Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (999)

Search Parameters:
Keywords = road cycling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2219 KiB  
Article
Assessing Lithium-Ion Battery Safety Under Extreme Transport Conditions: A Comparative Study of Measured and Standardised Parameters
by Yihan Pan, Xingliang Liu, Jinzhong Wu, Haocheng Zhou and Lina Zhu
Energies 2025, 18(15), 4144; https://doi.org/10.3390/en18154144 - 5 Aug 2025
Viewed by 85
Abstract
The safety of lithium-ion batteries during transportation is critically important. However, current standards exhibit limitations, as their environmental testing parameter thresholds fail to fully encompass actual transportation conditions. To enhance both safety and standard applicability, in this study, we focused on four representative [...] Read more.
The safety of lithium-ion batteries during transportation is critically important. However, current standards exhibit limitations, as their environmental testing parameter thresholds fail to fully encompass actual transportation conditions. To enhance both safety and standard applicability, in this study, we focused on four representative environmental conditions: temperature, vibration, shock, and low atmospheric pressure. Field measurements were conducted across road, rail, and air transport modes using a self-developed data acquisition system based on the NearLink communication technology. The measured data were then compared with the threshold values defined in current international and national standards. The results reveal that certain measured values exceeded the upper limits prescribed by existing standards, indicating limitations in their applicability under extreme transport conditions. Based on these findings, we propose revised testing parameters that better reflect actual transport risks, including a temperature cycling range of 72 ± 2 °C (high) and −40 ± 2 °C (low), a shock acceleration limit of 50 gn, adjusted peak frequencies in the vibration PSD profile, and a minimum pressure threshold of 11.6 kPa. These results provide a scientific basis for optimising safety standards and improving the safety of lithium-ion battery transportation. Full article
Show Figures

Figure 1

17 pages, 2459 KiB  
Article
Comparative Life Cycle Assessment of Rubberized Warm-Mix Asphalt Pavements: A Cradle-to-Gate Plus Maintenance Approach
by Ana María Rodríguez-Alloza and Daniel Garraín
Coatings 2025, 15(8), 899; https://doi.org/10.3390/coatings15080899 - 1 Aug 2025
Viewed by 212
Abstract
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising [...] Read more.
In response to the escalating climate crisis, reducing greenhouse gas emissions (GHG) has become a top priority for both the public and private sectors. The pavement industry plays a key role in this transition, offering innovative technologies that minimize environmental impacts without compromising performance. Among these, the incorporation of recycled tire rubber and warm-mix asphalt (WMA) additives represents a promising strategy to reduce energy consumption and resource depletion in road construction. This study conducts a comparative life cycle assessment (LCA) to evaluate the environmental performance of an asphalt pavement incorporating recycled rubber and a WMA additive—referred to as R-W asphalt—against a conventional hot-mix asphalt (HMA) pavement. The analysis follows the ISO 14040/44 standards, covering material production, transport, construction, and maintenance. Two service-life scenarios are considered: one assuming equivalent durability and another with a five-year extension for the R-W pavement. The results demonstrate environmental impact reductions of up to 57%, with average savings ranging from 32% to 52% across key impact categories such as climate change, land use, and resource use. These benefits are primarily attributed to lower production temperatures and extended maintenance intervals. The findings underscore the potential of R-W asphalt as a cleaner engineering solution aligned with circular economy principles and climate mitigation goals. Full article
(This article belongs to the Special Issue Surface Protection of Pavements: New Perspectives and Applications)
Show Figures

Figure 1

20 pages, 10391 KiB  
Article
Sustainable Substitution of Petroleum-Based Processing Oils with Soybean-Derived Alternatives in Styrene–Butadiene Rubber: Effects on Processing Behavior and Mechanical Properties
by Yang-Wei Lin, Tsung-Yi Chen, Chen-Yu Chueh, Yi-Ting Chen, Tsunghsueh Wu and Hsi-Ming Hsieh
Polymers 2025, 17(15), 2129; https://doi.org/10.3390/polym17152129 - 1 Aug 2025
Viewed by 343
Abstract
This study evaluates the replacement of petroleum-based naphthenic oil with four types of soybean-derived alternatives—virgin soybean oil (SBO), epoxidized SBO (ESBO), expired SBO, and recycled SBO—in styrene–butadiene rubber (SBR) composites. The materials were tested in both staining rubber (SR) and non-staining rubber (NSR) [...] Read more.
This study evaluates the replacement of petroleum-based naphthenic oil with four types of soybean-derived alternatives—virgin soybean oil (SBO), epoxidized SBO (ESBO), expired SBO, and recycled SBO—in styrene–butadiene rubber (SBR) composites. The materials were tested in both staining rubber (SR) and non-staining rubber (NSR) systems to assess processing characteristics, mechanical performance, and environmental durability. Among the alternatives, SBO demonstrated the best overall performance, improving processability and tensile strength by over 10%, while ESBO enhanced ozone resistance by 35% due to its epoxide functionality. Expired and recycled SBOs maintained essential mechanical properties within 90% of virgin SBO values. The full replacement of CH450 with SBO in tire prototypes resulted in burst strength exceeding 1000 kPa and stable appearance after 5000 km of road testing. To validate industrial relevance, the developed green tire was exhibited at the 2025 Taipei International Cycle Show, attracting interest from international buyers and stakeholders for its eco-friendly composition and carbon footprint reduction potential, thereby demonstrating both technical feasibility and commercial viability. Full article
(This article belongs to the Special Issue Functional Polymers and Their Composites for Sustainable Development)
Show Figures

Graphical abstract

17 pages, 1584 KiB  
Article
What Determines Carbon Emissions of Multimodal Travel? Insights from Interpretable Machine Learning on Mobility Trajectory Data
by Guo Wang, Shu Wang, Wenxiang Li and Hongtai Yang
Sustainability 2025, 17(15), 6983; https://doi.org/10.3390/su17156983 - 31 Jul 2025
Viewed by 212
Abstract
Understanding the carbon emissions of multimodal travel—comprising walking, metro, bus, cycling, and ride-hailing—is essential for promoting sustainable urban mobility. However, most existing studies focus on single-mode travel, while underlying spatiotemporal and behavioral determinants remain insufficiently explored due to the lack of fine-grained data [...] Read more.
Understanding the carbon emissions of multimodal travel—comprising walking, metro, bus, cycling, and ride-hailing—is essential for promoting sustainable urban mobility. However, most existing studies focus on single-mode travel, while underlying spatiotemporal and behavioral determinants remain insufficiently explored due to the lack of fine-grained data and interpretable analytical frameworks. This study proposes a novel integration of high-frequency, real-world mobility trajectory data with interpretable machine learning to systematically identify the key drivers of carbon emissions at the individual trip level. Firstly, multimodal travel chains are reconstructed using continuous GPS trajectory data collected in Beijing. Secondly, a model based on Calculate Emissions from Road Transport (COPERT) is developed to quantify trip-level CO2 emissions. Thirdly, four interpretable machine learning models based on gradient boosting—XGBoost, GBDT, LightGBM, and CatBoost—are trained using transportation and built environment features to model the relationship between CO2 emissions and a set of explanatory variables; finally, Shapley Additive exPlanations (SHAP) and partial dependence plots (PDPs) are used to interpret the model outputs, revealing key determinants and their non-linear interaction effects. The results show that transportation-related features account for 75.1% of the explained variance in emissions, with bus usage being the most influential single factor (contributing 22.6%). Built environment features explain the remaining 24.9%. The PDP analysis reveals that substantial emission reductions occur only when the shares of bus, metro, and cycling surpass threshold levels of approximately 40%, 40%, and 30%, respectively. Additionally, travel carbon emissions are minimized when trip origins and destinations are located within a 10 to 11 km radius of the central business district (CBD). This study advances the field by establishing a scalable, interpretable, and behaviorally grounded framework to assess carbon emissions from multimodal travel, providing actionable insights for low-carbon transport planning and policy design. Full article
(This article belongs to the Special Issue Sustainable Transportation Systems and Travel Behaviors)
Show Figures

Figure 1

19 pages, 5548 KiB  
Article
Predicting Asphalt Pavement Friction by Using a Texture-Based Image Indicator
by Bingjie Lu, Zhengyang Lu, Yijiashun Qi, Hanzhe Guo, Tianyao Sun and Zunduo Zhao
Lubricants 2025, 13(8), 341; https://doi.org/10.3390/lubricants13080341 - 31 Jul 2025
Viewed by 146
Abstract
Pavement skid resistance is of vital importance for road safety. The objective of this study is to propose and validate a texture-based image indicator to predict pavement friction. This index enables pavement friction to be predicted easily and inexpensively using digital images, with [...] Read more.
Pavement skid resistance is of vital importance for road safety. The objective of this study is to propose and validate a texture-based image indicator to predict pavement friction. This index enables pavement friction to be predicted easily and inexpensively using digital images, with predictions correlated to Dynamic Friction Tester (DFT) measurements. Three different types of asphalt surfaces (Dense-Grade Asphalt Concrete, Open-Grade Friction Course, and Chip Seal) were evaluated subject to various tire polishing cycles. Images were taken with corresponding friction coefficients obtained using DFT in the laboratory. The aggregate protrusion area is proposed as the indicator. Statistical models are established for each asphalt surface type to correlate the proposed indicator with friction coefficients. The results show that the adjusted R-squared values of all relationships are above 0.90. Compared to other image-based indicators in the literature, the proposed image indicator more accurately reflects the changes in pavement friction with the number of polishing cycles, proving its cost-effective use for considering pavement friction in the mix design stage. Full article
(This article belongs to the Special Issue Tire/Road Interface and Road Surface Textures)
Show Figures

Figure 1

15 pages, 1619 KiB  
Article
Method for Assessing Numbness and Discomfort in Cyclists’ Hands
by Flavia Marrone, Nicole Sanna, Giacomo Zanoni, Neil J. Mansfield and Marco Tarabini
Sensors 2025, 25(15), 4708; https://doi.org/10.3390/s25154708 - 30 Jul 2025
Viewed by 252
Abstract
Road irregularities generate vibrations that are transmitted to cyclists’ hands. This paper describes a purpose-designed laboratory setup and data processing method to assess vibration-induced numbness and discomfort. The rear wheel of a road bike was coupled with a smart trainer for indoor cycling, [...] Read more.
Road irregularities generate vibrations that are transmitted to cyclists’ hands. This paper describes a purpose-designed laboratory setup and data processing method to assess vibration-induced numbness and discomfort. The rear wheel of a road bike was coupled with a smart trainer for indoor cycling, while the front wheel was supported by a vibrating platform to simulate road–bike interaction. The vibrotactile perception threshold (VPT) is measured in the fingers, and a questionnaire was used to assess the discomfort in different parts of the hand using a unipolar scale. To validate the method, ten male volunteers underwent two one-hour cycling sessions, one for each of the two handlebar designs tested. VPT was measured in the index and little fingers of the right hand at 8 and 31.5 Hz before and after each session, while the discomfort questionnaire was completed at the end of each session. The discomfort scores showed a strong inter-subject variability, indicating the necessity to combine them with the objective measurements of the VPT, which is shown to be sensitive in identifying the perception shift due to vibration exposure and the differences between the fingers. This study demonstrates the effectiveness of the proposed method for assessing hand numbness and discomfort in cyclists. Full article
(This article belongs to the Special Issue Sensor Technologies in Sports and Exercise)
Show Figures

Figure 1

27 pages, 1337 KiB  
Review
Incorporating Waste Plastics into Pavement Materials: A Review of Opportunities, Risks, Environmental Implications, and Monitoring Strategies
by Ali Ghodrati, Nuha S. Mashaan and Themelina Paraskeva
Appl. Sci. 2025, 15(14), 8112; https://doi.org/10.3390/app15148112 - 21 Jul 2025
Viewed by 372
Abstract
The integration of waste plastics into pavement materials offers a dual benefit of enhancing road performance and mitigating the environmental burden of plastic waste. This review critically examines the opportunities and challenges associated with incorporating waste plastics in pavement construction, with an emphasis [...] Read more.
The integration of waste plastics into pavement materials offers a dual benefit of enhancing road performance and mitigating the environmental burden of plastic waste. This review critically examines the opportunities and challenges associated with incorporating waste plastics in pavement construction, with an emphasis on their impact on the mechanical properties, durability, and life cycle performance of pavements. Special attention is given to the environmental implications, particularly the potential generation and release of micro- and nano-plastics during the pavement life cycle. This paper further evaluates current monitoring and analytical methodologies for detecting plastic emissions from road surfaces and explores emerging approaches for minimizing environmental risks. By providing a comprehensive synthesis of existing knowledge, this review seeks to support sustainable practices and inform policy development within the frameworks of circular economy and environmental stewardship. Full article
Show Figures

Figure 1

24 pages, 3928 KiB  
Article
Performance Degradation and Fatigue Life Prediction of Hot Recycled Asphalt Mixture Under the Coupling Effect of Ultraviolet Radiation and Freeze–Thaw Cycle
by Tangxin Xie, Zhongming He, Yuetan Ma, Huanan Yu, Zhichen Wang, Chao Huang, Feiyu Yang and Pengxu Wang
Coatings 2025, 15(7), 849; https://doi.org/10.3390/coatings15070849 - 19 Jul 2025
Viewed by 518
Abstract
In actual service, asphalt pavement is subjected to freeze–thaw cycles and ultraviolet radiation (UV) over the long term, which can easily lead to mixture aging, enhanced brittleness, and structural damage, thereby reducing pavement durability. This study focuses on the influence of freeze–thaw cycles [...] Read more.
In actual service, asphalt pavement is subjected to freeze–thaw cycles and ultraviolet radiation (UV) over the long term, which can easily lead to mixture aging, enhanced brittleness, and structural damage, thereby reducing pavement durability. This study focuses on the influence of freeze–thaw cycles and ultraviolet aging on the performance of recycled asphalt mixtures. Systematic indoor road performance tests were carried out, and a fatigue prediction model was established to explore the comprehensive effects of recycled asphalt pavement (RAP) content, environmental action (ultraviolet radiation + freeze–thaw cycle), and other factors on the performance of recycled asphalt mixtures. The results show that the high-temperature stability of recycled asphalt mixtures decreases with the increase in environmental action days, while higher RAP content contributes to better high-temperature stability. The higher the proportion of old materials, the more significant the environmental impact on the mixture; both the flexural tensile strain and flexural tensile strength decrease with the increase in environmental action time. When the RAP content increased from 30% to 50%, the bending strain continued to decline. With the extension of environmental action days, the decrease in the immersion Marshall residual stability and the freeze–thaw splitting strength became more pronounced. Although the increase in RAP content can improve the forming stability, the residual stability decreases, and the freeze–thaw splitting strength is lower than that before the freeze–thaw. Based on the fatigue test results, a fatigue life prediction model with RAP content and freeze–thaw cycles as independent variables was constructed using the multiple nonlinear regression method. Verification shows that the established prediction model is basically consistent with the change trend of the test data. The research results provide a theoretical basis and optimization strategy for the performance improvement and engineering application of recycled asphalt materials. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

26 pages, 5094 KiB  
Article
Dynamic Life Cycle Assessment of Low-Carbon Transition in Asphalt Pavement Maintenance: A Multi-Scale Case Study Under China’s Dual-Carbon Target
by Luyao Zhang, Wei Tian, Bobin Wang and Xiaomin Dai
Sustainability 2025, 17(14), 6540; https://doi.org/10.3390/su17146540 - 17 Jul 2025
Viewed by 407
Abstract
Against the backdrop of China’s “dual-carbon” initiative, this study innovatively applies a process-based life cycle assessment (PLCA) methodology, meticulously tracking energy and carbon flows across material production, transportation, and maintenance processes. By comparing six asphalt pavement maintenance technologies in Xinjiang, the research reveals [...] Read more.
Against the backdrop of China’s “dual-carbon” initiative, this study innovatively applies a process-based life cycle assessment (PLCA) methodology, meticulously tracking energy and carbon flows across material production, transportation, and maintenance processes. By comparing six asphalt pavement maintenance technologies in Xinjiang, the research reveals that milling and resurfacing (MR) exhibits the highest energy consumption 250,809 MJ/103 m2) and carbon emissions (15,095.67 kg CO2/103 m2), while preventive techniques like hot asphalt grouting reduce emissions by up to 87%. The PLCA approach uncovers a critical insight: 40–60% of total emissions originate from the raw material production phase, with cement and asphalt identified as primary contributors. This granular analysis, unique in regional road maintenance research, challenges traditional assumptions and emphasizes the necessity of upstream intervention. By contrasting reactive and preventive strategies, the study validates that early-stage maintenance aligns seamlessly with circular economy principles. Tailored to a local arid climate and vast transportation network, the study concludes that prioritizing preventive maintenance, adopting low-carbon materials, and optimizing logistics can significantly decarbonize road infrastructure. These region-specific strategies, underpinned by the novel application of PLCA, not only provide actionable guidance for local policymakers but also offer a replicable framework for sustainable road development worldwide, bridging the gap between scientific research and practical decarbonization efforts. Full article
Show Figures

Figure 1

33 pages, 4942 KiB  
Review
A Review of Crack Sealing Technologies for Asphalt Pavement: Materials, Failure Mechanisms, and Detection Methods
by Weihao Min, Peng Lu, Song Liu and Hongchang Wang
Coatings 2025, 15(7), 836; https://doi.org/10.3390/coatings15070836 - 17 Jul 2025
Viewed by 480
Abstract
Asphalt pavement cracking represents a prevalent form of deterioration that significantly compromises road performance and safety under the combined effects of environmental factors and traffic loading. Crack sealing has emerged as a widely adopted and cost-effective preventive maintenance strategy that restores the pavement’s [...] Read more.
Asphalt pavement cracking represents a prevalent form of deterioration that significantly compromises road performance and safety under the combined effects of environmental factors and traffic loading. Crack sealing has emerged as a widely adopted and cost-effective preventive maintenance strategy that restores the pavement’s structural integrity and extends service life. This paper presents a systematic review of the development of crack sealing technology, conducts a comparative analysis of conventional sealing materials (including emulsified asphalt, hot-applied asphalt, polymer-modified asphalt, and rubber-modified asphalt), and examines the existing performance evaluation methodologies. Critical failure mechanisms are thoroughly investigated, including interfacial bond failure resulting from construction defects, material aging and degradation, hydrodynamic scouring effects, and thermal cycling impacts. Additionally, this review examines advanced sensing methodologies for detecting premature sealant failure, encompassing both non-destructive testing techniques and active sensing technologies utilizing intelligent crack sealing materials with embedded monitoring capabilities. Based on current research gaps, this paper identifies future research directions to guide the development of intelligent and sustainable asphalt pavement crack repair technologies. The proposed research framework provides valuable insights for researchers and practitioners seeking to improve the long-term effectiveness of pavement maintenance strategies. Full article
Show Figures

Figure 1

32 pages, 20641 KiB  
Article
Mechanical Properties and Failure Mechanisms of Sandstone Under Combined Action of Cyclic Loading and Freeze–Thaw
by Taoying Liu, Huaheng Li, Longjun Dong and Ping Cao
Appl. Sci. 2025, 15(14), 7942; https://doi.org/10.3390/app15147942 - 16 Jul 2025
Viewed by 291
Abstract
In high-elevation mining areas, the roadbeds of certain surface ore haul roads are predominantly composed of sandstone. These sandstones are exposed to cold climatic conditions for long periods and are highly susceptible to erosion by the effects of freeze–thaw, which can degrade their [...] Read more.
In high-elevation mining areas, the roadbeds of certain surface ore haul roads are predominantly composed of sandstone. These sandstones are exposed to cold climatic conditions for long periods and are highly susceptible to erosion by the effects of freeze–thaw, which can degrade their support properties. This paper investigates the mechanism of strength deterioration of sandstone containing prefabricated cracks under cyclic loading and unloading after experiencing freeze–thaw. Sandstone specimens containing prefabricated cracks were prepared and subjected to 0, 20, 40, 60, and 80 freeze–thaw cycle tests. The strength changes were tested, and the crack extension process was analyzed using numerical simulation techniques. The study results show the following: 1. The wave propagation speed within the sandstone is more sensitive to changes in the number of freeze–thaw cycles. In contrast, mass damage shows significant changes only when more freeze–thaw cycles are experienced. 2. As the number of freeze–thaw cycles increases, the frequency of energy release from the numerical model accelerates. 3. The trend of the Cumulative Strain Difference (εc) reflects that the plastic strain difference between numerical simulation and actual measurement gradually decreases with increasing stress cycle level. 4. With the increase in freeze–thaw cycles, the damage morphology of the specimen undergoes a noticeable change, which is gradually transformed from monoclinic shear damage to X-shaped conjugate surface shear damage. 5. The number of tensile cracks dominated throughout the cyclic loading and unloading process, but with the increase in freeze–thaw cycles, the percentage of shear cracks increased. As the freeze–thaw cycles increase, sandstones are more inclined to undergo shear damage. These findings are important guidelines for road design and maintenance in alpine mining areas. Full article
Show Figures

Figure 1

42 pages, 5471 KiB  
Article
Optimising Cyclist Road-Safety Scenarios Through Angle-of-View Analysis Using Buffer and GIS Mapping Techniques
by Zahra Yaghoobloo, Giuseppina Pappalardo and Michele Mangiameli
Infrastructures 2025, 10(7), 184; https://doi.org/10.3390/infrastructures10070184 - 11 Jul 2025
Viewed by 295
Abstract
In the present era, achieving sustainability requires the development of planning strategies to develop a safer urban infrastructure. This study examines the realistic aspects of cyclist safety by analysing cyclists’ fields of view, using Geographic Information Systems (GIS) and spatial data analysis. The [...] Read more.
In the present era, achieving sustainability requires the development of planning strategies to develop a safer urban infrastructure. This study examines the realistic aspects of cyclist safety by analysing cyclists’ fields of view, using Geographic Information Systems (GIS) and spatial data analysis. The research introduces novel geoprocessing tools-based GIS techniques that mathematically simulate cyclists’ angles of view and the distances to nearby environmental features. It provides precise insights into some potential hazards and infrastructure challenges encountered while cycling. This research focuses on managing and analysing the data collected, utilising OpenStreetMap (OSM) as vector-based supporting data. It integrates cyclists’ behavioural data with the urban environmental features encountered, such as intersections, road design, and traffic controls. The analysis is categorised into specific classes to evaluate the impacts of these aspects of the environment on cyclists’ behaviours. The current investigation highlights the importance of integrating the objective environmental elements surrounding the route with subjective perceptions and then determining the influence of these environmental elements on cyclists’ behaviours. Unlike previous studies that ignore cyclists’ visual perspectives in the context of real-world data, this work integrates objective GIS data with cyclists’ field of view-based modelling to identify high-risk areas and highlight the need for enhanced safety measures. The proposed approach equips urban planners and designers with data-informed strategies for creating safer cycling infrastructure, fostering sustainable mobility, and mitigating urban congestion. Full article
Show Figures

Figure 1

25 pages, 2747 KiB  
Article
Comparative Evaluation of Fuzzy Logic and Q-Learning for Adaptive Urban Traffic Signal Control
by Ioana-Miruna Vlasceanu, Vasilica-Cerasela-Doinita Ceapa, Ioan Stefan Sacala, Constantin Florin Caruntu, Andreea-Ioana Udrea, Nicolae Constantin and Mircea Segarceanu
Electronics 2025, 14(14), 2759; https://doi.org/10.3390/electronics14142759 - 9 Jul 2025
Viewed by 268
Abstract
In recent years, the number of vehicles in cities has visibly increased, leading to continuous modifications in general mobility. Pollution levels and congestion cases are reaching higher numbers as well, pointing to a need for better optimization solutions. Several existing control systems still [...] Read more.
In recent years, the number of vehicles in cities has visibly increased, leading to continuous modifications in general mobility. Pollution levels and congestion cases are reaching higher numbers as well, pointing to a need for better optimization solutions. Several existing control systems still rely on fixed timings for traffic lights, lacking an adaptive approach that can adjust the timers depending on real-time conditions. This study aims to provide a design for such a tool, by implementing two different approaches: Fuzzy Logic Optimization and an Adaptive Traffic Management strategy. The first controller involves Fuzzy Logic based on rule-based that adjust green and red-light timings depending on the number of vehicles at an intersection. The second model provides traffic adjustments based on external equipment such as road sensors and cameras, offering dynamic solutions tailored to current traffic conditions. Both methods are tested in a simulated environment using SUMO (Simulation of Urban Mobility). They were evaluated according to key efficiency indicators, namely average waiting time, lost time per cycle, number of stops per intersection, and overall traffic fluidity. Results demonstrate that Q-learning maintains consistent waiting times between 2.57 and 3.71 s across all traffic densities while achieving Traffic Flow Index values above 85%, significantly outperforming Fuzzy Logic, which shows greater variability and lower efficiency under high-density conditions. Full article
Show Figures

Figure 1

32 pages, 2007 KiB  
Article
Exploring the Relationship Between Project Characteristics and Time–Cost Deviations for Colombian Rural Roads
by Jose Quintero, Alexander Murgas, Adriana Gómez-Cabrera and Omar Sánchez
Infrastructures 2025, 10(7), 178; https://doi.org/10.3390/infrastructures10070178 - 9 Jul 2025
Viewed by 639
Abstract
Rural road programs are essential for enhancing connectivity in remote areas, yet they frequently encounter schedule delays and budget overruns. This study explores the extent to which specific project characteristics influence these deviations in Colombian rural road contracts. A dataset comprising 229 projects [...] Read more.
Rural road programs are essential for enhancing connectivity in remote areas, yet they frequently encounter schedule delays and budget overruns. This study explores the extent to which specific project characteristics influence these deviations in Colombian rural road contracts. A dataset comprising 229 projects was extracted from the national SECOP open-procurement platform and processed using the CRISP-DM protocol. Following the cleaning and coding of 14 project-level variables, statistical analyses were conducted using Spearman correlations, Kruskal–Wallis tests, and post-hoc Wilcoxon comparisons to identify significant bivariate relations I confirm I confirm I confirm hips. A Random Forest model was subsequently applied to determine the most influential multivariate predictors of cost and time deviations. In parallel, a directed content analysis of contract addenda reclassified 22 recorded deviation descriptors into ten internationally recognized categories of causality, enabling an integrated interpretation of both statistical and documentary evidence. The findings indicate that contract value, geographical region, and contractor configuration are significant determinants of cost and time performance. Additionally, project intensity and discrepancies between awarded and bid values emerged as key contributors to cost escalation. Scope changes and adverse weather conditions together accounted for 76% of all documented deviation triggers, underscoring the relevance of robust front-end planning and climate-risk considerations in rural infrastructure delivery. The findings provide information for stakeholders, policymakers, and professionals who aim to manage the risk of schedule and budget deviations in public infrastructure projects. Full article
Show Figures

Figure 1

19 pages, 3568 KiB  
Article
Research on the Pavement Performance of Slag/Fly Ash-Based Geopolymer-Stabilized Soil
by Chenyang Yang, Yan Jiang, Zhiyun Li, Yibin Huang and Jinchao Yue
Materials 2025, 18(13), 3173; https://doi.org/10.3390/ma18133173 - 4 Jul 2025
Viewed by 405
Abstract
The road construction sector urgently requires environmentally friendly, low-carbon, and high-performance base materials. Traditional materials exhibit issues of high energy consumption and carbon emissions, making it difficult for them to align with sustainable development requirements. While slag- and fly ash-based geopolymers demonstrate promising [...] Read more.
The road construction sector urgently requires environmentally friendly, low-carbon, and high-performance base materials. Traditional materials exhibit issues of high energy consumption and carbon emissions, making it difficult for them to align with sustainable development requirements. While slag- and fly ash-based geopolymers demonstrate promising application potential in civil engineering, research on their application in road-stabilized soils remains insufficient. To address the high energy consumption and carbon emissions associated with conventional road base materials and to fill this research gap, this study investigated the utilization of industrial solid wastes through slag-based geopolymer and fly ash as stabilizers, systematically evaluating the pavement performance of two distinct soil types. Unconfined compressive strength tests and freeze–thaw cycling tests were conducted to elucidate the effects of stabilizer dosage, fly ash co-stabilization, and compaction degree on mechanical properties. The results demonstrated that the compressive strength of both stabilized soils increased significantly with higher slag-based geopolymer content, achieving peak values of 5.2 MPa (soil sample 1) and 4.5 MPa (soil sample 2), representing a 30% improvement over cement-stabilized soils with identical mix proportions. Fly ash co-stabilization exhibited more pronounced reinforcement effects on soil sample 2. At a 98% compaction degree, soil sample 1 maintained a stable 50% strength enhancement, whereas soil sample 2 displayed a dose-dependent exponential strength increase. Freeze–thaw resistance tests revealed the superior performance of soil sample 1, showing a loss of compressive strength (BDR) of 78% with 8% geopolymer stabilization alone, which improved to 90% after fly ash co-stabilization. For soil sample 2, the BDR increased from 64% to 80% through composite stabilization. This study confirms that slag/fly ash-based geopolymer-stabilized soils not only meet the strength requirements for heavy-traffic subbases and light-traffic base courses, but also demonstrates its great potential as a low-carbon and environmentally friendly material to replace traditional road base materials. Full article
Show Figures

Figure 1

Back to TopTop