporting multimodal perception for motion prediction, terrain classification, and user monitoring. Human–robot interaction strategies emphasize safe, intuitive, and cooperative engagement. Controllers are increasingly user-specific, leveraging biosignals and gait metrics to tailor assistance. Evaluation methodologies include simulation, phantom testing, and human–subject trials across clinical and real-world environments, with performance measured through joint tracking accuracy, stability indices, and functional mobility scores. Overall, the review highlights the field’s evolution toward intelligent, adaptable, and user-centered systems, offering promising solutions for rehabilitation, mobility enhancement, and assistive autonomy in diverse populations. Following a detailed review of current developments, strategic recommendations are made to enhance and evolve existing exoskeleton technologies. Full article
(This article belongs to the Section Actuators for Robotics)
Show Figures

Figure 1

19 pages, 4860 KiB  
Article
Research on Kinematic Calibration and Trajectory Tracking of the Dual-Robot Collaborative Grinding and Polishing System
by Wenduan Yan, Luwei Xu, Yifang Sun, Hongjie Xu and Zhifei Ji
Sensors 2025, 25(13), 4075; https://doi.org/10.3390/s25134075 - 30 Jun 2025
Viewed by 323
Abstract
This study proposes a systematic solution to the motion planning challenges in dual-robot collaborative grinding and polishing systems, with its effectiveness experimentally validated. By establishing a dual-robot pose constraint model, this study innovatively integrates the “handshake” method with the seven-point calibration approach, achieving [...] Read more.
This study proposes a systematic solution to the motion planning challenges in dual-robot collaborative grinding and polishing systems, with its effectiveness experimentally validated. By establishing a dual-robot pose constraint model, this study innovatively integrates the “handshake” method with the seven-point calibration approach, achieving enhanced spatial mapping accuracy between the base coordinate system and tool coordinate system. Based on the modified Denavit–Hartenberg (DH) method, this study establishes kinematic modeling for EPSON C4-A901S robots on the MATLAB platform. By integrating calibration parameters, a dual-robot collaborative grinding model is constructed, with its reliability thoroughly verified through comprehensive simulations. An experimental platform integrating dual EPSON C4-series robots with grinding devices, clamping fixtures, and drive systems was established. The average error below 8 mm from 10 repeated experiments fully validates the accuracy and practical applicability of the integrated calibration method. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

16 pages, 2524 KiB  
Article
Design of a Hierarchical Control Architecture for Fully-Driven Multi-Fingered Dexterous Hand
by Yinan Jin, Hujiang Wang, Han Ge and Guanjun Bao
Biomimetics 2025, 10(7), 422; https://doi.org/10.3390/biomimetics10070422 - 30 Jun 2025
Viewed by 424
Abstract
Multi-fingered dexterous hands provide superior dexterity in complex manipulation tasks due to their high degrees of freedom (DOFs) and biomimetic structures. Inspired by the anatomical structure of human tendons and muscles, numerous robotic hands powered by pneumatic artificial muscles (PAMs) have been created [...] Read more.
Multi-fingered dexterous hands provide superior dexterity in complex manipulation tasks due to their high degrees of freedom (DOFs) and biomimetic structures. Inspired by the anatomical structure of human tendons and muscles, numerous robotic hands powered by pneumatic artificial muscles (PAMs) have been created to replicate the compliant and adaptable features of biological hands. Nonetheless, PAMs have inherent nonlinear and hysteresis behaviors that create considerable challenges to achieving real-time control accuracy and stability in dexterous hands. In order to address these challenges, this paper proposes a hierarchical control architecture that employs a fuzzy PID strategy to optimize the nonlinear control of pneumatic artificial muscles (PAMs). The FPGA-based hardware integrates a multi-channel digital-to-analog converter (DAC) and a multiplexed acquisition module, facilitating the independent actuation of 20 PAMs and the real-time monitoring of 20 joints. The software implements a fuzzy PID algorithm that dynamically adjusts PID parameters based on both the error and the error rate, thereby effectively managing the nonlinear behaviors of the hand. Experimental results demonstrate that the designed control system achieves high precision in controlling the angle of a single finger joint, with errors maintained within ±1°. In scenarios involving multi-finger cooperative grasping and biomimetic motion demonstrations, the system exhibits excellent synchronization and real-time performance. These results validate the efficacy of the fuzzy PID control strategy and confirm that the proposed system fulfills the precision and stability requirements for complex operational tasks, providing robust support for the application of PAM-driven multi-fingered dexterous hands. Full article
(This article belongs to the Special Issue Biomimetic Robot Motion Control)
Show Figures

Figure 1

24 pages, 4899 KiB  
Article
A Coordination Optimization Framework for Multi-Agent Reinforcement Learning Based on Reward Redistribution and Experience Reutilization
by Bo Yang, Linghang Gao, Fangzheng Zhou, Hongge Yao, Yanfang Fu, Zelong Sun, Feng Tian and Haipeng Ren
Electronics 2025, 14(12), 2361; https://doi.org/10.3390/electronics14122361 - 9 Jun 2025
Viewed by 622
Abstract
Cooperative multi-agent reinforcement learning (MARL) has emerged as a powerful paradigm for addressing complex real-world challenges, including autonomous robot control, strategic decision-making, and decentralized coordination in unmanned swarm systems. However, it still faces challenges in learning proper coordination among multiple agents. The lack [...] Read more.
Cooperative multi-agent reinforcement learning (MARL) has emerged as a powerful paradigm for addressing complex real-world challenges, including autonomous robot control, strategic decision-making, and decentralized coordination in unmanned swarm systems. However, it still faces challenges in learning proper coordination among multiple agents. The lack of effective knowledge sharing and experience interaction mechanisms among agents has led to substantial performance decline, especially in terms of low sampling efficiency and slow convergence rates, ultimately constraining the practical applicability of MARL. To address these challenges, this paper proposes a novel framework termed Reward redistribution and Experience reutilization based Coordination Optimization (RECO). This innovative approach employs a hierarchical experience pool mechanism that enhances exploration through strategic reward redistribution and experience reutilization. The RECO framework incorporates a sophisticated evaluation mechanism that assesses the quality of historical sampling data from individual agents and optimizes reward distribution by maximizing mutual information across hierarchical experience trajectories. Extensive comparative analyses of computational efficiency and performance metrics across diverse environments reveal that the proposed method not only enhances training efficiency in multi-agent gaming scenarios but also significantly strengthens algorithmic robustness and stability in dynamic environments. Full article
Show Figures

Graphical abstract

16 pages, 3447 KiB  
Review
Autonomous Mobile Inspection Robots in Deep Underground Mining—The Current State of the Art and Future Perspectives
by Martyna Konieczna-Fuławka, Anton Koval, George Nikolakopoulos, Matteo Fumagalli, Laura Santas Moreu, Victor Vigara-Puche, Jakob Müller and Michael Prenner
Sensors 2025, 25(12), 3598; https://doi.org/10.3390/s25123598 - 7 Jun 2025
Viewed by 949
Abstract
In this article, the current state of the art in the area of autonomously working and mobile robots used for inspections in deep underground mining and exploration is described, and directions for future development are highlighted. The increasing demand for CRMs (critical raw [...] Read more.
In this article, the current state of the art in the area of autonomously working and mobile robots used for inspections in deep underground mining and exploration is described, and directions for future development are highlighted. The increasing demand for CRMs (critical raw materials) and deeper excavations pose a higher risk for people and require new solutions in the maintenance and inspection of both underground machines and excavations. Mitigation of risks and a reduction in accidents (fatal, serious and light) may be achieved by the implementation of mobile or partly autonomous solutions such as drones for exploration, robots for exploration or initial excavation, etc. This study examines various types of mobile unmanned robots such as ANYmal on legs, robots on a tracked chassis, or flying drones. The main scope of this review is the evaluation of the effectiveness and technological advancement in the aspect of improving safety and efficiency in deep underground and abandoned mines. Notable possibilities are multi-sensor systems or cooperative behaviors in systems which involve many robots. This study also highlights the challenges and difficulties of working and navigating (in an environment where we cannot use GNSS or GPS systems) in deep underground mines. Mobile inspection robots have a major role in transforming underground operations; nevertheless, there are still aspects that need to be developed. Further improvement might focus on increasing autonomy, improving sensor technology, and the integration of robots with existing mining infrastructure. This might lead to safer and more efficient extraction and the SmartMine of the future. Full article
(This article belongs to the Section Sensors and Robotics)
Show Figures

Figure 1

Back to TopTop