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Abstract: An aircraft is a multilayer structure that is assembled by rivets. Under extreme working
conditions, corrosion appears and quickly propagates at the rivet sites of the layers; thus, it threads
the integrity and safety of the aircraft. Corrosion usually occurs at the hidden layer around the rivet,
making it difficult to detect. This paper proposes a machine learning approach incorporating an
electromagnetic testing system to detect the hidden corrosion at the riveting site effectively. Several
machine learning methods will be investigated for the detection of different sizes and locations of
corrosion. The training strategy of the machine-learning models on the small numbers of data will
also be investigated. The result shows that the proposed approach could effectively detect 89.48%
of the hidden corrosion having from 2.8 to 195.4 mm3 with only 20% of training data and could be
increased to 99.0% with 60–80% of the training data.

Keywords: electromagnetic testing; rivet corrosion; aircraft intake; hall sensor array; machine learning

1. Introduction

The aircraft intake and skins of aircraft bodies are constructed by multilayers of
aluminum alloys assembled by riveting. Aircraft work under extreme conditions such as
high pressure, large changing temperature, and repeated load. Salinity and moisture in
the environment could attach and accumulate to the riveting site and quickly propagate
corrosion in the riveting area. Most corrosion was observed at the gap between the layers,
on the hidden layer, and this is the original reason for aircraft accidents in history [1–3].
It is required to detect the corrosion at an early stage for the safety and integrity of the
aircraft structure.

Nondestructive testing (NDT) is a common methodology for detecting corrosion in
aircraft. Due to the location of corrosion in the hidden area under the first layer, it is
impossible to detect the corrosion by visual testing. Ultrasonic testing (UT) is a powerful
method for detecting corrosion on the surface or hidden inside the material. However, UT
requires continuous mediums for ultrasonic wave propagation and reflection [4,5]. Thus,
the UT method could not be applied in the multilayer structure of air intake where the air
gap exists between the layers. The electromagnetic acoustic transducer (EMAT) system is
the combination technique of the UT and eddy current testing (ECT). In the EMAT system,
an ECT module generates a high-frequency eddy current into the materials and produces
ultrasonic sound caused by the vibration; then, a UT sensor is used to measure the echo [6].
However, the air gap between the layers makes it hard for the echo from the corrosion to
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propagate to the UT sensor. Thus, it is not feasible to use EMAT. Instead, electromagnetic
testing is a good candidate because the electromagnetic field could penetrate through the
air gap and the layers. Magneto-optical imager (MOI) systems have been successfully
developed for the inspection of corrosion in airplanes [7,8]. An MOI system, including a
magnetic source for generating a magnetic field into the multilayers and a large magneto-
optical films (e.g., bismuth-doped iron garnet), is used to measure the rotation angle of the
optical beam while passes through the magnetic field. Thus, the hidden corrosion in the
multilayer could be detected. However, the MOI signal has a low resolution (1 bit: black (0)
or white (1) color); thus, it is limited in the quantitative evaluation of the corrosion in the
later analysis. In addition, the size of MOI film is large and difficult to use in the complex
curve surface in the air intake.

ECT is an alternating electromagnetic field testing in which sensing coils or magnetic
sensors are used to measure the changes in the magnetic field produced by the corrosion.
Thus, the corrosion could be detected and quantitatively evaluated its size. Several eddy
current testing (ECT) methods have been proposed to detect the hidden corrosion in the
multilayer structure [8–15]. The ECT methods could be classified based on the excitation
source of the magnetic field, which are single-frequency (SF-ECT), multiple-frequency
(MF-ECT), and pulse (P-ECT) signals. SF-ECT uses a single frequency of sinusoidal current
supplying to an exciting coil to produce an electromagnetic field [9]. The sensing element
could simply be a coil, Hall sensor, or giant magnetoresistance (GMR) sensor. In the MF-
ECT system, the sensing element could be the same as used in the SF-ECT, but a multiple
frequency current was supplied to the exciting coil [10,11]. With multiple frequencies, the
eddy current could be penetrated at different depths, and thus, multiple characteristics
of the measured signal could be obtained. So, the MF-ECT could better detect the hidden
corrosion than the SF-ECT does. P-ECT uses a pulse wave shape for the exciting signal,
which is a frequency-rich driven signal; thus, rich characteristics of the measured signal
could be obtained [12–25]. It helps to detect hidden corrosion better. However, the signal is
more complicated, and it is not easy to recognize the corrosion because of the effect of the
rivet and fastener hole, so the signal of corrosion could be masked in the rivet and fastener
hold signal.

Machine learning has been used to analyze the ECT signal for detection and classifi-
cation of the hidden corrosion in the multilayers structure. Principal component analysis
(PCA) was used to detect notches at the fastener hole in the P-ECT probe [10]. The P-ECT
probe has eight pick-up coils around an exciting coil, which makes it possible to detect
all the positions of the notches around the fastener hole. In another study [17], surface
and subsurface defects were classified by a combination of the PCA features, spectral
characteristics features, peak value, and peak time features. PCA was applied to extract
features of the PECT signal of the defects at the upper layer and deeper layer, then a random
forest (RF) classifier was used to classify the defects according to their localization [18].
A convolutional neural network (CNN) has been proposed to classify defects in different
layers and simultaneously evaluate defect depth [19]. Additionally, a support vector ma-
chine (SVM) method has been used to classify the internal states of the multilayer structure
with the combination of lift-off features and PCA features [20]. With the machine learning
techniques, defects in the multilayer structure could be accurately classified. However, the
ECT probes contain a sensing element [17–20] or a few sensing elements (e.g., eight pick-up
coils [16]), which make the inspection operation complicated and time-consuming while
scanning. In addition, the use of pick-up coils limits the spatial resolution of the sensor
probe due to the size of the coil.

Magnetic sensor arrays were developed [21–24], which have multiple magnetic sen-
sor elements arrayed in a high spatial resolution. The use of multiple magnetic sensors
(e.g., Hall sensors [21,22] and GMR sensors [23,24]) in the ECT probes helps to measure the
higher quality of the corrosion in the multilayer structures. However, the electromagnetic
field induced by the rivet and fastener hole was observed to be very large compared to
the field induced by corrosion; thus, it is difficult to detect corrosion [21,22]. In addition,
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the special design of the magnetic sensor probe uses only a single large magnetic source
for the sensor array; thus, the measured magnetic field distribution around the rivet and
corrosion has a strong correlation. Two-layer specimens similar to the skin of the aircraft
intake were fabricated and tested with and without artificial corrosion. The hidden cor-
rosion in the second layer at different locations around the fastener holes was detected
and classified according to its location. The previous study used handcraft features, “Sum
of area” (SoA) [22], for the detection of the corrosion. Four areas around the rivet were
selected, summed, and compared with thresholds. This method could detect the smallest
corrosion with a volume of 46.35 mm3 with 90% probability of detection (POD) and 95%
confidence. However, the SoA features were not considered the correlation of the signals
at the corrosion area and rivet site. Thus, in this paper, data-driven learning features will
be extracted by principal component analysis (PCA) on the correlation of all the sensor
signals. Then, machine learning techniques will be applied to the learning features to
detect and classify the hidden corrosion in the multilayer structure. The machine-learning
models will be trained on different ranges of corrosion volume and a different number of
corrosion samples to find an effective training dataset with fewer data (e.g., 20% on a small
corrosion volume from 15.0 to 25.4 mm3). The results could be helpful for further design
of experiments, especially in the electromagnetic testing where the data sample is limited.
The improvement of POD will be also obtained and compared with the previous study.

2. Electromagnetic Testing Principle

A general principle of the proposed method is shown in Figure 1. The system has three
main blocks: an electromagnetic testing probe, signal processing unit, and auto-detection
algorithm based on machine learning techniques. The sensor probe has a multiple C-slice
core shape made of silicon steel with a copper coil supplied by an alternating current to
produce an alternating magnetic field (Bo) according to Ampère’s law. An eddy current in
the multilayer is then produced according to Faraday’s law. The eddy current penetrates
into the specimen according to the skin effect, which is inversely proportional to the exciting
frequency. The strength of the eddy current decreases exponentially with the depth from
the surface of the specimen. Thus, the exciting frequency is calculated so that the eddy
current can penetrate the hidden corrosion depth. The eddy current is distorted by the
presence of the rivet and hidden corrosion and produces the secondary magnetic field
(Bz). The Bz could be measured by the Hall sensor array at the center of the C-core. The
measured magnetic field Bz is in the vertical direction as the sensitive direction of the Hall
sensors. The alternating output voltage of the Hall sensor array is low-pass filtered (LPF)
and amplified before converting to DC voltage by the root-mean-square (RMS) circuits.
The number of LPF, amplifier and RMS circuits is the same as the number of Hall sensor
elements for simultaneous signal processing. The signal is then digitalized by a data
acquisition device (National Instrument DAQ) and transferred to a computer.

Support, f, δ, µ, α, and Bzo are the exciting frequency of the coil, electrical conductivity,
permeability of specimen, phase shift of magnetic field, and am amplitude of the total
magnetic field in the vertical direction. The eddy current strength and skin depth are
calculated by Equation (1). The output voltage of the Hall sensor element is proportional to
the magnetic field as described in Equation (2), where k and I are the constant factor and
supplied current of the Hall sensor. The measured RMS voltage is then to the magnetic
field Bzo, as calculated by Equation (3).

Jd = Jsur f e−d/δ with δ = 1/
√

π f µσ (1)

VH(t) = k× I × BZ(t) = k× I × Bz0Sin(2π f t + α) (2)

VRMS =

√
1
T

∫ T

0
[VZ(t)]

2dt ≈ k× I × 1√
2

Bz0 (3)
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where f is the exciting frequency [Hz]; δ is the electrical conductivity of specimen [m/S];
µ is the absolute permeability of specimen [H/m]; Jsur f and Jd are the eddy current on
the surface and at depth d from the surface of specimen [A/m], respectively; δ is the skin
depth [m]; Bz0 is the amplitude of magnetic field in vertical direction [T]; k is the Hall constant
[V.(A.mT)−1]; VH and I are Hall output voltage and current supply [V], [A]; α is the phase shift
of magnetic field [rad]; and, VRMS is the root-mean-square of the Hall output voltage [V].
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It is noted that the total magnetic field Bzo is the superposition of the magnetic field
from the primary magnetic field (Bo), eddy current of the multilayers (Bm), distorted eddy
current by the rivet (Br), and corrosion (Bc). However, the Bo and Bm could be assumed
constant, and the variations of Bro only depend on the superposition of the Br and Bc. The
magnetic field from corrosion is usually very small compared to the rivet (Bc < Br); thus,
detecting the corrosion is difficult. Another issue is that the amount of data for training
the machine-learning model is low due to the expensive and time-consuming experiments.
Due to the large signal of the rivet, the rivet center could be detected [22], and only an
area of data around the rivet is selected as the input for the feature extraction module to
reduce abundant data in the no-corrosion area. Principal component analysis (PCA) was
used to auto extraction of features and reduce the data dimension. The extracted principal
component features will be used for training machine-learning models.

3. Data Preparation
3.1. Experimental Setup

Figure 2 shows the experimental setup of the electromagnetic testing system. The
signal processing circuit and sensor probe were attached to an XY-stage scanner to scan
entire rivets on the specimen. The XY-stage scanner triggers the acquisition device with
respect to the scan step of 0.5 mm at a scan speed of 32 mm/s. The lift-off was maintained
at 0.3 mm during scanning using four wheels on the sensor probe. The Hall sensor array
has 64 InSb elements arrayed at an interval of 0.52 mm. The magnetic source was excited
with a current amplitude of 0.1 A and a frequency of 900 Hz. The skin depth was about
3.2 mm, enough to penetrate the two layers specimen (each layer has a 1.27 mm thickness).
The output voltage of the Hall sensors was high-pass filtered at 284 Hz and amplified at
60 dB. The numbers of high-pass filters, amplifiers, and RMS circuits are the same as the
number of Hall sensors, 64. The signal is then digitalized with a 2.441 mV/bit resolution
by a NI-PCI 6071E device [21,22]. The detailed specifications of the components are shown
in Table 1.
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Figure 2. Experimental setup of electromagnetic testing on a two-layer aluminum specimen:
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specimen, and (c) Hall sensor array on the sensor probe.

Table 1. Properties of components in the electromagnetic testing system.

Components Properties

Sensor probe

Core
Thin slices: 10
Material: Silicon steel
Size: 13 × 20 × 50 mm (inner dia., outer dia., height)

Coil

Turns: 1220
Copper wire: 0.2 mm diameter
Current supply: 0.1 A
Frequency: 900 Hz

Hall sensor array
Hall elements: 64 InSb
Element interval: 0.52 mm
Length: 33.28 mm

Signal processing

High-pass filter
Type: RC
Cut-off frequency: 284 Hz
To remove low-frequency noise signal

Amplifier
Differential type: INA128
No. of elements: 64
Gain: 60 dB

RMS circuits AD8436 chipset
No. of elements: 64

ADC

Device: NI-PCI 6071E
Channels: 64
Resolutions: 12-bit, 2.441 mV/bit
Sampling rate: 1.25 MS/s
Sampling trigger at each 0.5 mm from XY-stage scanner

Specimen & Corrosion

Specimen
Two aluminum alloy layers (Al 2024)
Size: 300 × 300 × 1.27 mm
No. of Rivets: 25 (AN426 AD-5-6, Air Force and Navy standard)

Artificial Corrosion

No. of corrosion: 25
Diameters: 6, 8, 10, 12, 14 mm
Depths: 0.1, 0.3, 0.6, 0.9, 1.27 mm (Through)
Volumes: 2.8~195.4 mm3

On rivet sites of the second layer
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There are two specimens with and without artificial hidden corrosion. Each specimen
has two aluminum (Al 2024) layers and 25 rivets. The rivets are commercial aircraft
countersunk rivets (AN 426 AD-5-6) with diameters of the head and shank of 5.85 and
3.95 mm, respectively. Artificial corrosion was fabricated on the riveting site of the upside
surface of the second layer with diameters of 6.0, 8.0, 10.0, 12.0, 14.0 mm and depths of
0.1, 0.3, 0.6, 0.9, 1.27 mm. Thus, there are 25 distinguish volumes of corrosion. The sketch
of the rivet with hidden corrosion on the second layer is shown in Figure 3. During the
experiment, the corrosive specimen was rotated at 0◦, 90◦, 180◦, and 270◦ such that the
corrosion was on the four sides of the scanning direction, which are forward, backward,
left, and right side. Thus, it is needed to detect corrosion and determine the location of the
corrosion. The no-corrosion specimen was rotated at 0◦ and 90◦ only. With each rotation,
the experiment was repeated four times, and each scan could cover three rivets. Thus,
in total, there are 720 scanned images of rivets, including 480 rivets with corrosion and
240 rivets without corrosion [22].
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3.2. Data Preparation

As described in the previous section, each scan of the sensor probe could cover a
few rivets according to the scan length of the scanner (e.g., three rivets); therefore, it is
necessary to separate each rivet data before detection of corrosion. It is observed that the
rivet signal has high intensity, so it is easy to detect and separate the rivet by the peak
detection algorithm [22]. However, the rivet is not always at the center of the scanned
image, and the total number of images is only 720. Thus, random shifting of the magnetic
image window around the rivet increases the number of magnetic images. The magnetic
image window was set with a size of 56 × 80 pixels with respect to 30 × 40 mm (in sensor
length × scan direction), which is shorter than the sensor length (64 pixels) but enough
to cover the entire the rivet. Finally, there are 18,000 magnetic images in the dataset. For
performing feature extraction by PCA and machine learning algorithm, the dataset was
transformed into two dimensions, which has a size of 18,000 × 4480. There are five classes
of the rivet, which have no corrosion, forward, backward, left, and right corrosion.

Figure 4 shows samples of scanned magnetic images of the rivet with and without
corrosion. The data have removed the offset by subtracting the first line scan data, as
described in Equation (4). The rivet signal has two peaks with high intensity. With large
corrosion in Figure 4 (e.g., Ø10 × d0.9), the corrosion signal could be observed clearly.
However, when the corrosion size is small, it is hard to recognize the corrosion signal and
be buried in the high-intensity signal of the rivet, as observed in Figure 5. The corrosion
signal quickly decreases as the depth and diameter decrease.

V(i, j) = VRMS(i, j)− VRMS(i, 0) (4)

where VRMS(i, j) is the root-mean-square voltage of the Hall sensor element i-th at scan
index j; VRMS(i, 0) is the root-mean-square voltage of the Hall sensor element i-th at the
first scan index. This is known as offset voltage, and V(i, j) is the processed voltage after
offset subtraction of the sensor i-th at scan index j.
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One of the big challenges when applying machine learning techniques in electro-
magnetic testing is the limited amount of data for training the machine-learning models.
Thus, we evaluate three training/validation dataset splitting strategies which are “mixing”,
“increasing”, and “shifting”, as described in Figure 6. In the “mixing” strategy, the train-
ing/validation dataset has a ratio of 80/20 as the normal splitting approach. There is a total
of 25 distinguished corrosions: 20 corrosions for training and 5 corrosions for validation.
The number of corrosions in the training dataset increases from a low volume to a high
volume in the “increasing” strategy. Each increasing step is 20% of the total corrosion with
respect to 5 distinguished volumes. There are four increasing steps, which are 20%, 40%,
60%, and 80%, of volumes for training and the remaining for validation. In the “shifting”
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strategy, the training dataset is fixed with only 20% of the total samples, but the volume is
shifted from small to large size P1~5. The detailed splitting dataset is shown in Table 2.
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Figure 6. Training/validation dataset split strategies based on corrosion volume to evaluate the
performance of machine learning algorithms: selection of corrosion for training dataset with 20%
data of the entire volumes (mixing), 20% corrosion shifting from low to high volumes (Pi=1:5), and
increasing volumes from low to high (20~80%).

Table 2. Dataset splitting strategy and its corresponding amount of data and distinguished volumes.

Data Splitting Strategy
Training Dataset

(The Remained Data Is in the Validation Dataset)

Amount of Data Distinguished Volumes

Mixing 80% of data 5 volumes selected from small to large with a step of 5

Increasing 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% of data With respect to 2, 5, 7, 10, 12, 15, 17, 20 volumes increasing from
small to large

Shifting Fixed 20% of data for all shifting ranges Volume in a range: P1, P2, P3, P4, P5

4. Machine Learning Algorithms
4.1. Principal Component Analysis (PCA)

PCA is a data-driven feature-extraction method. High dimensional data could be
efficiently compressed into low dimensional data with less information loss. Our magnetic
dataset has a high number of features (e.g., 4480 features) which are the pixels of the
magnetic image. Therefore, reducing the number of features before feeding to classification
models is necessary. Suppose the dataset has a size of M × N; where M and N are the
number of magnetic images and number of features, respectively. The dataset is then
normalized to scale the features in a similar range, as described by Equations (5) and (6).
The covariance matrix R is computed, as described in Equation (8), and its eigenvalues
(λ = diag(S)) and eigenvectors (U, H) are obtained by the singular vector decomposition
method, as described in Equation (8). The collection of eigenvectors is a new orthogonal
space of the data. Thus, the projected data, which is the projection of the normalized data
on these eigenvectors, are new feature data, as described in Equation (9). The number of
new features is the same as the number of selected eigenvectors selected by eigenvalues.
Usually, the eigenvalues are sorted in descent order for easier selection, and the high value
of an eigenvalue represents a high value of data. The retained information of data could be
estimated by the cumulative explained variance (E), as expressed by Equation (10).

Vm(i, j) = V(i, j)− 1
M ∑M

j=1 V(i, j), (5)
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with i = 1 : SN, j = 1 : M.

Vnorm(i, j) =
Vm(i, j)

ε +
√

1
M ∑M

j=1 V2
m(i, j)

, (6)

with i = 1 : SN, j = 1 : M; ε is a small number to prevent zero division.

R =
1
M

VT
norm·Vnorm (7)

R = USHT (8)

zk = UT
k Xnorm

with k is the k-th features selected by eigenvalue λk.
(9)

E =
∑K

k=1 λk

∑N
k=1 λk

λ = diag(S). (10)

where i and j are the sensor element index and scan index, respectively; Vm is the Hall
voltage after mean subtraction; Vnorm is the normalized Hall voltage; R is the covariance
matrix of Hall voltage Vnorm; U and V are left and right eigenvectors, respectively; λk is the
k-th eigenvalue, λ = diag(S); zk is the projection of data on the k-th eigenvector; and E is the
cumulative explained variance.

Figure 7 shows the distribution of data on the first three orthogonal vectors (three
principal components). Backward and forward corrosions could be distinguished from
the others. However, left and right corrosions were mixed with no corrosion. Thus, it
requires more components to be used for better classification. This is reasonable because
the cumulative explained variance of the three principal components is only about 43%.
The cumulative explained variance quickly increases as the number of principal compo-
nents increases, as observed in Figure 8. The cumulative explained variance approaches
100% with just less than 100 principal components. Thus, the features of the data were
significantly reduced (e.g., 4480 to less than 100).
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4.2. Support Vector Machine (SVM)

SVM is an efficient learning algorithm being used in classification problems. SVM
mapped nonlinear data into a high-dimensional feature space and separated the data by
maximizing the hyperplane boundaries. SVM maximizes the gap between data points
with hyperplane boundaries, which is the support vectors. SVM originally solved binary
classification (classify two classes labeled +1 and −1) and could be extended to multi-
classes classification by combining multiple binary classifiers. Thus, this section presents
key points of the SVM method for binary classification.

Giving a training dataset D = {(xi, yi)} with i = 1, 2, 3, . . . , m, xi ∈ Rn and yi = ±1,
our goal is to find a hyperplane parameterized by ω ∈ Rh and b ∈ R such that it correctly
separates most of the samples. The hyperplane is formulated by Equation (11), where g(.)
is a nonlinear equation mapping the input into a high dimensional space. SVM minimizes
the loss function L to maximize the margin between the hyperplanes and data points, as
described by Equation (11).

h(x) = ωT ·g(x) + b = 0 (11)

min
{

L = 1
2 ωTω + C ∑n

i=1 ϑi

}
subject to : yi

(
ωT ·g(x) + b

)
≥ 1− ϑi, with ϑi ≥ 0, i = 1, 2, . . . , m

(12)

where C is the regulation factor and ϑi is imperfection allowed error from the data point i to
the hyperplane. To solve the optimization problem, Lagrange multiplier method could be
used, which is described by Equation (13); where α and β are the Lagrange multiplier. The
decision function is then could be calculated by Equation (13); where K(x, xi) is the kernel
function. Some common kernel functions are linear, polynomial, radial basic function,
and multilayer perceptron [19]. To find hyperparameters of C and K, we used the grid
search method.

Γ = L−∑m
i=1 αi(yi[ω

T ·g(x) + b]− 1 + ϑi)−∑n
i=1 βiϑi (13)

h(x) = ∑m
i=1 αiK(x, xi) + b (14)

Figure 9 shows the validation accuracy of “mixing” datasets using the SVM with
the different number of principal components (PCs). The optimum kernel is a linear
K(x, xi) = xTx. As the number of PCs increases from 1 to 45, the classification accuracy
quickly increases. The accuracy reaches its maximum at about 97%, with the number of
PCs over 45. This is reasonable because the cumulative explained variance E increases as
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the number of PCs increases. Thus, we could use a few features (99% of E is used in the
later results) to train the machine-learning models.
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4.3. Classification Results

Figure 9 shows the confusion matrix of the SVM model with “mixing” validation
dataset. The cumulative explained variance E was set at 99% with respect to 53 PCs. The
results show a good classification with 96.33%, 99.29%, 98.57%, 94.43%, and 100% for no
corrosion, backward, forward, left, and right corrosion. The lowest accuracy is for the left
corrosion (94.43%), but the wrong prediction is mostly backward corrosion, which is also
corrosion near a location. The average accuracy of the model is 97.17%. Figure 10 shows
the probability of the prediction for each type of corrosion of the validation dataset. The
probability increases as the corrosion volume increase. The average probability is over 90%,
with the volume over 25 mm3.
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The SVM model provides good classification accuracy with a large training dataset
ratio (80% of the entire dataset). Thus, we will evaluate the model with a smaller training
dataset. Datasets “increasing” and “shifting” are used. The “increasing” dataset provides
the increasing number of samples in the training dataset from 10% to 80% of the entire
dataset, and the “shifting” dataset provides a fixed ratio of 20% of the entire dataset but
with a different range of volume from small to large, as described in Table 2. We performed
several other machine-learning models, which are Naïve Bayes (NB), K-nearest Neighbor
(KNN), Random Forest (RF), and Logistic Regression (LG) classifiers. Figure 11 shows the
classification accuracy of the five machine-learning models with the two training datasets.
With the increasing number of training datasets from 10% to 40%, the model accuracy
quickly increased from 46% to 95%, as shown in Figure 11a. Then, the accuracy slowly
increases as the training dataset is larger. The maximum accuracy was about 99%, with
a 60–80% ratio of the training dataset using the SVM method. The LG method provides
slightly smaller accuracy than the SVM method. The KNN and RF methods provide similar
accuracy. The NB method provides the worst performance. While keeping the same ratio
of 20% and shifting the volume ranges from small to large in the “shifting” dataset, the
accuracy of the machine-learning model increased, peaked at range P2 (volume in from
15.0 to 25.4 mm3), and decreased as the volume range increased.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 17 
 

The SVM model provides good classification accuracy with a large training dataset 
ratio (80% of the entire dataset). Thus, we will evaluate the model with a smaller training 
dataset. Datasets “increasing” and “shifting” are used. The “increasing” dataset provides 
the increasing number of samples in the training dataset from 10% to 80% of the entire 
dataset, and the “shifting” dataset provides a fixed ratio of 20% of the entire dataset but 
with a different range of volume from small to large, as described in Table 2. We per-
formed several other machine-learning models, which are Naïve Bayes (NB), K-nearest 
Neighbor (KNN), Random Forest (RF), and Logistic Regression (LG) classifiers. Figure 11 
shows the classification accuracy of the five machine-learning models with the two train-
ing datasets. With the increasing number of training datasets from 10% to 40%, the model 
accuracy quickly increased from 46% to 95%, as shown in Figure 11a. Then, the accuracy 
slowly increases as the training dataset is larger. The maximum accuracy was about 99%, 
with a 60–80% ratio of the training dataset using the SVM method. The LG method pro-
vides slightly smaller accuracy than the SVM method. The KNN and RF methods provide 
similar accuracy. The NB method provides the worst performance. While keeping the 
same ratio of 20% and shifting the volume ranges from small to large in the “shifting” 
dataset, the accuracy of the machine-learning model increased, peaked at range P2 (vol-
ume in from 15.0 to 25.4 mm3), and decreased as the volume range increased. 

 
Figure 11. Validation accuracy of different machine-learning models with: (a) a different number of 
training datasets (ratio with entire dataset) in “increasing” dataset and (b) fixed 20% ratio at differ-
ent corrosion volume ranges in “shifting” dataset. 

4.4. Probability of Detection 
This section shows the probability of detection (POD) of the SVM method. As the 

results in the previous section show, machine-learning models such as SVM, LG, RF, and 
KNN show good classification performance in the detection of corrosion and its location. 
Thus, it is feasible to evaluate the performance of the machine-learning models with a 
small amount of data and/or small corrosion sizes. Thus, in this section, we only use 20% 
of the dataset for training the SVM model and with the corrosion volumes in a small range 
of 15.0 to 25.4 mm3 (P2). 

Figure 12 shows the classification results of the corrosion using SVM method. The 
SVM method provides good results on the unseen validation dataset (80% of the total 
dataset). The average accuracy is 89.48%, with the accuracy of no corrosion, backward, 
forward, left, and right corrosion being 99.17%, 89.56%, 85.42%, 79.17%, and 91.67%, re-
spectively. The rivets without corrosion are the easiest to detect (99%), and the rivets with 
corrosion are harder. Among the corrosion, right corrosion is the easiest to detect with 
92% accuracy. The forward corrosion has low accuracy, but its wrongly classified labels 
were on the left and right corrosion (10%), and only 6% (just after right corrosion with 4%) 

Figure 11. Validation accuracy of different machine-learning models with: (a) a different number of
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4.4. Probability of Detection

This section shows the probability of detection (POD) of the SVM method. As the
results in the previous section show, machine-learning models such as SVM, LG, RF, and
KNN show good classification performance in the detection of corrosion and its location.
Thus, it is feasible to evaluate the performance of the machine-learning models with a small
amount of data and/or small corrosion sizes. Thus, in this section, we only use 20% of the
dataset for training the SVM model and with the corrosion volumes in a small range of 15.0
to 25.4 mm3 (P2).

Figure 12 shows the classification results of the corrosion using SVM method. The SVM
method provides good results on the unseen validation dataset (80% of the total dataset).
The average accuracy is 89.48%, with the accuracy of no corrosion, backward, forward, left,
and right corrosion being 99.17%, 89.56%, 85.42%, 79.17%, and 91.67%, respectively. The
rivets without corrosion are the easiest to detect (99%), and the rivets with corrosion are
harder. Among the corrosion, right corrosion is the easiest to detect with 92% accuracy.
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The forward corrosion has low accuracy, but its wrongly classified labels were on the left
and right corrosion (10%), and only 6% (just after right corrosion with 4%) corrosion was
incorrectly classified as no corrosion. The F1 score is a harmonic factor between precision
and recall of the classification system. The F1 score is better for evaluating the performance
of the model and its results for each class of corrosion, as shown in Figure 12b and Table 3.
The F1 score for backward, forward, left, and right corrosion was 89.9%, 91.53%, 86.36%,
and 93.62%, respectively. The F1 scores for right and forward corrosion are the highest
values, which means that the right and forward corrosion are easier to detect than the other
ones. The area under the curve (AUC) of the forward, backward, left, and right corrosion
was 98.45%, 96.52%, 98.58%, and 95.88%, respectively, which are high values. The highest
value is for the right corrosion. The AUC value tells us that the right corrosion is the easiest
to detect by the model.
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Table 3. Evaluation metrics and comparison of the proposed method with the SoA method [22].

Corrosion
SoA Method [22] SVM Using 20% Data for Training

Accuracy F1 Score AUC Accuracy F1 Score AUC

Backward 60.0 89.58 89.58 89.58 89.90 98.45
Forward 56.0 85.42 85.42 85.42 91.53 96.52

Right 64.0 91.67 91.67 91.67 93.62 98.58
Left 61.0 80.21 80.21 80.21 86.36 95.88

The comparison of the classification accuracy, F1 score, and AUC of the SVM method
with the previous study using “sum of area” feature (SoA) [22] is shown in Table 3. The
SVM method significantly improves the classification results, which are 26.47%, 3.3%, and
10.64% of the accuracy, F1 score, and AUC, respectively. The ROC of the SVM and the SoA
feature method are shown in Figure 13. It is observed that the SVM provides significant
results compared to the SoA feature method.
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Figure 13. Receiver operating characteristic (ROC) of the SVM method and the SoA method. The
SVM model uses 20% data for training at a small volume range (P2:15.0 to 25.4 mm3).

Figure 14 shows the POD curves of the SVM method compared to the SoA feature
method. The parameters of the POD curves were calculated by mh1823 POD software
V4.0.1 developed by Charles Annis [26] based on the MIL-HDBK methodology. The POD
calculation was based on hit–miss data (hit = “1”, miss = “0”) using the logit model. The
POD curves show that the SVM method is better than the SoA feature method, which
increases the POD of small corrosion size. The corrosion with a volume of 48.08, 24.85, 63.16,
and 41.53 mm3 for forward, backward, left, and right corrosion could be detected with a
90% POD and 95% confidence boundary (a90/95), while those corrosion volumes were 96.24,
83.41, 101.90, 46.36 mm3 for forward, backward, left, and right corrosion, respectively. The
detailed POD characters are shown in Table 4. It is noted that the SVM model was trained
with only 20% of the corrosion at a small volume range (15.0 to 25.4 mm3).
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Table 4. Probability of detection results.

Corrosion
SoA Method [22] SVM Using 20% Data for Training

a90 a90/95 a90 a90/95

Backward 51.91 96.24 36.55 48.08
Forward 46.65 83.41 16.02 24.85

Right 30.53 46.35 31.08 41.53
Left 56.55 101.90 50.92 63.16

5. Conclusions

This paper proposes a detection of hidden corrosion at the riveting site in a multilayer
structure method using electromagnetic testing and machine learning. The electromagnetic
testing system uses a Hall sensor array for measuring the distribution of the electromag-
netic field of the rivet and hidden corrosion in a multilayer structure. Machine learning
algorithms were used to enhance the detectability of the hidden corrosion. PCA was used
to auto-extract features of electromagnetic signal; e.g., it significantly reduces the number
of features from 4480 to 53 while keeping 99% of the signal information. Then, machine
learning classifiers such as SVM, LG, RF, KNN, and Naïve Bayes were used to detect both
the presence of the hidden corrosion and its location around the rivet (forward, backward,
left, and right position). Among the classifiers, SVM shows the best performance, which
provides an accuracy of about 99% with 60–80% data for training.

The SVM method was also evaluated with a smaller amount of data for training
(e.g., only 20%) at small sizes of corrosion (e.g., 15.0 to 25.4 mm3 volume). The SVM method
provides an 89.48% average accuracy, which is over 26.47% compared to the previous SoA
feature method. Among the different locations of corrosion, the right corrosion is the easiest
to detect (91.67% of accuracy). In addition, the POD of the system was also improved using
the SVM method. The system could detect backward, forward, left, and right corrosion
with a POD of 90% and confidence of 95% (a90/95) for a volume of 48.08, 24.85, 41.53,
63.16 mm3, respectively. The results also suggest that we should train the machine-learning
model with small corrosions rather than training with large corrosions. Once the model
is trained well with small corrosions, it will be easy to detect large corrosion. However, it
should not be so small that the model could be underfitting since it is hard to detect very
small corrosion.
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