Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = right-tail Anderson–Darling estimation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 600 KiB  
Article
Advanced Lifetime Modeling Through APSR-X Family with Symmetry Considerations: Applications to Economic, Engineering and Medical Data
by Badr S. Alnssyan, A. A. Bhat, Abdelaziz Alsubie, S. P. Ahmad, Abdulrahman M. A. Aldawsari and Ahlam H. Tolba
Symmetry 2025, 17(7), 1118; https://doi.org/10.3390/sym17071118 - 11 Jul 2025
Viewed by 196
Abstract
This paper introduces a novel and flexible class of continuous probability distributions, termed the Alpha Power Survival Ratio-X (APSR-X) family. Unlike many existing transformation-based families, the APSR-X class integrates an alpha power transformation with a survival ratio structure, offering a new mechanism for [...] Read more.
This paper introduces a novel and flexible class of continuous probability distributions, termed the Alpha Power Survival Ratio-X (APSR-X) family. Unlike many existing transformation-based families, the APSR-X class integrates an alpha power transformation with a survival ratio structure, offering a new mechanism for enhancing shape flexibility while maintaining mathematical tractability. This construction enables fine control over both the tail behavior and the symmetry properties, distinguishing it from traditional alpha power or survival-based extensions. We focus on a key member of this family, the two-parameter Alpha Power Survival Ratio Exponential (APSR-Exp) distribution, deriving essential mathematical properties including moments, quantile functions and hazard rate structures. We estimate the model parameters using eight frequentist methods: the maximum likelihood (MLE), maximum product of spacings (MPSE), least squares (LSE), weighted least squares (WLSE), Anderson–Darling (ADE), right-tailed Anderson–Darling (RADE), Cramér–von Mises (CVME) and percentile (PCE) estimation. Through comprehensive Monte Carlo simulations, we evaluate the estimator performance using bias, mean squared error and mean relative error metrics. The proposed APSR-X framework uniquely enables preservation or controlled modification of the symmetry in probability density and hazard rate functions via its shape parameter. This capability is particularly valuable in reliability and survival analyses, where symmetric patterns represent balanced risk profiles while asymmetric shapes capture skewed failure behaviors. We demonstrate the practical utility of the APSR-Exp model through three real-world applications: economic (tax revenue durations), engineering (mechanical repair times) and medical (infection durations) datasets. In all cases, the proposed model achieves a superior fit over that of the conventional alternatives, supported by goodness-of-fit statistics and visual diagnostics. These findings establish the APSR-X family as a unique, symmetry-aware modeling framework for complex lifetime data. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

23 pages, 422 KiB  
Article
A Novel Alpha-Power X Family: A Flexible Framework for Distribution Generation with Focus on the Half-Logistic Model
by A. A. Bhat , Aadil Ahmad Mir , S. P. Ahmad , Badr S. Alnssyan , Abdelaziz Alsubie  and Yashpal Singh Raghav
Entropy 2025, 27(6), 632; https://doi.org/10.3390/e27060632 - 13 Jun 2025
Viewed by 399
Abstract
This study introduces a new and flexible class of probability distributions known as the novel alpha-power X (NAP-X) family. A key development within this framework is the novel alpha-power half-logistic (NAP-HL) distribution, which extends the classical half-logistic model through an alpha-power transformation, allowing [...] Read more.
This study introduces a new and flexible class of probability distributions known as the novel alpha-power X (NAP-X) family. A key development within this framework is the novel alpha-power half-logistic (NAP-HL) distribution, which extends the classical half-logistic model through an alpha-power transformation, allowing for greater adaptability to various data shapes. The paper explores several theoretical aspects of the proposed model, including its moments, quantile function and hazard rate. To assess the effectiveness of parameter estimation, a detailed simulation study is conducted using seven estimation techniques: Maximum likelihood estimation (MLE), Cramér–von Mises estimation (CVME), maximum product of spacings estimation (MPSE), least squares estimation (LSE), weighted least squares estimation (WLSE), Anderson–Darling estimation (ADE) and a right-tailed version of Anderson–Darling estimation (RTADE). The results offer comparative insights into the performance of each method across different sample sizes. The practical value of the NAP-HL distribution is demonstrated using two real datasets from the metrology and engineering domains. In both cases, the proposed model provides a better fit than the traditional half-logistic and related distributions, as shown by lower values of standard model selection criteria. Graphical tools such as fitted density curves, Q–Q and P–P plots, survival functions and box plots further support the suitability of the model for real-world data analysis. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

26 pages, 517 KiB  
Article
Enhanced Estimation of the Unit Lindley Distribution Parameter via Ranked Set Sampling with Real-Data Application
by Sid Ahmed Benchiha, Amer Ibrahim Al-Omari and Ghadah Alomani
Mathematics 2025, 13(10), 1645; https://doi.org/10.3390/math13101645 - 17 May 2025
Viewed by 333
Abstract
This paper investigates various estimation methods for the parameters of the unit Lindley distribution (U-LD) under both ranked set sampling (RSS) and simple random sampling (SRS) designs. The distribution parameters are estimated using the maximum likelihood estimation, ordinary least squares, weighted least squares, [...] Read more.
This paper investigates various estimation methods for the parameters of the unit Lindley distribution (U-LD) under both ranked set sampling (RSS) and simple random sampling (SRS) designs. The distribution parameters are estimated using the maximum likelihood estimation, ordinary least squares, weighted least squares, maximum product of spacings, minimum spacing absolute distance, minimum spacing absolute log-distance, minimum spacing square distance, minimum spacing square log-distance, linear-exponential, Anderson–Darling (AD), right-tail AD, left-tail AD, left-tail second-order, Cramér–von Mises, and Kolmogorov–Smirnov. A comprehensive simulation study is conducted to assess the performance of these estimators, ensuring an equal number of measuring units across both designs. Additionally, two real datasets of items failure time and COVID-19 are analyzed to illustrate the practical applicability of the proposed estimation methods. The findings reveal that RSS-based estimators consistently outperform their SRS counterparts in terms of mean squared error, bias, and efficiency across all estimation techniques considered. These results highlight the advantages of using RSS in parameter estimation for the U-LD distribution, making it a preferable choice for improved statistical inference. Full article
Show Figures

Figure 1

26 pages, 504 KiB  
Article
Inverse Unit Teissier Distribution: Theory and Practical Examples
by Najwan Alsadat, Mohammed Elgarhy, Kadir Karakaya, Ahmed M. Gemeay, Christophe Chesneau and M. M. Abd El-Raouf
Axioms 2023, 12(5), 502; https://doi.org/10.3390/axioms12050502 - 20 May 2023
Cited by 16 | Viewed by 2333
Abstract
In this paper, we emphasize a new one-parameter distribution with support as [1,+). It is constructed from the inverse method applied to an understudied one-parameter unit distribution, the unit Teissier distribution. Some properties are investigated, such as [...] Read more.
In this paper, we emphasize a new one-parameter distribution with support as [1,+). It is constructed from the inverse method applied to an understudied one-parameter unit distribution, the unit Teissier distribution. Some properties are investigated, such as the mode, quantiles, stochastic dominance, heavy-tailed nature, moments, etc. Among the strengths of the distribution are the following: (i) the closed-form expressions and flexibility of the main functions, and in particular, the probability density function is unimodal and the hazard rate function is increasing or unimodal; (ii) the manageability of the moments; and, more importantly, (iii) it provides a real alternative to the famous Pareto distribution, also with support as [1,+). Indeed, the proposed distribution has different functionalities but also benefits from the heavy-right-tailed nature, which is demanded in many applied fields (finance, the actuarial field, quality control, medicine, etc.). Furthermore, it can be used quite efficiently in a statistical setting. To support this claim, the maximum likelihood, Anderson–Darling, right-tailed Anderson–Darling, left-tailed Anderson–Darling, Cramér–Von Mises, least squares, weighted least-squares, maximum product of spacing, minimum spacing absolute distance, and minimum spacing absolute-log distance estimation methods are examined to estimate the unknown unique parameter. A Monte Carlo simulation is used to compare the performance of the obtained estimates. Additionally, the Bayesian estimation method using an informative gamma prior distribution under the squared error loss function is discussed. Data on the COVID mortality rate and the timing of pain relief after receiving an analgesic are considered to illustrate the applicability of the proposed distribution. Favorable results are highlighted, supporting the importance of the findings. Full article
Show Figures

Figure 1

24 pages, 1290 KiB  
Article
An Efficient Stress–Strength Reliability Estimate of the Unit Gompertz Distribution Using Ranked Set Sampling
by Najwan Alsadat, Amal S. Hassan, Mohammed Elgarhy, Christophe Chesneau and Rokaya Elmorsy Mohamed
Symmetry 2023, 15(5), 1121; https://doi.org/10.3390/sym15051121 - 20 May 2023
Cited by 26 | Viewed by 1979
Abstract
In this paper, the estimation of the stress–strength reliability is taken into account when the stress and strength variables have unit Gompertz distributions with a similar scale parameter. The consideration of the unit Gompertz distribution in this context is because of its intriguing [...] Read more.
In this paper, the estimation of the stress–strength reliability is taken into account when the stress and strength variables have unit Gompertz distributions with a similar scale parameter. The consideration of the unit Gompertz distribution in this context is because of its intriguing symmetric and asymmetric properties that can accommodate various histogram proportional-type data shapes. As the main contribution, the reliability estimate is determined via seven frequentist techniques using the ranked set sampling (RSS) and simple random sampling (SRS). The proposed methods are the maximum likelihood, least squares, weighted least squares, maximum product spacing, Cramér–von Mises, Anderson–Darling, and right tail Anderson–Darling methods. We perform a simulation work to evaluate the effectiveness of the recommended RSS-based estimates by using accuracy metrics. We draw the conclusion that the reliability estimates in the maximum product spacing approach have the lowest value compared to other approaches. In addition, we note that the RSS-based estimates are superior to those obtained by a comparable SRS approach. Additional results are obtained using two genuine data sets that reflect the survival periods of head and neck cancer patients. Full article
(This article belongs to the Special Issue Symmetry in Statistics and Data Science, Volume 2)
Show Figures

Figure 1

24 pages, 5283 KiB  
Article
Statistical Features and Estimation Methods for Half-Logistic Unit-Gompertz Type-I Model
by Anum Shafiq, Tabassum Naz Sindhu, Sanku Dey, Showkat Ahmad Lone and Tahani A. Abushal
Mathematics 2023, 11(4), 1007; https://doi.org/10.3390/math11041007 - 16 Feb 2023
Cited by 12 | Viewed by 2059
Abstract
In this study, we propose a new three-parameter lifetime model based on the type-I half-logistic G family and the unit-Gompertz model, which we named the half-logistic unit Gompertz type-I distribution. The key feature of such a novel model is that it adds a [...] Read more.
In this study, we propose a new three-parameter lifetime model based on the type-I half-logistic G family and the unit-Gompertz model, which we named the half-logistic unit Gompertz type-I distribution. The key feature of such a novel model is that it adds a new tuning parameter to the unit-Gompertz model using the type-I half-logistic family in order to make the unit-Gompertz model more flexible. Diagrams and numerical results are used to look at the new model’s mathematical and statistical aspects. The efficiency of estimating the distribution parameters is measured using a variety of well-known classical methodologies, including Anderson–Darling, maximum likelihood, least squares, weighted least squares, right tail Anderson–Darling, and Cramer–von Mises estimation. Finally, using the maximum likelihood estimation method, the flexibility and ability of the proposed model are illustrated by means of re-analyzing two real datasets, and comparisons are provided with the fit accomplished by the unit-Gompertz, Kumaraswamy, unit-Weibull, and Kumaraswamy beta distributions for illustrative purposes. Full article
(This article belongs to the Special Issue Probability, Statistics and Their Applications 2021)
Show Figures

Figure 1

23 pages, 3559 KiB  
Article
The Power Zeghdoudi Distribution: Properties, Estimation, and Applications to Real Right-Censored Data
by Khaoula Aidi, Amer Ibrahim Al-Omari and Rehab Alsultan
Appl. Sci. 2022, 12(23), 12081; https://doi.org/10.3390/app122312081 - 25 Nov 2022
Cited by 6 | Viewed by 1785
Abstract
A new two-parameter power Zeghdoudi distribution (PZD) is suggested as a modification of the Zeghdoudi distribution using the power transformation method. As a result, the PZD may have increasing, decreasing, and unimodal probability density function and decreasing mean residual life function. In addition, [...] Read more.
A new two-parameter power Zeghdoudi distribution (PZD) is suggested as a modification of the Zeghdoudi distribution using the power transformation method. As a result, the PZD may have increasing, decreasing, and unimodal probability density function and decreasing mean residual life function. In addition, other properties are presented, such as moments, order statistics, reliability measures, Bonferroni and Lorenz curves, Gini index, stochastic ordering, mean and median deviations, and quantile function. Following this, a section is devoted to the related model parameters which are estimated using the maximum likelihood estimation method, the weighted least squares and least squares methods, the maximum product of spacing method, the Cramer–von Mises method, and the right-tail and left-tail Anderson–Darling methods, and the Nikulin–Rao–Robson test statistic is considered. A simulation study is conducted to assess these methods and to investigate the distribution properties with right-censored data. The applicability of the proposed model is studied based on three real data sets of failure times, bladder cancer patients, and glass fiber data with a comparison with such competitors as the gamma, xgamma, Lomax, Darna, power Darna, power Lindley, and exponentiated power Lindley models. According to several established criteria, the comparative findings are overwhelmingly favorable to the suggested model. Full article
(This article belongs to the Special Issue Applied Biostatistics & Statistical Computing)
Show Figures

Figure 1

17 pages, 1131 KiB  
Article
Reliability Properties of the NDL Family of Discrete Distributions with Its Inference
by Mohammed Mohammed Ahmed Almazah, Badr Alnssyan, Abdul Hadi N. Ahmed and Ahmed Z. Afify
Mathematics 2021, 9(10), 1139; https://doi.org/10.3390/math9101139 - 18 May 2021
Cited by 5 | Viewed by 2315
Abstract
The natural discrete Lindley (NDL) distribution is an intuitive idea that uses discrete analogs to well-known continuous distributions rather than using any of the published discretization techniques. The NDL is a flexible extension of both the geometric and the negative binomial distributions. In [...] Read more.
The natural discrete Lindley (NDL) distribution is an intuitive idea that uses discrete analogs to well-known continuous distributions rather than using any of the published discretization techniques. The NDL is a flexible extension of both the geometric and the negative binomial distributions. In the present article, we further investigate new results of value in the areas of both theoretical and applied reliability. To be specific, several closure properties of the NDL are proved. Among the results, sufficient conditions that maintain the preservation properties under useful partial orderings, convolution, and random sum of random variables are introduced. Eight different methods of estimation, including the maximum likelihood, least squares, weighted least squares, Cramér–von Mises, the maximum product of spacing, Anderson–Darling, right-tail Anderson–Darling, and percentiles, have been used to estimate the parameter of interest. The performance of these estimators has been evaluated through extensive simulation. We have also demonstrated two applications of NDL in modeling real-life problems, including count data. It is worth noting that almost all the methods have resulted in very satisfactory estimates on both simulated and real-world data. Full article
(This article belongs to the Special Issue Probability, Statistics and Their Applications 2021)
Show Figures

Figure 1

29 pages, 4007 KiB  
Article
Expanded Fréchet Model: Mathematical Properties, Copula, Different Estimation Methods, Applications and Validation Testing
by Mukhtar M. Salah, M. El-Morshedy, M. S. Eliwa and Haitham M. Yousof
Mathematics 2020, 8(11), 1949; https://doi.org/10.3390/math8111949 - 4 Nov 2020
Cited by 48 | Viewed by 2546
Abstract
The extreme value theory is expanded by proposing and studying a new version of the Fréchet model. Some new bivariate type extensions using Farlie–Gumbel–Morgenstern copula, modified Farlie–Gumbel–Morgenstern copula, Clayton copula, and Renyi’s entropy copula are derived. After a quick study for its properties, [...] Read more.
The extreme value theory is expanded by proposing and studying a new version of the Fréchet model. Some new bivariate type extensions using Farlie–Gumbel–Morgenstern copula, modified Farlie–Gumbel–Morgenstern copula, Clayton copula, and Renyi’s entropy copula are derived. After a quick study for its properties, different non-Bayesian estimation methods under uncensored schemes are considered, such as the maximum likelihood estimation method, Anderson–Darling estimation method, ordinary least square estimation method, Cramér–von-Mises estimation method, weighted least square estimation method, left-tail Anderson–Darling estimation method, and right-tail Anderson–Darling estimation method. Numerical simulations were performed for comparing the estimation methods using different sample sizes for three different combinations of parameters. The Barzilai–Borwein algorithm was employed via a simulation study. Three applications were presented for measuring the flexibility and the importance of the new model for comparing the competitive distributions under the uncensored scheme. Using the approach of the Bagdonavicius–Nikulin goodness-of-fit test for validation under the right censored data, we propose a modified chi-square goodness-of-fit test for the new model. The modified goodness-of-fit statistic test was applied for the right censored real data set, called leukemia free-survival times for autologous transplants. Based on the maximum likelihood estimators on initial data, the modified goodness-of-fit test recovered the loss in information while the grouping data and followed chi-square distributions. All elements of the modified goodness-of-fit criteria tests are explicitly derived and given. Full article
(This article belongs to the Special Issue Probability, Statistics and Their Applications)
Show Figures

Figure 1

26 pages, 3733 KiB  
Article
The Odd Exponentiated Half-Logistic Exponential Distribution: Estimation Methods and Application to Engineering Data
by Maha A. D. Aldahlan and Ahmed Z. Afify
Mathematics 2020, 8(10), 1684; https://doi.org/10.3390/math8101684 - 1 Oct 2020
Cited by 18 | Viewed by 2107
Abstract
In this paper, we studied the problem of estimating the odd exponentiated half-logistic exponential (OEHLE) parameters using several frequentist estimation methods. Parameter estimation provides a guideline for choosing the best method of estimation for the model parameters, which would be very important for [...] Read more.
In this paper, we studied the problem of estimating the odd exponentiated half-logistic exponential (OEHLE) parameters using several frequentist estimation methods. Parameter estimation provides a guideline for choosing the best method of estimation for the model parameters, which would be very important for reliability engineers and applied statisticians. We considered eight estimation methods, called maximum likelihood, maximum product of spacing, least squares, Cramér–von Mises, weighted least squares, percentiles, Anderson–Darling, and right-tail Anderson–Darling for estimating its parameters. The finite sample properties of the parameter estimates are discussed using Monte Carlo simulations. In order to obtain the ordering performance of these estimators, we considered the partial and overall ranks of different estimation methods for all parameter combinations. The results illustrate that all classical estimators perform very well and their performance ordering, based on overall ranks, from best to worst, is the maximum product of spacing, maximum likelihood, Anderson–Darling, percentiles, weighted least squares, least squares, right-tail Anderson–Darling, and Cramér–von-Mises estimators for all the studied cases. Finally, the practical importance of the OEHLE model was illustrated by analysing a real data set, proving that the OEHLE distribution can perform better than some well known existing extensions of the exponential distribution. Full article
(This article belongs to the Special Issue Statistics 2020)
Show Figures

Figure 1

20 pages, 2160 KiB  
Article
A New Extended Two-Parameter Distribution: Properties, Estimation Methods, and Applications in Medicine and Geology
by Hazem Al-Mofleh, Ahmed Z. Afify and Noor Akma Ibrahim
Mathematics 2020, 8(9), 1578; https://doi.org/10.3390/math8091578 - 12 Sep 2020
Cited by 35 | Viewed by 4185
Abstract
In this paper, a new two-parameter generalized Ramos–Louzada distribution is proposed. The proposed model provides more flexibility in modeling data with increasing, decreasing, J-shaped, and reversed-J shaped hazard rate functions. Several statistical properties of the model were derived. The unknown parameters of the [...] Read more.
In this paper, a new two-parameter generalized Ramos–Louzada distribution is proposed. The proposed model provides more flexibility in modeling data with increasing, decreasing, J-shaped, and reversed-J shaped hazard rate functions. Several statistical properties of the model were derived. The unknown parameters of the new distribution were explored using eight frequentist estimation approaches. These approaches are important for developing guidelines to choose the best method of estimation for the model parameters, which would be of great interest to practitioners and applied statisticians. Detailed numerical simulations are presented to examine the bias and the mean square error of the proposed estimators. The best estimation method and ordering performance of the estimators were determined using the partial and overall ranks of all estimation methods for various parameter combinations. The performance of the proposed distribution is illustrated using two real datasets from the fields of medicine and geology, and both datasets show that the new model is more appropriate as compared to the Marshall–Olkin exponential, exponentiated exponential, beta exponential, gamma, Poisson–Lomax, Lindley geometric, generalized Lindley, and Lindley distributions, among others. Full article
(This article belongs to the Special Issue Probability, Statistics and Their Applications)
Show Figures

Figure 1

17 pages, 454 KiB  
Article
A New Three-Parameter Exponential Distribution with Variable Shapes for the Hazard Rate: Estimation and Applications
by Ahmed Z. Afify and Osama Abdo Mohamed
Mathematics 2020, 8(1), 135; https://doi.org/10.3390/math8010135 - 16 Jan 2020
Cited by 56 | Viewed by 5658
Abstract
In this paper, we study a new flexible three-parameter exponential distribution called the extended odd Weibull exponential distribution, which can have constant, decreasing, increasing, bathtub, upside-down bathtub and reversed-J shaped hazard rates, and right-skewed, left-skewed, symmetrical, and reversed-J shaped densities. Some mathematical properties [...] Read more.
In this paper, we study a new flexible three-parameter exponential distribution called the extended odd Weibull exponential distribution, which can have constant, decreasing, increasing, bathtub, upside-down bathtub and reversed-J shaped hazard rates, and right-skewed, left-skewed, symmetrical, and reversed-J shaped densities. Some mathematical properties of the proposed distribution are derived. The model parameters are estimated via eight frequentist estimation methods called, the maximum likelihood estimators, least squares and weighted least-squares estimators, maximum product of spacing estimators, Cramér-von Mises estimators, percentiles estimators, and Anderson-Darling and right-tail Anderson-Darling estimators. Extensive simulations are conducted to compare the performance of these estimation methods for small and large samples. Four practical data sets from the fields of medicine, engineering, and reliability are analyzed, proving the usefulness and flexibility of the proposed distribution. Full article
Show Figures

Figure 1

Back to TopTop