Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (91)

Search Parameters:
Keywords = road defects detection

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1304 KB  
Article
RoadNet: A High-Precision Transformer-CNN Framework for Road Defect Detection via UAV-Based Visual Perception
by Long Gou, Yadong Liang, Xingyu Zhang and Jianfeng Yang
Drones 2025, 9(10), 691; https://doi.org/10.3390/drones9100691 - 9 Oct 2025
Abstract
Automated Road defect detection using Unmanned Aerial Vehicles (UAVs) has emerged as an efficient and safe solution for large-scale infrastructure inspection. However, object detection in aerial imagery poses unique challenges, including the prevalence of extremely small targets, complex backgrounds, and significant scale variations. [...] Read more.
Automated Road defect detection using Unmanned Aerial Vehicles (UAVs) has emerged as an efficient and safe solution for large-scale infrastructure inspection. However, object detection in aerial imagery poses unique challenges, including the prevalence of extremely small targets, complex backgrounds, and significant scale variations. Mainstream deep learning-based detection models often struggle with these issues, exhibiting limitations in detecting small cracks, high computational demands, and insufficient generalization ability for UAV perspectives. To address these challenges, this paper proposes a novel comprehensive network, RoadNet, specifically designed for high-precision road defect detection in UAV-captured imagery. RoadNet innovatively integrates Transformer modules with a convolutional neural network backbone and detection head. This design not only significantly enhances the global feature modeling capability crucial for understanding complex aerial contexts but also maintains the computational efficiency necessary for potential real-time applications. The model was trained and evaluated on a self-collected UAV road defect dataset (UAV-RDD). In comparative experiments, RoadNet achieved an outstanding mAP@0.5 score of 0.9128 while maintaining a fast-processing speed of 210.01 ms per image, outperforming other state-of-the-art models. The experimental results demonstrate that RoadNet possesses superior detection performance for road defects in complex aerial scenarios captured by drones. Full article
Show Figures

Figure 1

17 pages, 3854 KB  
Article
Denoising and Mosaicking Methods for Radar Images of Road Interiors
by Changrong Li, Zhiyong Huang, Bo Zang and Huayang Yu
Appl. Sci. 2025, 15(19), 10485; https://doi.org/10.3390/app151910485 - 28 Sep 2025
Viewed by 236
Abstract
Three-dimensional ground-penetrating radar can quickly visualize the internal condition of the road; however, it faces challenges such as data splicing difficulties and image noise interference. Scanning antenna and lane size differences, as well as equipment and environmental interference, make the radar image difficult [...] Read more.
Three-dimensional ground-penetrating radar can quickly visualize the internal condition of the road; however, it faces challenges such as data splicing difficulties and image noise interference. Scanning antenna and lane size differences, as well as equipment and environmental interference, make the radar image difficult to interpret, which affects disease identification accuracy. For this reason, this paper focuses on road radar image splicing and noise reduction. The primary research includes the following: (1) We make use of backward projection imaging algorithms to visualize the internal information of the road, combined with a high-precision positioning system, splicing of multi-lane data, and the use of bilinear interpolation algorithms to make the three-dimensional radar data uniformly distributed. (2) Aiming at the defects of the low computational efficiency of the traditional adaptive median filter sliding window, a Deep Q-learning algorithm is introduced to construct a reward and punishment mechanism, and the feedback reward function quickly determines the filter window size. The results show that the method is outstanding in improving the peak signal-to-noise ratio, compared with the traditional algorithm, improving the denoising performance by 2–7 times. It effectively suppresses multiple noise types while precisely preserving fine details such as 0.1–0.5 mm microcrack edges, significantly enhancing image clarity. After processing, images were automatically recognized using YOLOv8x. The detection rate for transverse cracks in images improved significantly from being undetectable in mixed noise and original images to exceeding 90% in damage detection. This effectively validates the critical role of denoising in enhancing the automatic interpretation capability of internal road cracks. Full article
Show Figures

Figure 1

21 pages, 3747 KB  
Article
Open-Vocabulary Crack Object Detection Through Attribute-Guided Similarity Probing
by Hyemin Yoon and Sangjin Kim
Appl. Sci. 2025, 15(19), 10350; https://doi.org/10.3390/app151910350 - 24 Sep 2025
Viewed by 495
Abstract
Timely detection of road surface defects such as cracks and potholes is critical for ensuring traffic safety and reducing infrastructure maintenance costs. While recent advances in image-based deep learning techniques have shown promise for automated road defect detection, existing models remain limited to [...] Read more.
Timely detection of road surface defects such as cracks and potholes is critical for ensuring traffic safety and reducing infrastructure maintenance costs. While recent advances in image-based deep learning techniques have shown promise for automated road defect detection, existing models remain limited to closed-set detection settings, making it difficult to recognize newly emerging or fine-grained defect types. To address this limitation, we propose an attribute-aware open-vocabulary crack detection (AOVCD) framework, which leverages the alignment capability of pretrained vision–language models to generalize beyond fixed class labels. In this framework, crack types are represented as combinations of visual attributes, enabling semantic grounding between image regions and natural language descriptions. To support this, we extend the existing PPDD dataset with attribute-level annotations and incorporate a multi-label attribute recognition task as an auxiliary objective. Experimental results demonstrate that the proposed AOVCD model outperforms existing baselines. In particular, compared to CLIP-based zero-shot inference, the proposed model achieves approximately a 10-fold improvement in average precision (AP) for novel crack categories. Attribute classification performance—covering geometric, spatial, and textural features—also increases by 40% in balanced accuracy (BACC) and 23% in AP. These results indicate that integrating structured attribute information enhances generalization to previously unseen defect types, especially those involving subtle visual cues. Our study suggests that incorporating attribute-level alignment within a vision–language framework can lead to more adaptive and semantically grounded defect recognition systems. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

16 pages, 4079 KB  
Article
A Lightweight YOLOv11n-Based Framework for Highway Pavement Distress Detection Under Occlusion Conditions
by Wei Li, Xiao Luo, Changhao Yang, Miao Fang and Weiyu Liu
Appl. Sci. 2025, 15(17), 9664; https://doi.org/10.3390/app15179664 - 2 Sep 2025
Viewed by 482
Abstract
In response to the three main challenges in lightweight road pavement defect detection models—insufficient feature discriminability, weak environmental robustness, and low edge deployment efficiency—this paper proposes an innovative architecture, RS-YOLOv11n, based on YOLOv11n. Experimental results demonstrate significant improvements of RS-YOLOv11n over YOLOv11n on [...] Read more.
In response to the three main challenges in lightweight road pavement defect detection models—insufficient feature discriminability, weak environmental robustness, and low edge deployment efficiency—this paper proposes an innovative architecture, RS-YOLOv11n, based on YOLOv11n. Experimental results demonstrate significant improvements of RS-YOLOv11n over YOLOv11n on the RDD2022_Mix dataset: model parameters are reduced by 21.0%, computational complexity is decreased by 17.5%, mAP@0.5 is increased by 0.64%, and recall rate is improved by 1.03%. Firstly, a heterogeneous feature distillation backbone, RHGNetv2, is designed, incorporating RepConv reparameterized convolution to optimize computational efficiency. Secondly, a lightweight occlusion-aware module, SEAM, is introduced, significantly enhancing detection performance in occluded scenarios. RS-YOLOv11n provides a high-precision, low-resource, lightweight solution for intelligent road inspection. Full article
Show Figures

Figure 1

31 pages, 4278 KB  
Article
Acoustic Analysis of Semi-Rigid Base Asphalt Pavements Based on Transformer Model and Parallel Cross-Gate Convolutional Neural Network
by Changfeng Hao, Min Ye, Boyan Li and Jiale Zhang
Appl. Sci. 2025, 15(16), 9125; https://doi.org/10.3390/app15169125 - 19 Aug 2025
Viewed by 383
Abstract
Semi-rigid base asphalt pavements, a common highway structure in China, often suffer from debonding defects which reduce road stability and shorten service life. In this study, a new method of road debonding detection based on the acoustic vibration method is proposed to address [...] Read more.
Semi-rigid base asphalt pavements, a common highway structure in China, often suffer from debonding defects which reduce road stability and shorten service life. In this study, a new method of road debonding detection based on the acoustic vibration method is proposed to address the needs of hidden debonding defects which are difficult to detect. The approach combines the Transformer model and the Transformer-based Parallel Cross-Gated Convolutional Neural Network (T-PCG-CNN) to classify and recognize semi-rigid base asphalt pavement acoustic data. Firstly, over a span of several years, an excitation device was designed and employed to collect acoustic data from different road types, creating a dedicated multi-sample dataset specifically for semi-rigid base asphalt pavements. Secondly, the improved Mel frequency cepstral coefficient (MFCC) feature and its first-order differential features (ΔMFCC) and second-order differential features (Δ2MFCC) are adopted as the input data of the network for different sample acoustic signal characteristics. Then, the proposed T-PCG-CNN model fuses the multi-frequency feature extraction advantage of a parallel cross-gate convolutional network and the long-time dependency capture ability of the Transformer model to improve the classification performance of different road acoustic features. Comprehensive experiments were conducted to analyze parameter sensitivity, feature combination strategies, and comparisons with existing classification algorithms. The results demonstrate that the proposed model achieves high accuracy and weighted F1 score. The confusion matrix indicates high per-class recall (including debonding), and the one-vs-rest ROC curves (AUC ≥ 0.95 for all classes) confirm strong class separability with low false-alarm trade-offs across operating thresholds. Moreover, the use of blockwise self-attention with global tokens and shared weight matrices significantly reduces model complexity and size. In the multi-type road data classification test, the classification accuracy reaches 0.9208 and the weighted F1 value reaches 0.9315, which is significantly better than the existing methods, demonstrating its generalizability in the identification of multiple road defect types. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

36 pages, 13404 KB  
Article
A Multi-Task Deep Learning Framework for Road Quality Analysis with Scene Mapping via Sim-to-Real Adaptation
by Rahul Soans, Ryuichi Masuda and Yohei Fukumizu
Appl. Sci. 2025, 15(16), 8849; https://doi.org/10.3390/app15168849 - 11 Aug 2025
Viewed by 665
Abstract
Robust perception of road surface conditions is a critical challenge for the safe deployment of autonomous vehicles and the efficient management of transportation infrastructure. This paper introduces a synthetic data-driven deep learning framework designed to address this challenge. We present a large-scale, procedurally [...] Read more.
Robust perception of road surface conditions is a critical challenge for the safe deployment of autonomous vehicles and the efficient management of transportation infrastructure. This paper introduces a synthetic data-driven deep learning framework designed to address this challenge. We present a large-scale, procedurally generated 3D synthetic dataset created in Blender, featuring a diverse range of road defects—including cracks, potholes, and puddles—alongside crucial road features like manhole covers and patches. Crucially, our dataset provides dense, pixel-perfect annotations for segmentation masks, depth maps, and camera parameters (intrinsic and extrinsic). Our proposed model leverages these rich annotations in a multi-task learning framework that jointly performs road defect segmentation and depth estimation, enabling a comprehensive geometric and semantic understanding of the road environment. A core contribution is a two-stage domain adaptation strategy to bridge the synthetic-to-real gap. First, we employ a modified CycleGAN with a segmentation-aware loss to translate synthetic images into a realistic domain while preserving defect fidelity. Second, during model training, we utilize a dual-discriminator adversarial approach, applying alignment at both the feature and output levels to minimize domain shift. Benchmarking experiments validate our approach, demonstrating high accuracy and computational efficiency. Our model excels in detecting subtle or occluded defects, attributed to an occlusion-aware loss formulation. The proposed system shows significant promise for real-time deployment in autonomous navigation, automated infrastructure assessment and Advanced Driver-Assistance Systems (ADAS). Full article
Show Figures

Figure 1

26 pages, 4687 KB  
Article
Comparative Evaluation of YOLO and Gemini AI Models for Road Damage Detection and Mapping
by Zeynep Demirel, Shvan Tahir Nasraldeen, Öykü Pehlivan, Sarmad Shoman, Mustafa Albdairi and Ali Almusawi
Future Transp. 2025, 5(3), 91; https://doi.org/10.3390/futuretransp5030091 - 22 Jul 2025
Cited by 1 | Viewed by 1497
Abstract
Efficient detection of road surface defects is vital for timely maintenance and traffic safety. This study introduces a novel AI-powered web framework, TriRoad AI, that integrates multiple versions of the You Only Look Once (YOLO) object detection algorithms—specifically YOLOv8 and YOLOv11—for automated detection [...] Read more.
Efficient detection of road surface defects is vital for timely maintenance and traffic safety. This study introduces a novel AI-powered web framework, TriRoad AI, that integrates multiple versions of the You Only Look Once (YOLO) object detection algorithms—specifically YOLOv8 and YOLOv11—for automated detection of potholes and cracks. A user-friendly browser interface was developed to enable real-time image analysis, confidence-based prediction filtering, and severity-based geolocation mapping using OpenStreetMap. Experimental evaluation was conducted using two datasets: one from online sources and another from field-collected images in Ankara, Turkey. YOLOv8 achieved a mean accuracy of 88.43% on internet-sourced images, while YOLOv11-B demonstrated higher robustness in challenging field environments with a detection accuracy of 46.15%, and YOLOv8 followed closely with 44.92% on mixed field images. The Gemini AI model, although highly effective in controlled environments (97.64% detection accuracy), exhibited a significant performance drop of up to 80% in complex field scenarios, with its accuracy falling to 18.50%. The proposed platform’s uniqueness lies in its fully integrated, browser-based design, requiring no device-specific installation, and its incorporation of severity classification with interactive geospatial visualization. These contributions address current gaps in generalization, accessibility, and practical deployment, offering a scalable solution for smart infrastructure monitoring and preventive maintenance planning in urban environments. Full article
Show Figures

Figure 1

33 pages, 4942 KB  
Review
A Review of Crack Sealing Technologies for Asphalt Pavement: Materials, Failure Mechanisms, and Detection Methods
by Weihao Min, Peng Lu, Song Liu and Hongchang Wang
Coatings 2025, 15(7), 836; https://doi.org/10.3390/coatings15070836 - 17 Jul 2025
Viewed by 1510
Abstract
Asphalt pavement cracking represents a prevalent form of deterioration that significantly compromises road performance and safety under the combined effects of environmental factors and traffic loading. Crack sealing has emerged as a widely adopted and cost-effective preventive maintenance strategy that restores the pavement’s [...] Read more.
Asphalt pavement cracking represents a prevalent form of deterioration that significantly compromises road performance and safety under the combined effects of environmental factors and traffic loading. Crack sealing has emerged as a widely adopted and cost-effective preventive maintenance strategy that restores the pavement’s structural integrity and extends service life. This paper presents a systematic review of the development of crack sealing technology, conducts a comparative analysis of conventional sealing materials (including emulsified asphalt, hot-applied asphalt, polymer-modified asphalt, and rubber-modified asphalt), and examines the existing performance evaluation methodologies. Critical failure mechanisms are thoroughly investigated, including interfacial bond failure resulting from construction defects, material aging and degradation, hydrodynamic scouring effects, and thermal cycling impacts. Additionally, this review examines advanced sensing methodologies for detecting premature sealant failure, encompassing both non-destructive testing techniques and active sensing technologies utilizing intelligent crack sealing materials with embedded monitoring capabilities. Based on current research gaps, this paper identifies future research directions to guide the development of intelligent and sustainable asphalt pavement crack repair technologies. The proposed research framework provides valuable insights for researchers and practitioners seeking to improve the long-term effectiveness of pavement maintenance strategies. Full article
Show Figures

Figure 1

19 pages, 4353 KB  
Article
The Lightweight Method of Ground Penetrating Radar (GPR) Hidden Defect Detection Based on SESM-YOLO
by Yu Yan, Guangxuan Jiao, Minxing Cui and Lei Ni
Buildings 2025, 15(13), 2345; https://doi.org/10.3390/buildings15132345 - 3 Jul 2025
Viewed by 1093
Abstract
Ground Penetrating Radar (GPR) is a high-resolution nondestructive technique for detecting subsurface defects, yet its image interpretation suffers from strong subjectivity, low efficiency, and high false-alarm rates. To establish a customized underground GPR defect detection algorithm, this paper introduces SESM-YOLO which is an [...] Read more.
Ground Penetrating Radar (GPR) is a high-resolution nondestructive technique for detecting subsurface defects, yet its image interpretation suffers from strong subjectivity, low efficiency, and high false-alarm rates. To establish a customized underground GPR defect detection algorithm, this paper introduces SESM-YOLO which is an enhancement of YOLOv8n tailored for GPR images: (1) A Slim_Efficient_Block module replaces the bottleneck in the backbone, enhancing feature extraction while maintaining lightweight properties through a conditional gating mechanism. (2) A feature fusion network named Efficient_MS_FPN is designed, which significantly enhances the feature representation capability and performance. Additionally, the SCSA attention mechanism is introduced before the detection head, enabling precise extraction of defect object features. (3) As a novel loss function, MPDIoU is proposed to reduce the disparity between the corners of the predicted bounding boxes and those of the ground truth boxes. Experimental results on a custom dataset show that SESM-YOLO achieves an average precision of 92.8% in detecting hidden road defects, which is 6.2% higher than the YOLOv8n baseline. The model also shows improvements in precision (92.4%) and recall (86.7%), with reductions in parameters and computational load, demonstrating significant advantages over current mainstream detection models. Full article
(This article belongs to the Special Issue AI in Construction: Automation, Optimization, and Safety)
Show Figures

Figure 1

25 pages, 7590 KB  
Article
A Lightweight Method for Road Defect Detection in UAV Remote Sensing Images with Complex Backgrounds and Cross-Scale Fusion
by Wenya Zhang, Xiang Li, Lina Wang, Danfei Zhang, Pengfei Lu, Lei Wang and Chuanxiang Cheng
Remote Sens. 2025, 17(13), 2248; https://doi.org/10.3390/rs17132248 - 30 Jun 2025
Viewed by 856
Abstract
The accuracy of road damage detection models based on UAV remote sensing images is generally low, mainly due to the challenges posed by the complex background of road damage, diverse forms, and necessary computational requirements. To tackle the issue, this paper presents CSGEH-YOLO, [...] Read more.
The accuracy of road damage detection models based on UAV remote sensing images is generally low, mainly due to the challenges posed by the complex background of road damage, diverse forms, and necessary computational requirements. To tackle the issue, this paper presents CSGEH-YOLO, a lightweight model tailored for UAV-based road damage detection in intricate environments. (1) The star operation from StarNet is integrated into the C2f backbone network, enhancing its capacity to capture intricate details in complex scenes. Moreover, the CAA attention mechanism is employed to strengthen the model’s global feature extraction abilities; (2) a cross-scale feature fusion strategy known as GFPN is developed to tackle the problem of diverse target scales in road damage detection; (3) to reduce computational resource consumption, a lightweight detection head called EP-Detect has been specifically designed to decrease the model’s computational complexity and the number of parameters; and (4) the model’s localization capability for road damage targets is enhanced by integrating an optimized regression loss function called WiseIoUv3. Experimental findings indicate that the CSGEH-YOLO algorithm surpasses the baseline YOLOv8s, achieving a 3.1% improvement in mAP. It also reduces model parameters by 4% and computational complexity to 78%. In contrast to alternative methods, the model proposed in this paper significantly reduces computational complexity while improving accuracy. It offers robust support for deploying UAV-based road damage detection models. Full article
Show Figures

Figure 1

19 pages, 2622 KB  
Article
An Improved Lightweight Model for Defect Detection on Paths in Images
by Zhaoning Cui, Yuejia Xu, Xinyi Jin and Yu Li
Appl. Sci. 2025, 15(13), 7014; https://doi.org/10.3390/app15137014 - 21 Jun 2025
Viewed by 797
Abstract
To address the challenges of detecting multi-scale road defects and the lack of lightweight designs in conventional detection models, we propose ACD-YOLOv8, an enhanced model based on YOLOv8s. Our model enhances baseline architecture by integrating three key components: a lightweight Cross-Scale Feature Fusion [...] Read more.
To address the challenges of detecting multi-scale road defects and the lack of lightweight designs in conventional detection models, we propose ACD-YOLOv8, an enhanced model based on YOLOv8s. Our model enhances baseline architecture by integrating three key components: a lightweight Cross-Scale Feature Fusion Module (CCFM), an ADown sampling operation, and a Dynamic Head (DyHead). Experimental results on the RDD2022 dataset demonstrate the superiority of our approach. Compared to the baseline YOLOv8s, ACD-YOLOv8 achieves a 0.9% increase in mAP@0.5 and a 1.6% increase in the more stringent mAP@0.5:0.95 metric. Simultaneously, the model’s parameter count is reduced by 3.72 million (a 33.3% reduction) and its size is reduced by 7.4 MB. This work provides a practical and scalable solution for deploying high-accuracy defect detection on resource-constrained mobile platforms, offering significant potential to enhance traffic safety and maintenance efficiency. Full article
(This article belongs to the Special Issue Deep Learning for Image Processing and Computer Vision)
Show Figures

Figure 1

16 pages, 3170 KB  
Article
Improvement in Pavement Defect Scenarios Using an Improved YOLOv10 with ECA Attention, RefConv and WIoU
by Xiaolin Zhang, Lei Lu, Hanyun Luo and Lei Wang
World Electr. Veh. J. 2025, 16(6), 328; https://doi.org/10.3390/wevj16060328 - 13 Jun 2025
Viewed by 604
Abstract
This study addresses challenges such as multi-scale defects, varying lighting, and irregular shapes by proposing an improved YOLOv10 model that integrates the ECA attention mechanism, RefConv feature enhancement module, and WIoU loss function for complex pavement defect detection. The RefConv dual-branch structure achieves [...] Read more.
This study addresses challenges such as multi-scale defects, varying lighting, and irregular shapes by proposing an improved YOLOv10 model that integrates the ECA attention mechanism, RefConv feature enhancement module, and WIoU loss function for complex pavement defect detection. The RefConv dual-branch structure achieves feature complementarity between local details and global context (mAP increased by 2.1%), the ECA mechanism models channel relationships using 1D convolution (small-object recall rate increased by 27%), and the WIoU loss optimizes difficult sample regression through a dynamic weighting mechanism (location accuracy improved by 37%). Experiments show that on a dataset constructed from 23,949 high-resolution images, the improved model’s mAP reaches 68.2%, which is an increase of 6.2% compared to the baseline YOLOv10, maintaining a stable recall rate of 83.5% in highly reflective and low-light scenarios, with an inference speed of 158 FPS (RTX 4080), providing a high-precision real-time solution for intelligent road inspection. Full article
Show Figures

Figure 1

17 pages, 5756 KB  
Article
PPDD: Egocentric Crack Segmentation in the Port Pavement with Deep Learning-Based Methods
by Hyemin Yoon, Hoe-Kyoung Kim and Sangjin Kim
Appl. Sci. 2025, 15(10), 5446; https://doi.org/10.3390/app15105446 - 13 May 2025
Cited by 1 | Viewed by 1085
Abstract
Road infrastructure is a critical component of modern society, with its maintenance directly influencing traffic safety and logistical efficiency. In this context, automated crack detection technology plays a vital role in reducing maintenance costs and enhancing operational efficiency. However, previous studies are limited [...] Read more.
Road infrastructure is a critical component of modern society, with its maintenance directly influencing traffic safety and logistical efficiency. In this context, automated crack detection technology plays a vital role in reducing maintenance costs and enhancing operational efficiency. However, previous studies are limited by the fact that they provide only bounding box or segmentation mask annotations for a restricted number of crack classes and use a relatively small size of datasets. To address these limitations and advance deep learning-based crack segmentation, this study introduces a novel crack segmentation dataset that reflects real-world road conditions. The proposed dataset includes various types of cracks and defects—such as slippage, rutting, and construction-related cracks—and provides polygon-based segmentation masks captured from an egocentric, vehicle-mounted perspective. Using this dataset, we evaluated the performance of semantic and instance segmentation models. Notably, SegFormer achieved the highest Pixel Accuracy (PA) and mean Intersection over Union (mIoU) for semantic segmentation, while YOLOv7 exhibited outstanding detection performance for alligator crack class, recording an AP50 of 87.2% and AP of 57.5%. In contrast, all models struggled with the reflection crack type, indicating the inherent segmentation challenges. Overall, this study provides a practical and robust foundation for future research in automated road crack segmentation. Additional resources including the dataset and annotation details can be found at our GitHub repository. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

20 pages, 4574 KB  
Article
Pavement-DETR: A High-Precision Real-Time Detection Transformer for Pavement Defect Detection
by Cuihua Zuo, Nengxin Huang, Cao Yuan and Yaqin Li
Sensors 2025, 25(8), 2426; https://doi.org/10.3390/s25082426 - 11 Apr 2025
Cited by 2 | Viewed by 1512
Abstract
The accurate detection of road defects is crucial for enhancing the safety and efficiency of road maintenance. This study focuses on six common types of pavement defects: transverse cracks, longitudinal cracks, alligator cracking, oblique cracks, potholes, and repair marks. In real-world scenarios, key [...] Read more.
The accurate detection of road defects is crucial for enhancing the safety and efficiency of road maintenance. This study focuses on six common types of pavement defects: transverse cracks, longitudinal cracks, alligator cracking, oblique cracks, potholes, and repair marks. In real-world scenarios, key challenges include effectively distinguishing between the foreground and background, as well as accurately identifying small-sized (e.g., fine cracks, dense alligator cracking, and clustered potholes) and overlapping defects (e.g., intersecting cracks or clustered damage areas where multiple defects appear close together). To address these issues, this paper proposes a Pavement-DETR model based on the Real-Time Detection Transformer (RT-DETR), aiming to optimize the overall accuracy of defect detection. To achieve this goal, three main improvements are proposed: (1) the introduction of the Channel-Spatial Shuffle (CSS) attention mechanism in the third (S3) and fourth (S4) stages of the ResNet backbone, which correspond to mid-level and high-level feature layers, enabling the model to focus more precisely on road defect features; (2) the adoption of the Conv3XC structure for feature fusion enhances the model’s ability to differentiate between the foreground and background, which is achieved through multi-level convolutions, channel expansion, and skip connections, which also contribute to improved gradient flow and training stability; (3) the proposal of a loss function combining Powerful-IoU v2 (PIoU v2) and Normalized Wasserstein Distance (NWD) weighted averaging, where PIoU v2 focuses on optimizing overlapping regions, and NWD targets small object optimization. The combined loss function enables comprehensive optimization of the bounding boxes, improving the model’s accuracy and convergence speed. Experimental results show that on the UAV-PDD2023 dataset, Pavement-DETR improves the mean average precision (mAP) by 7.7% at IoU = 0.5, increases mAP by 8.9% at IoU = 0.5–0.95, and improves F1 Score by 7%. These results demonstrate that Pavement-DETR exhibits better performance in road defect detection, making it highly significant for road maintenance work. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

22 pages, 12758 KB  
Article
Optimizing Road Pavement Assessment Using Advanced Image Processing Techniques
by Amir Shtayat, Mohammed T. Obaidat, Bara’ Al-Mistarehi, Ahmad Bader, Sara Moridpour and Saja Alahmad
Sustainability 2025, 17(6), 2473; https://doi.org/10.3390/su17062473 - 11 Mar 2025
Viewed by 1647
Abstract
The swift advancement in monitoring and evaluation systems for road pavement conditions highlights the crucial role that this field plays in ensuring the sustainability of roads. This, in turn, contributes to the growth and prosperity of nations and enables users to enjoy the [...] Read more.
The swift advancement in monitoring and evaluation systems for road pavement conditions highlights the crucial role that this field plays in ensuring the sustainability of roads. This, in turn, contributes to the growth and prosperity of nations and enables users to enjoy the highest levels of luxury and comfort. Despite numerous studies and ongoing research, finding the most precise and efficient monitoring systems to determine the type and severity of road defects, their causes, and appropriate treatments remains a challenge. This study proposes a system that employs a camera to create an application capable of evaluating road conditions with ease by taking images while driving over the road. Based on the results, the application was accurate in identifying road defects of different severity within the same category. The proposed method was compared to the Pavement Condition Index (PCI) method, and a significant match was found in determining the type and severity of each defect on the selected road sections. More clearly, the overall accuracy of detecting and classifying block cracks, alligator cracks, longitudinal cracks, and potholes was significant for detecting and classifying the patches. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

Back to TopTop