Insight of Salt Spray Corrosion on Mechanical Properties of TA1-Al5052 Self-Piercing Riveted Joint
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Self-Piercing Riveting Joints
2.3. Salt Spray Corrosion Test
2.4. Mechanical Property Test and Fracture Morphology
3. Results and Discussion
3.1. Forming Quality
3.2. Corrosion Mechanism and Morphological Analysis
3.3. Corrosion Resistance
3.4. Tensile Static Strength
3.5. Tensile Failure
3.5.1. Macroscopic Analysis of Tensile Failure
3.5.2. Microscopic Analysis of Tensile Failure
3.6. Fatigue Strength
3.7. Fatigue Failure
3.7.1. Macroscopic Analysis of Fatigue Failure
3.7.2. Microscopic Analysis of Fatigue Failure
4. Conclusions
- (1)
- The average corrosion rate of the samples increased with the increase of corrosion time. At the beginning of the SSC durations, the average corrosion rate quickly increased, and then the steady average corrosion rate was obtained. The average corrosion rate quickly increased at the end of the SSC durations.
- (2)
- The static strength and fatigue strength of the joint decreased with prolonged SSC time. The SSC time affected the tensile failure mode of the joint but had no noticeable effect on the fatigue failure mode of the joint. The tensile failure without corrosion and with a short SSC time was the fracture failure of the lower aluminum sheet, and the tensile failure of the joints after a long SSC time was the failure of the rivets. The fatigue failure form of the SPR joint was the formation of fatigue cracks in the lower aluminum sheet.
- (3)
- SSC promoted the initiation and propagation of fatigue cracks in joints. The fatigue cracks of the joints before corrosion were initiated in the junction area of the two sheets and the boundary between the lower aluminum sheet and the rivet legs. After corrosion, the joints generally had multiple fatigue crack initiation areas.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tekkaya, A.E.; Min, J. Special issue on automotive lightweight. Automot. Innov. 2020, 3, 193–194. [Google Scholar] [PubMed]
- Sato, F.E.K.; Nakata, T. Analysis of the impact of vehicle lightweighting on recycling benefits considering life cycle energy reductions. Resour. Conserv. Recycl. 2021, 164, 105118. [Google Scholar]
- Groche, P.; Wohletz, S.; Brenneis, M.; Pabst, C.; Resch, F. Joining by forming—A review on joint mechanisms, applications and future trends. J. Mater. Process. Technol. 2014, 214, 1972–1994. [Google Scholar] [CrossRef]
- Wu, J.; Chen, C.; Ouyang, Y.; Qin, D.; Li, H. Recent development of the novel riveting processes. Int. J. Adv. Manuf. Technol. 2021, 117, 19–47. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Huang, Z.C.; Jiang, Y.Q. Effect of low-velocity impact on mechanical property and fatigue life of DP590/AA6061 self-piercing riveted joints. Mater. Res. Express. 2022, 9, 026514. [Google Scholar]
- Tian, H.; Xing, B.Y.; Zhang, H.S.; Wang, K.W.; Zeng, K.; He, X.C. A study on non-destructive testing of geometrical parameters of self-piercing riveting joints using an acoustic microscope with a scanning focusing converter. Nondestruct. Test. Eval. 2022. [Google Scholar] [CrossRef]
- He, X.; Wang, Y.; Lu, Y.; Zeng, K.; Gu, F.; Ball, A. Self-piercing riveting of similar and dissimilar titanium sheet materials. Int. J. Adv. Manuf. Technol. 2015, 80, 2105–2115. [Google Scholar] [CrossRef]
- Zhou, Z.J.; Huang, Z.C.; Jiang, Y.Q.; Tang, N.L. Joining properties of SPFC440/AA5052 multi-material self-piercing riveting joints. Materials 2022, 15, 2962. [Google Scholar]
- Huang, Z.C.; Zhou, Z.J.; Jiang, Y.Q. Effect of shot peening on static and fatigue properties of self-piercing riveting joints. J. Mater. Res. Technol. 2022, 18, 1070–1080. [Google Scholar]
- Huang, Z.C.; Zhang, Y.K.; Lin, Y.C.; Jiang, Y.Q. Physical property and failure mechanism of self-piercing riveting joints between foam metal sandwich composite aluminum plate and aluminum alloy. J. Mater. Res. Technol. 2022, 17, 139–149. [Google Scholar] [CrossRef]
- Liu, Y.; Zhuang, W.; Luo, Y.; Xie, D.; Mu, W. Joining mechanism and damage of self-piercing riveted joints in carbon fibre reinforced polymer composites and aluminium alloy. Thin Wall. Struct. 2023, 182, 110233. [Google Scholar] [CrossRef]
- Chung, C.S.; Kim, H.K. Fatigue strength of self-piercing riveted joints in lap-shear specimens of aluminium and steel sheets. Fatigue Fract. Eng. Mater. Struct. 2016, 39, 1105–1114. [Google Scholar] [CrossRef]
- Zhang, X.; He, X.; We, W.; Lu, J.; Zeng, K. Fatigue characterization and crack propagation mechanism of self-piercing riveted joints in titanium plates. Int. J. Fatigue 2020, 134, 105465. [Google Scholar]
- Karim, M.A.; Bae, J.H.; Kam, D.H.; Kim, C.; Choi, W.H.; Park, Y.D. Assessment of rivet coating corrosion effect on strength degradation of CFRP/aluminum self-piercing riveted joints. Surf. Coat. Technol. 2020, 393, 125726. [Google Scholar] [CrossRef]
- Çavuşoğlu, O.; Bakırcı, A.; Dinkçi, H.; Yılmazoğlu, A.G. Triple joining of different sheets with self-pierce riveting method. Sci. Technol. Weld. Join. 2022, 27, 579–585. [Google Scholar]
- Neslušan, M.; Minárik, P.; Čep, R.; Uríček, J.; Trojan, K.; Ganev, N.; Trško, L. Barkhausen noise emission of AISI 304 stainless steel originating from strain induced martensite by shot peening. J. Mater. Res. Technol. 2022, 20, 748–762. [Google Scholar]
- Skoczylas, A.; Zaleski, K. Study on the surface layer properties and fatigue life of a workpiece machined by centrifugal shot peening and burnishing. Materials 2022, 15, 6677. [Google Scholar] [CrossRef]
- Calabrese, L.; Proverbio, E.; Pollicino, E.; Galtieri, G.; Borsellino, C. Effect of galvanic corrosion on durability of aluminium/steel self-piercing rivet joints. Corros. Eng. Sci. Technol. 2015, 50, 10–17. [Google Scholar]
- Calabrese, L.; Proverbio, E.; Di Bella, G.; Galtieri, G.; Borsellino, C. Failure behaviour of SPR joints after salt spray test. Eng. Struct. 2015, 82, 33–43. [Google Scholar]
- Fiore, V.; Calabrese, L.; Proverbio, E.; Passari, R.; Valenza, A. Salt spray fog ageing of hybrid composite/metal rivet joints for automotive applications. Compos. Part B 2017, 108, 65–74. [Google Scholar] [CrossRef]
- Huang, Z.C.; Hu, Z.X.; Liu, S.H.; Jiang, Y.Q.; Zhou, Z.J. Comparison of corrosion properties of SPFC440 steel/5052 aluminum self-piercing riveting joints and adhesive bond-riveted hybrid joints. China Mech. Eng. 2022, 33, 1345–1352. [Google Scholar]
- Kharitonov, D.S.; Dobryden, I.; Sefer, B.; Ryl, J.; Wrzesińska, A.; Makarova, I.V.; Bobowska, L.; Kurilo, L.L.; Claesson, P.M. Surface and corrosion properties of AA6063-T5 aluminum alloy in molybdate-containing sodium chloride solutions. Corros. Sci. 2020, 171, 108658. [Google Scholar]
- Jia, Y.L.; Huang, Z.C.; Zhang, Y.C.; Zhang, F. Forming quality and fatigue behavior of self-piercing riveted joints of DP590 and AA6061 plates. Adv. Mater. Sci. Eng. 2021, 2021, 4381544. [Google Scholar] [CrossRef]
- Chen, G.; Zeng, K.; Xing, B.; He, X. Multiple Nonlinear Regression Prediction Model for Process Parameters of Al Alloy Self-Piercing Riveting. J. Mater. Res. Technol. 2022, 19, 1934–1943. [Google Scholar] [CrossRef]
- Liu, X.; Lim, Y.C.; Li, Y.; Tang, W.; Ma, Y.; Feng, Z.; Ni, J. Effects of process parameters on friction self-piercing riveting of dissimilar materials. J. Mater. Process. Tech. 2016, 237, 19–30. [Google Scholar]
- GB/T 10125-2012; Corrosion Tests in Artificial Atmospheres—Salt Spray Tests. SPC: Standards Press of China: Beijing, China, 2012.
- Haque, R. Quality of self-piercing riveting (SPR) joints from cross-sectional perspective: A review. Arch. Civ. Mech. Eng. 2018, 18, 83–93. [Google Scholar] [CrossRef]
- Du, Z.P.; Duan, L.B.; Jing, L.J.; Cheng, A.G.; He, Z.C. Numerical simulation and parametric study on self-piercing riveting process of aluminium–steel hybrid sheets. Thin Wall. Struct. 2021, 164, 107872. [Google Scholar] [CrossRef]
- Xie, J.S.; Zhang, J.H.; Zhang, Z.; Yang, Q.; Guan, K.; He, Y.Y.; Wang, R.; Zhang, H.; Qiu, X.; Wu, R.Z. New insights on the different corrosion mechanisms of Mg alloys with solute-enriched stacking faults or long period stacking ordered phase. Corros Sci. 2022, 198, 110163. [Google Scholar]
- Gong, P.; Wang, D.; Zhang, C.; Wang, Y.; Jamili-Shirvan, Z.; Yao, K.; Wang, X. Corrosion behavior of TiZrHfBeCu (Ni) high-entropy bulk metallic glasses in 3.5 wt.% NaCl. NPJ Mat. Degrad. 2022, 6, 1–14. [Google Scholar]
- Szklarska-Smialowska, Z. Pitting corrosion of aluminum. Corros Sci. 1999, 41, 1743–1767. [Google Scholar] [CrossRef]
- Jin, W.H.; Xing, B.Y.; He, X.C.; Zeng, K.; Yu, K. Study on static properties of self-piercing riveted joints in aluminum alloy under different corrosive environment. Mater. Rep. 2019, 33, 2725–2728. [Google Scholar]
- Fan, B.; Zhao, X.; Liu, Z.; Xiang, Y.; Zheng, X. Inter-component synergetic corrosion inhibition mechanism of Passiflora edulia Sims shell extract for mild steel in pickling solution: Experimental, DFT and reactive dynamics investigations. Sustain. Chem. Pharm. 2022, 29, 100821. [Google Scholar]
- Darmawan, A.S.; Siswanto, W.A.; Purboputro, P.I.; Anggono, A.D.; Hamid, A. Effect of Increasing Salinity to Corrosion Resistance of 5052 Aluminum Alloy in Artificial Seawater. Mater. Sci. Forum 2019, 961, 107–111. [Google Scholar] [CrossRef]
- García-Rubio, M.; Ocón, P.; Curioni, M.; Thompson, G.E.; Skeldon, P.; Lavía, A.; García, I. Degradation of the corrosion resistance of anodic oxide films through immersion in the anodising electrolyte. Corros Sci. 2010, 52, 2219–2227. [Google Scholar]
- Natishan, P.M.; O’grady, W.E. Chloride ion interactions with oxide-covered aluminum leading to pitting corrosion: A review. J. Electrochem. Soc. 2014, 161, C421. [Google Scholar] [CrossRef]
- Takahashi, H.; Chiba, M. Role of anodic oxide films in the corrosion of aluminum and its alloys. Corros Rev. 2018, 36, 35–54. [Google Scholar] [CrossRef]
- Pan, B.; Sun, H.; Shang, S.L.; Wen, W.L.; Banu, M.; Simmer, J.C.; Carlson, B.E.; Chen, N.N.; Liu, Z.K.; Zheng, Z.Y.; et al. Corrosion behavior in aluminum/galvanized steel resistance spot welds and self-piercing riveting joints in salt spray environment. J. Manuf. Process. 2021, 70, 608–620. [Google Scholar]
- Abe, Y.; Mori, K. Mechanical clinching and self-pierce riveting for sheet combination of 780-MPa high-strength steel and aluminium alloy A5052 sheets and durability on salt spray test of joints. Int. J. Adv. Manuf. Technol. 2021, 113, 59–72. [Google Scholar] [CrossRef]
- Fratini, L.; Ruisi V, F. Self-piercing riveting for aluminium alloys-composites hybrid joints. Int. J. Adv. Manuf. Technol. 2009, 43, 61–66. [Google Scholar] [CrossRef]
- Chen, Y.K.; Han, L.; Chrysanthou, A.; O’sullivan, J.M. Fretting wear in self-piercing riveted aluminium alloy sheet. Wear 2003, 255, 1463–1470. [Google Scholar] [CrossRef] [Green Version]
- Ezuber, H.; El-Houd, A.; El-Shawesh, F. A study on the corrosion behavior of aluminum alloys in seawater. Mater. Des. 2008, 29, 801–805. [Google Scholar] [CrossRef]
- Han, L.; Chrysanthou, A.; Young, K.W.; O’sullivan, J.M. Characterizing fretting fatigue in self-piercing riveted aluminium alloy sheets. Fatigue Fract. Eng. Mater. Struct. 2006, 29, 646–654. [Google Scholar]
- Du, G.; Xing, Y.; Li, X. Fatigue properties of self-piercing riveted multi-rivet joints in steel and aluminum sheets. Mater. Werkst. 2019, 50, 1495–1502. [Google Scholar]
- Arouche, M.M.; Saleh, M.N.; Freitas, S.T.; Barros, S. Effect of salt spray ageing on the fracture of composite-to-metal bonded joints. Int. J. Adhes. Adhes. 2021, 108, 102885. [Google Scholar]
- Zhao, L.; He, X.; Xing, B.; Zhang, X.; Deng, C.; Liu, Y. Fracture mechanism of titanium sheet self-piercing riveted joints. Thin Wall. Struct. 2019, 144, 106353. [Google Scholar] [CrossRef]
TA1 | Element | Fe | C | N | H | O | Ti | ||
Standard value | ≤0.25 | ≤0.10 | ≤0.03 | ≤0.015 | ≤0.15 | Bal. | |||
Measured value | 0.019 | 0.015 | 0.0098 | 0.0011 | 0.055 | Bal. | |||
5052 | Element | Si | Cu | Mg | Zn | Mn | Cr | Fe | Al |
Standard value | ≤0.25 | ≤0.1 | 2.2~2.8 | ≤0.1 | ≤0.1 | 0.15~0.35 | ≤0.4 | Bal. | |
Measured value | 0.072 | 0.006 | 2.627 | 0.018 | 0.03 | 0.1719 | 0.173 | Bal. |
Materials | Tensile Strength (MPa) | Yield Strength (MPa) | Elongation (%) | |
---|---|---|---|---|
TA1 | Standard value | ≥240 | 240~310 | ≥30 |
Measured value | 324 | 275 | 55 | |
5052 | Standard value | 210–260 | ≥130 | ≥6 |
Measured value | 229 | 173 | ≥14 |
SSC Duration | F-N Curve Equation | r2 |
---|---|---|
0 | F = 113.06 (lgN)−2.4418 | 0.9516 |
1 week | F = 268.09 (lgN)−3.0999 | 0.9804 |
3 weeks | F = 490.33 (lgN)−3.5805 | 0.9583 |
5 weeks | F = 1548.97 (lgN)−4.3333 | 0.9624 |
7 weeks | F = 2250.48 (lgN)−4.6773 | 0.9826 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, J.; Huang, Z.; Tang, N.; Hu, Z.; Jiang, Y. Insight of Salt Spray Corrosion on Mechanical Properties of TA1-Al5052 Self-Piercing Riveted Joint. Materials 2022, 15, 8643. https://doi.org/10.3390/ma15238643
Lai J, Huang Z, Tang N, Hu Z, Jiang Y. Insight of Salt Spray Corrosion on Mechanical Properties of TA1-Al5052 Self-Piercing Riveted Joint. Materials. 2022; 15(23):8643. https://doi.org/10.3390/ma15238643
Chicago/Turabian StyleLai, Jiamei, Zhichao Huang, Nanlin Tang, Zhaoxiao Hu, and Yuqiang Jiang. 2022. "Insight of Salt Spray Corrosion on Mechanical Properties of TA1-Al5052 Self-Piercing Riveted Joint" Materials 15, no. 23: 8643. https://doi.org/10.3390/ma15238643
APA StyleLai, J., Huang, Z., Tang, N., Hu, Z., & Jiang, Y. (2022). Insight of Salt Spray Corrosion on Mechanical Properties of TA1-Al5052 Self-Piercing Riveted Joint. Materials, 15(23), 8643. https://doi.org/10.3390/ma15238643