Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = rivet corrosion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6163 KB  
Article
Investigation of Skin–Stringer Assembly Made with Adhesive and Mechanical Methods on Aircraft
by Hacı Abdullah Tasdemir, Berke Alp Mirza and Yunus Hüseyin Erkendirci
Aerospace 2025, 12(5), 383; https://doi.org/10.3390/aerospace12050383 - 29 Apr 2025
Cited by 1 | Viewed by 780
Abstract
New assembly methods for aircraft structural parts, such as skins and stringers, are being investigated to address issues like galvanic corrosion, stress concentration, and weight. For this, many researchers are examining the mechanical and fracture properties of adhesively bonded parts through experimental testing [...] Read more.
New assembly methods for aircraft structural parts, such as skins and stringers, are being investigated to address issues like galvanic corrosion, stress concentration, and weight. For this, many researchers are examining the mechanical and fracture properties of adhesively bonded parts through experimental testing and numerical modelling methods, including Cohesive Zone Modelling (CZM), Compliance-Based Beam Method (CBBM), Double Cantilever Beam (DCB), and End Notched Flexural (ENF) tests. In this study, similarly, DCB and ENF tests were conducted on skin and beam parts bonded with AF163-2K adhesive using CBBM and then modelled and analysed in ABAQUS CAE 2018 software. Four different skin–stringer connection models were analysed, respectively, using only adhesive, only rivets, both adhesive and rivets, and also a reduced number of rivets in the adhesively bonded joint. This study found that adhesive increased initial strength, while rivets improved strength after the adhesive began to crack. Using a hybrid connection that combines both rivets and adhesive has been observed to enhance the overall strength and durability of the assembly. Then, experimental results were compared, and four numerical models for skin–stringer connections (adhesive only, rivets only, adhesive and rivets, and adhesive with reduced rivets) were analysed and discussed. In this context, the results were supported and reported with graphs, tables, and analysis images. Full article
(This article belongs to the Special Issue Advanced Aircraft Structural Design and Applications)
Show Figures

Figure 1

33 pages, 23106 KB  
Article
Determination of Mechanical Properties of Blind Rivet Joints Using Numerical Simulations and Experimental Testing
by Martin Beber, Martin Stejskal and Frantisek Sedlacek
Materials 2025, 18(2), 229; https://doi.org/10.3390/ma18020229 - 7 Jan 2025
Cited by 4 | Viewed by 1545
Abstract
This study explores the tensile performance of blind rivet joints in galvanized steel sheets, focusing on their behavior under shear and normal load conditions. Blind rivets are frequently used in structural applications due to their ease of installation and ability to be applied [...] Read more.
This study explores the tensile performance of blind rivet joints in galvanized steel sheets, focusing on their behavior under shear and normal load conditions. Blind rivets are frequently used in structural applications due to their ease of installation and ability to be applied from one side, making them highly effective in industries like aerospace and automotive. Two types of DIN 7337—4.8 × 8 blind rivets—galvanized steel St/St and stainless steel A2/A2—paired with galvanized steel sheets DX51D + Z275, were experimentally tested to assess how their material properties affect their joint strength, deformation patterns, and failure modes. Single-lap shear, double-lap shear, and pure normal load tests were conducted in multiple configurations to evaluate joint performance under varying loading conditions, simulating real-world stresses. Using custom-built equipment, controlled forces were applied perpendicular to the rivet joints to replicate practical loading conditions. The results revealed distinct differences in the load-bearing capacities of the two materials, offering valuable insights for applications where corrosion resistance and structural integrity are critical. Finite element analysis (FEA) was then used to simulate the behavior of the joints, with the results validated against experimental data. To enhance the reliability of numerical simulations in optimizing the design of rivet joints, a methodology was proposed to calibrate non-linear FEA models to experimental results, and a substantial agreement of 92.53% was achieved via optimization in ANSYS OptiSLang. This research contributes to our broader understanding of riveted connections, providing practical recommendations for assessing the performance of such joints in various engineering fields. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

23 pages, 13337 KB  
Article
Evaluation of Corrosion and Its Impact on the Mechanical Performance of Al–Steel Joints
by Weiling Wen, Blair Carlson and Mihaela Banu
Materials 2024, 17(14), 3542; https://doi.org/10.3390/ma17143542 - 17 Jul 2024
Cited by 3 | Viewed by 1519
Abstract
Aluminum–steel joints are increasingly used in the automotive industry to meet the requirements for energy saving and emission reduction. Among various joining technologies, self-pierce riveting (SPR) and resistance spot welding (RSW) are two well-established technologies for fabricating dissimilar joints with stable and high [...] Read more.
Aluminum–steel joints are increasingly used in the automotive industry to meet the requirements for energy saving and emission reduction. Among various joining technologies, self-pierce riveting (SPR) and resistance spot welding (RSW) are two well-established technologies for fabricating dissimilar joints with stable and high mechanical performance. However, corrosion will occur in these joints inevitably due to different electrochemical properties, which can degrade the surface quality and the mechanical performance, such as strength. This paper presents a method of understanding the corrosion mechanisms in joining aluminum and steel. For this understanding, a hybrid method combining experimental observations, mechanical properties identification, and analytical approaches was used to assess the evolution of the impact of corrosion on the joining performance, such as traction separation curves. The study was conducted on common combinations used in the vehicles, e.g., a 1.2 mm thickness aluminum alloy (AA 6022) and 2.0 mm thickness hot deep galvanized steel (HDG HSLA 340) joined by SPR and RSW. After the fabrication of these joints, accelerated cyclic corrosion tests of up to 104 cycles were performed, which reproduced the environmental conditions to which a vehicle was exposed. By investigating the microstructural evolution within the joints, the corrosion mechanisms of SPR and RSW joints were revealed, including the initiation and propagation. Moreover, the intrinsic impact of the corrosion on the mechanical performance, including the strength, axial stiffness, and crashworthiness, was analyzed by performing a lap-shear test. It showed that as corrosion proceeds, the fracture modes and mechanical performance are affected significantly. Full article
(This article belongs to the Special Issue Advanced Welding in Alloys and Composites)
Show Figures

Figure 1

11 pages, 4552 KB  
Article
Increased Sustainability in Fastener Production with the Example of Self-Piercing Rivets
by Benedikt Uhe, Clara-Maria Kuball, Marion Merklein and Gerson Meschut
J. Manuf. Mater. Process. 2023, 7(6), 193; https://doi.org/10.3390/jmmp7060193 - 31 Oct 2023
Cited by 2 | Viewed by 2680
Abstract
The sustainability of the manufacturing industry is of special importance to increase the protection of the environment. The production of fasteners like self-piercing rivets, however, is costly, time-consuming and energy-intensive. The heat treatment and the coating, which are mandatory in conventional self-piercing rivets [...] Read more.
The sustainability of the manufacturing industry is of special importance to increase the protection of the environment. The production of fasteners like self-piercing rivets, however, is costly, time-consuming and energy-intensive. The heat treatment and the coating, which are mandatory in conventional self-piercing rivets to achieve adequate strength, ductility and corrosion resistance, are especially crucial in this respect. Within this paper, an approach for an increase in the sustainability in fastener production is presented. The use of alternative, high strain hardening stainless steels as rivet material enables a shortening of the process chain, because post treatment of the rivets after they are formed can be omitted. As the change in rivet material and processing causes some issues along the process chain, the focus of this paper is on the holistic evaluation of the challenges within the forming of high strain hardening steel and the impact of the changed rivet properties on the joining result. Full article
Show Figures

Figure 1

16 pages, 7437 KB  
Article
Insight of Salt Spray Corrosion on Mechanical Properties of TA1-Al5052 Self-Piercing Riveted Joint
by Jiamei Lai, Zhichao Huang, Nanlin Tang, Zhaoxiao Hu and Yuqiang Jiang
Materials 2022, 15(23), 8643; https://doi.org/10.3390/ma15238643 - 4 Dec 2022
Cited by 11 | Viewed by 2403
Abstract
Self-piercing riveted (SPR) joints in automobiles inevitably suffer from corrosion damage and performance reduction. In this work, the influence of salt spray corrosion on the mechanical properties of TA1-Al5052 alloy SPR joints was studied. The TA1-5052 SPR joints were prepared and salt spray [...] Read more.
Self-piercing riveted (SPR) joints in automobiles inevitably suffer from corrosion damage and performance reduction. In this work, the influence of salt spray corrosion on the mechanical properties of TA1-Al5052 alloy SPR joints was studied. The TA1-5052 SPR joints were prepared and salt spray tests were carried out for different durations. The static and fatigue strengths of the joints after salt spray corrosion were tested to analyze the effect of salt spray duration on the performance of the joints. The results show that the joints’ static strength and fatigue strength decrease with prolonged salt spray time. The salt spray duration affects the joint’s tensile failure mode. The tensile failure without corrosion and with a short salt spray time is the fracture failure of the lower aluminum sheet, and the tensile failure of the joints after a long time of salt spray corrosion is the failure of the rivets. The fatigue failure form of the SPR joint is the formation of fatigue cracks in the lower aluminum sheet, and salt spray time has little effect on the fatigue failure form. Salt spray corrosion can promote the initiation and propagation of fatigue cracks. The fatigue crack initiation area is located at the boundary between the lower aluminum sheet and the rivet leg. The initiation of cracks originates from the wear zones among the sheet metal, rivets, and salt spray particles. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

16 pages, 5434 KB  
Article
Auto-Detection of Hidden Corrosion in an Aircraft Structure by Electromagnetic Testing: A Machine-Learning Approach
by Minhhuy Le, Van Su Luong, Dang Khoa Nguyen, Dang-Khanh Le and Jinyi Lee
Appl. Sci. 2022, 12(10), 5175; https://doi.org/10.3390/app12105175 - 20 May 2022
Cited by 16 | Viewed by 3286
Abstract
An aircraft is a multilayer structure that is assembled by rivets. Under extreme working conditions, corrosion appears and quickly propagates at the rivet sites of the layers; thus, it threads the integrity and safety of the aircraft. Corrosion usually occurs at the hidden [...] Read more.
An aircraft is a multilayer structure that is assembled by rivets. Under extreme working conditions, corrosion appears and quickly propagates at the rivet sites of the layers; thus, it threads the integrity and safety of the aircraft. Corrosion usually occurs at the hidden layer around the rivet, making it difficult to detect. This paper proposes a machine learning approach incorporating an electromagnetic testing system to detect the hidden corrosion at the riveting site effectively. Several machine learning methods will be investigated for the detection of different sizes and locations of corrosion. The training strategy of the machine-learning models on the small numbers of data will also be investigated. The result shows that the proposed approach could effectively detect 89.48% of the hidden corrosion having from 2.8 to 195.4 mm3 with only 20% of training data and could be increased to 99.0% with 60–80% of the training data. Full article
(This article belongs to the Special Issue Structural Health Monitoring: Latest Applications and Data Analysis)
Show Figures

Figure 1

15 pages, 8941 KB  
Article
Railway Overhead Wiring Structures in Australia: Review and Structural Assessment
by Bin Hu and Ricky W. K. Chan
Appl. Sci. 2022, 12(3), 1492; https://doi.org/10.3390/app12031492 - 29 Jan 2022
Cited by 3 | Viewed by 12558
Abstract
Overhead wiring structures (OWS) provide physical support to overhead electrical wires that power trains. They are typically spaced at 50 to 70 m. In a rail network, tens of thousands of these structures are required. Although they are simple structures, due to their [...] Read more.
Overhead wiring structures (OWS) provide physical support to overhead electrical wires that power trains. They are typically spaced at 50 to 70 m. In a rail network, tens of thousands of these structures are required. Although they are simple structures, due to their numbers; design, construction and maintenance often involve large capital investments. Their reliability is also crucial to a safe operating rail network. This paper presents a review of OWS in Australia. Electrification of train services began in the 1910s, making some of the OWS over 100 years old. Descriptions in this article include their structural forms, design, construction, assessment and maintenance. It follows with a structural assessment carried out on a century-old riveted OWS built in the 1910s. This OWS was decommissioned in a recent railway renewal project which allowed the assessments to carry out. The assessment provides insights into hundreds of similar aged OWS still being used today. Assessments carried out consisted of tensile tests, corrosion depth measurements, radiographic imaging, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDX). Crevice corrosion is common in locations where moisture accumulated. Material properties were similar to modern-day Grade 250 steel with satisfactory ductility. Corrosion depths were less than those predicted. Samples of riveted connection showed no sign of deterioration within connected plates. This study may provide insights into structural design, construction and maintenance of similar structures in Australia and abroad. Full article
(This article belongs to the Special Issue Advanced Railway Infrastructures Engineering)
Show Figures

Figure 1

31 pages, 4662 KB  
Review
A Review of Corrosion in Aircraft Structures and Graphene-Based Sensors for Advanced Corrosion Monitoring
by Lucy Li, Mounia Chakik and Ravi Prakash
Sensors 2021, 21(9), 2908; https://doi.org/10.3390/s21092908 - 21 Apr 2021
Cited by 46 | Viewed by 10859
Abstract
Corrosion is an ever-present phenomena of material deterioration that affects all metal structures. Timely and accurate detection of corrosion is required for structural maintenance and effective management of structural components during their life cycle. The usage of aircraft materials has been primarily driven [...] Read more.
Corrosion is an ever-present phenomena of material deterioration that affects all metal structures. Timely and accurate detection of corrosion is required for structural maintenance and effective management of structural components during their life cycle. The usage of aircraft materials has been primarily driven by the need for lighter, stronger, and more robust metal alloys, rather than mitigation of corrosion. As such, the overall cost of corrosion management and aircraft downtime remains high. To illustrate, $5.67 billion or 23.6% of total sustainment costs was spent on aircraft corrosion management, as well as 14.1% of total NAD for the US Air Force aviation and missiles in the fiscal year of 2018. The ability to detect and monitor corrosion will allow for a more efficient and cost-effective corrosion management strategy, and will therefore, minimize maintenance costs and downtime, and to avoid unexpected failure associated with corrosion. Conventional and commercial efforts in corrosion detection on aircrafts have focused on visual and other field detection approaches which are time- and usage-based rather than condition-based; they are also less effective in cases where the corroded area is inaccessible (e.g., fuel tank) or hidden (rivets). The ability to target and detect specific corrosion by-products associated with the metals/metal alloys (chloride ions, fluoride ions, iron oxides, aluminum chlorides etc.), corrosion environment (pH, wetness, temperature), along with conventional approaches for physical detection of corrosion can provide early corrosion detection as well as enhanced reliability of corrosion detection. The paper summarizes the state-of-art of corrosion sensing and measurement technologies for schedule-based inspection or continuous monitoring of physical, environmental and chemical presence associated with corrosion. The challenges are reviewed with regards to current gaps of corrosion detection and the complex task of corrosion management of an aircraft, with a focused overview of the corrosion factors and corrosion forms that are pertinent to the aviation industry. A comprehensive overview of thin film sensing techniques for corrosion detection and monitoring on aircrafts are being conducted. Particular attention is paid to innovative new materials, especially graphene-derived thin film sensors which rely on their ability to be configured as a conductor, semiconductor, or a functionally sensitive layer that responds to corrosion factors. Several thin film sensors have been detailed in this review as highly suited candidates for detecting corrosion through direct sensing of corrosion by-products in conjunction with the aforementioned physical and environmental corrosion parameters. The ability to print/pattern these thin film materials directly onto specific aircraft components, or deposit them onto rigid and flexible sensor surfaces and interfaces (fibre optics, microelectrode structures) makes them highly suited for corrosion monitoring applications. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

14 pages, 76708 KB  
Article
Mechanical Behavior of GFRP Connection Using FRTP Rivets
by Takayoshi Matsui, Yoshiyuki Matsushita and Yukihiro Matsumoto
Materials 2021, 14(1), 7; https://doi.org/10.3390/ma14010007 - 22 Dec 2020
Cited by 4 | Viewed by 3704
Abstract
In recent years, the application of fiber-reinforced plastics (FRPs) as structural members has been promoted. Metallic bolts and rivets are often used for the connection of FRP structures, but there are some problems caused by corrosion and stress concentration at the bearing position. [...] Read more.
In recent years, the application of fiber-reinforced plastics (FRPs) as structural members has been promoted. Metallic bolts and rivets are often used for the connection of FRP structures, but there are some problems caused by corrosion and stress concentration at the bearing position. Fiber-reinforced thermoplastics (FRTPs) have attracted attention in composite material fields because they can be remolded by heating and manufactured with excellent speed compared with thermosetting plastics. In this paper, we propose and evaluate the connection method using rivets produced of FRTPs for FRP members. It was confirmed through material tests that an FRTP rivet provides stable tensile, shear, and bending strength. Then, it was clarified that non-clearance connection could be achieved by the proposed connection method, so initial sliding was not observed, and connection strength linearly increased as the number of FRTP rivets increased through the double-lapped tensile shear tests. Furthermore, the joint strength of the beam using FRTP rivets could be calculated with high accuracy using the method for bolt joints in steel structures through a four-point beam bending test. Full article
(This article belongs to the Special Issue Testing of Materials and Elements in Civil Engineering)
Show Figures

Figure 1

11 pages, 4084 KB  
Article
Evaluation of Tensile Shear Strength under Salt Spray Test on Dissimilar Metal Spot Welding of Aluminum Alloy and Galvannealed Steel Sheet
by Sung-Min Joo, Young-Gon Kim and Min-Suk Oh
Appl. Sci. 2020, 10(22), 8116; https://doi.org/10.3390/app10228116 - 16 Nov 2020
Cited by 2 | Viewed by 3924
Abstract
In order to reduce the weight of parts in the automobile and electronic industries, various research on dissimilar welding techniques of aluminum and steel is being carried out. Since dissimilar materials have different physical and electrochemical characteristics, joining through conventional fusion welding is [...] Read more.
In order to reduce the weight of parts in the automobile and electronic industries, various research on dissimilar welding techniques of aluminum and steel is being carried out. Since dissimilar materials have different physical and electrochemical characteristics, joining through conventional fusion welding is challenging, and there is a high probability of a decrease in strength of the welded joints. To solve this problem, a mechanical fastening method is mainly applied to join dissimilar parts with different material properties, but this process has disadvantages in terms of productivity improvement and cost reduction because additional consumables, such as rivets, are required. In this research, we investigated the optimization of the weld bonding conditions of joints using epoxy-based adhesive bonding and DeltaSpot welding for Al/Fe dissimilar materials. For each experimental condition, the corrosion resistance and tensile shear strength of the welded joints were evaluated according to salt spray test times of 0 h, 640 h, 1280 h, and 1920 h. As a whole, as the salt spray test time increased, the tensile shear strength of the welded joints decreased. It was confirmed that weld bonding, after manual polishing of the aluminum side, resulted in the highest average tensile shear strength of 5.88 kN at 1920 h, which was an increase compared with other conditions. Full article
(This article belongs to the Special Issue Advanced Manufacturing of Metals)
Show Figures

Figure 1

15 pages, 16376 KB  
Article
On the Influence of Corrosion on the Load-Carrying Capacity of Old Riveted Bridges
by Jozef Gocál and Jaroslav Odrobiňák
Materials 2020, 13(3), 717; https://doi.org/10.3390/ma13030717 - 5 Feb 2020
Cited by 26 | Viewed by 2973
Abstract
Steel corrosion is one of the most dominant factors in the degradation of transport infrastructure. This article deals with the impact of the atmospheric corrosion of structural steel on the load-carrying capacity of old riveted bridge structures. A study on the impact of [...] Read more.
Steel corrosion is one of the most dominant factors in the degradation of transport infrastructure. This article deals with the impact of the atmospheric corrosion of structural steel on the load-carrying capacity of old riveted bridge structures. A study on the impact of corrosion losses on the resistance and, thus, the load-carrying capacity of eight chosen bridge members with riveted I-sections from three different bridge substructures is presented. The load-carrying capacity calculation is carried out using modern procedures and on the basis of the diagnosed state of the structural elements. Within the analysis of the results, the need for long-term in situ corrosion measurements, as well as the need for regular inspections on the existing bridges are also discussed. Full article
(This article belongs to the Special Issue Corrosion and Protection of Materials)
Show Figures

Figure 1

Back to TopTop