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Abstract: In this study, we propose a new three-parameter lifetime model based on the type-I half-
logistic G family and the unit-Gompertz model, which we named the half-logistic unit Gompertz
type-I distribution. The key feature of such a novel model is that it adds a new tuning parameter to the
unit-Gompertz model using the type-I half-logistic family in order to make the unit-Gompertz model
more flexible. Diagrams and numerical results are used to look at the new model’s mathematical
and statistical aspects. The efficiency of estimating the distribution parameters is measured using a
variety of well-known classical methodologies, including Anderson–Darling, maximum likelihood,
least squares, weighted least squares, right tail Anderson–Darling, and Cramer–von Mises estimation.
Finally, using the maximum likelihood estimation method, the flexibility and ability of the proposed
model are illustrated by means of re-analyzing two real datasets, and comparisons are provided with
the fit accomplished by the unit-Gompertz, Kumaraswamy, unit-Weibull, and Kumaraswamy beta
distributions for illustrative purposes.

Keywords: half-logistic distribution; maximum likelihood estimation; unit-Gompertz model; least
square estimation; right tail Anderson–Darling estimation

MSC: 60E05; 62F08; 62F10

1. Introduction

Mazucheli et al. [1] proposed the unit-Gompertz (UG) model. The PDF of this model
can be unimodal, rising, reversed J-shaped, and negatively skewed, while its hazard rate
function can be upside-down bathtub, increasing, constant, or bathtub-shaped. One of the
benefits of the UG model over the Gompertz model is that it cannot model phenomena
such as the failure rate of an upside-down bathtub shape. Recently, in [2], the authors
considered the problem of estimating multicomponent stress–strength reliability based
on the UG model. Kumar et al. [3] studied the UG distribution based on inter-record
times and record values. Using the UG distributions with a common scale parameter,
Jha et al. [4] assessed the stress–strength reliability of multicomponent models under
progressive type-II censoring. Anis and De [5] studied some more properties of the UG
model. The CDF of the UG model is

F( z|β, λ) = exp
{
−λ
(

z−β − 1
)}

, λ, β > 0, (1)
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where z ∈ (0, 1), and β, λ > 0 are shape and scale parameters, respectively. Mazucheli et al. [1]
showed that UG provides better fits than the beta and Kumaraswamy distributions. It can
also be used as an effective model for fitting skewed data.

Of late, we have found a keen interest in deriving novel generators or general-
ized classes of univariate continuous models in order to enhance flexibility for study-
ing the tail behavior of a distribution. The generated models can be constructed by
combining a baseline model with one or more additional parameters. These gener-
ated models are quite significant in analyzing data in applied sciences, such as finance,
medicine, engineering, biomedical sciences, economics, public health, etc. Different meth-
ods for generating new models based on baseline continuous distribution G(z) were sug-
gested in recent years (for z ∈ R). The common generators are beta-G [6], gamma-G [7],
Kumaraswamy-G [8], Weibull X [9], odd-generalized exponential-G [10], Poisson odd-
generalized exponential-G [11], among others. Cordeiro et al. [12] introduced the type-I
half-logistic (TIHL-G) family, a novel G class of continuous models with an additional
parameter (φ > 0). The TIHL-G family’s CDF is described as

G(z; φ, Θ) =
1− [1− F(z; Θ)]φ

1 + [1− F(z; Θ)]φ
, φ > 0, z ∈ R. (2)

where G(z; φ, Θ) is a CDF of baseline continuous model based on the parametric vector (Θ).
With CDF (2), we can make the type-I half-logistic-G (TIHL-G) model for every baseline G.

The estimation of parameter(s) is an important aspect of studying any probability
distribution. Although it does not always produce the best estimators, the maximum
likelihood (ML) technique is typically a very well-liked estimate technique. Better estima-
tors can be obtained using other techniques, including those we are considering. In the
current study, besides MLE, we use five different techniques to estimate the parameters
of the HLUG-TI model: Cramér–von Mises estimation (CVME), least square estimation
(LSE), Anderson–Darling estimation (ADE), weighted least square estimation (WLSE), and
right-tail Anderson–Darling estimation (RTADE). Many authors have emphasized the use
of classical estimation methods in varied contexts to estimate the parameters of several
well-known models including distributions with unit interval support (Dey et al. [13,14]).
Despite the fact that many of these estimation methods exceed MLE estimates, they may
not have strong theoretical foundations.

In this study, our aim is to develop a novel model, named the “Half-Logistic Unit
Gompertz Type I” (HLUG-TI) model, where observations lie on a unit interval (0, 1), and
obtain some of its basic features. The suggested model can be considered an alternative
to unit-Gompertz, Kumaraswamy, unit-Weibull, and Kumaraswamy beta models. We are
captivated to introduce the HLUG-TI model because of the following reasons: (i) It has
been observed that survival time of units/systems are usually greater than zero. However,
the value of the components life cannot be taken as infinite. As there may be several points
lying within (0, ∞) where several units may be dropped or replaced in many applications,
(ii) it is efficient for modeling bathtub, increasing, unimodal and then bathtub hazard rates;
(iii) it can be used in variety of problems, such as public health, environment, etc.; and
(iv) two real data applications show that it performs well compared to other competing
lifetime models. Next, we evaluate and investigate the behavior of six various classical
estimators for the unknown parameters of the suggested HLUG-TI model, namely, LSE,
WLSE, MLE, ADE, CVME, and RTADE. The use of these procedures can lead to the selection
of a better estimation procedure that practitioners may find useful. Despite the fact that an
estimator’s utility and usefulness may differ depending on the subject matter, users look
for a particular estimator under different parameters and sample sizes. Due to the difficulty
of theoretically comparing these estimators, detailed simulations are conducted to assess
their performance in terms of bias and average mean squared error (MSE). The uniqueness
of this work is that none of these estimating approaches have previously been used in a
study of the HLUG-TI distribution.
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The following is the outline of the paper. Section 2 shows the HLUG-TI model
specifications. Section 3 includes several mixtures of representations of the main functions.
In Section 4, we endeavor to derive the HLUG-TI model’s key mathematical and statistical
characteristics. Analytical expressions of different techniques of estimation are provided
in Section 5. In Section 6, a simulation study is given. Section 7 provides a list of practical
applications. Section 8 contains closing remarks.

2. HLUG-TI Specifications

In this section, we derive the three-parameter HLUG-TI distribution. As described in
the introduction, the CDF of the HLUG-TI model with the vector of parameters
Θ̆ = {λ, β, φ} is obtained by inserting (1) into (2) and is given by

G(z; Θ̆) =
1−

[
1− exp

{
−λ
(
z−β − 1

)}]φ

1 +
[
1− exp

{
−λ
(
z−β − 1

)}]φ , z ∈ (0, 1). (3)

The corresponding PDF of (3) after differentiation is given as

g(z; Θ̆) =
2φβλz−β−1 exp

{
−λ
(
z−β − 1

)}[
1− exp

{
−λ
(
z−β − 1

)}]φ−1{
1 +

[
1− exp

{
−λ
(
z−β − 1

)}]φ
}2 . (4)

The survival function S(z) and hazard rate h(z) of the HLUG-TI are, respectively,
as follows:

S(z; Θ̆) =
2
[
1− exp

{
−λ
(
z−β − 1

)}]φ

1 +
[
1− exp

{
−λ
(
z−β − 1

)}]φ , (5)

and

h(z; Θ̆) =
φβλz−β−1 exp

{
−λ
(
z−β − 1

)}[
1− exp

{
−λ
(
z−β − 1

)}]{
1 +

[
1− exp

{
−λ
(
z−β − 1

)}]φ
} . (6)

The integrated HRF is an alternative name for the CHRF H(z). There is no probability
for the CHRF. However, it is a risk indicator; the greater the H(z) value, the greater the risk
of failure via t−time:

H
(
z; Θ̆

)
=

z∫
0

h(u; Θ̆)du = − log S(z). (7)

It is observed that

f (z) = h(z) e−H(z) and S(z; Θ̆) = e−H(z).

Therefore,

H
(
z; Θ̆

)
= − log 2− log

[
1− exp

{
−λ
(

z−β − 1
)}]φ

+ log
{

1 +
[
1− exp

{
−λ
(

z−β − 1
)}]φ

}
. (8)

In Figure 1, we display some possible shapes of the HLUG-TI density function. It is
worth noting that the values for Θ̆ were chosen at random until we had a wide variety of
forms for the relevant parameters. We observe that the PDF is symmetrically produced and
is left- and right-slanted.



Mathematics 2023, 11, 1007 4 of 24

parameters. We observe that the PDF is symmetrically produced and is left and right-slanted.

Fig. 1. Variations of PDF of the HLUG-TI for di¤erent parameter values.

3 Mixture Representations

In this section, we will describe the mixture representations of CDF and PDF of the HLUG-TI
model.

Proposition 1. The mixed representation of CDF is as follows:

G(z; ��) =

+1X
w=0

+1X
r=0

�w;rF
r(z; �)� 1; (9)

where �w;r = 2 (�1)w+r �(�w+1)
r!�(�w+1�r) :

Proof. Since
h
1 +

�
1� exp

�
��
�
z�� � 1

�	��i�1 2 (0; 1) ; therefore, using the power series

5

Figure 1. Variations of PDF of the HLUG-TI for different parameter values.

3. Mixture Representations

In this section, we will describe the mixture representations of CDF and PDF of the
HLUG-TI model.

Proposition 1. The mixed representation of CDF is as follows:

G(z; Θ̆) =
+∞

∑
w=0

+∞

∑
r=0

Λw,rFr(z; Θ)− 1, (9)

where Λw,r = 2(−1)w+r Γ(φw+1)
r!Γ(φw+1−r) .

Proof. Since
[
1 +

[
1− exp

{
−λ
(
z−β − 1

)}]φ
]−1
∈ (0, 1), using the power series expan-

sion provides

G(z; Θ̆) =
2[

1 +
[
1− exp

{
−λ
(
z−β − 1

)}]φ
] − 1

= 2
+∞

∑
w=0

(−1)w
[
1− exp

{
−λ
(

z−β − 1
)}]wφ

− 1. (10)

As
[
1− exp

{
−λ
(
z−β − 1

)}]wφ ∈ (0, 1), this proceeds from the binomial formula,
we have

[
1− exp

{
−λ
(

z−β − 1
)}]wφ

=
+∞

∑
r=0

(−1)r Γ(φw + 1)
r!Γ(φw + 1− r)

exp
{

λr
(

1− z−β
)}

,

=
+∞

∑
r=0

(−1)r Γ(φw + 1)
r!Γ(φw + 1− r)

Fr(z; Θ). (11)
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By incorporating together the above equalities, we attain

G(z; Θ̆) = 2
+∞

∑
w=0

+∞

∑
r=0

(−1)w+r Γ(φw + 1)
r!Γ(φw + 1− r)

Fr(z; Θ)− 1. (12)

The confirmation of Proposition 1 is now complete.

Remark 1. Using the differentiation of G(z; Θ̆), we obtain the following mixture representation
for g(z; Θ̆) :

g(z; Θ̆) =
+∞

∑
w=0

+∞

∑
r=1

Λw,rgr(z), (13)

where gr(z) = rβλz−β−1eλr(1−z−β).

In Remark 1, we note that the sum of r begins with 1 because g0(z) = 0, This appears to
be promising information for future advanced distributional expansion. The given outcome
defines a mixture expression for the exponentiated G(z; Θ̆).

Proposition 2. Assume that a is a positive integer. The mixture description is as follows:

[
G(z; Θ̆)

]a
=

a

∑
k=0

+∞

∑
l,m1

Λa,k,m1 ∆m1(z), (14)

where Λa,k,m1 = (a
k)2

k(−1)a+k+l+m1 Γ(l+k)
l!Γ(k)

Γ(φl+1)
m1!Γ(φl+1−m1)

, ∆m1(z) = exp
{
−λm1

(
z−β − 1

)}
.

Proof. As a result of the binomial theorem, we have

[
2
[

1 +
[
1− exp

{
−λ
(

z−β − 1
)}]φ

]−1
− 1

]a

=
a

∑
k=0

(
a
k

)
(−1)a+k2k

×
[

1 +
[
1− exp

{
−λ
(

z−β − 1
)}]φ

]−k
. (15)

As
[
1− exp

{
−λ
(
z−β − 1

)}]φ ∈ (0, 1), the power series
{
(1− z)−s =

+∞
∑

i=0

Γ(i+s)
i!Γ(s) zi

}
twice

and exponential series
(

e−x =
+∞
∑

n=0
(−1)n xn

n!

)
in a row, provides,[

1 +
[
1− exp

{
−λ
(

z−β − 1
)}]φ

]−k
=

+∞

∑
l=0

+∞

∑
m1=0

(−1)l+m1 Γ(l + k)
l!Γ(k)

Γ(φl + 1) exp
{
−λm1

(
z−β − 1

)}
m1!Γ(φl + 1−m1)

, (16)

By combining the aforementioned equality conditions, we achieve the desired outcome,
and conclude the findings of Proposition 2.

The increasing, bathtub, and upside-down forms of the HRF are shown in Figure 2.
When the PDF has a monotonic decreasing trend, the HRF has a bathtub trend, which
can be observed in Figure 3. Real-time applications frequently require both monotonic
and non-monotonic hazard rate trends, so these versatile HRF forms are ideal. In any
lifetime model, inverted bathtub curves and increasing and decreasing HRF are attractive
characteristics that can be incorporated into the model.
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As
�
1� exp

�
��
�
z�� � 1

�	�� 2 (0; 1) ; the power series�(1� z)�s = +1P
i=0

�(i+s)
i!�(s) z

i

�
twice and expo-

nential series
�
e�x =

+1P
n=0

(�1)n xnn!
�
in a row, provides,

�
1 +

h
1� exp

n
��
�
z�� � 1

�oi���k
=

+1X
l=0

+1X
m1=0

(�1)l+m1
� (l + k)

l!� (k)

� (�l + 1) exp
�
��m1

�
z�� � 1

�	
m1!� (�l + 1�m1)

;

(16)
By combining the aforementioned equality conditions, we achieve the desired outcome, and conclude
the �ndings of Proposition 2.

Fig. 2. Variations of hrf of the HLUG-TI for di¤erent parameter values.

7

Figure 2. Variations of HRF of the HLUG-TI for different parameter values.

Fig. 3. Variations of PDF and HRF of the HLUG-TI at di¤erent values of parameters.

The increasing, bathtub, and upside-down forms of the HRF are shown in Fig. 2. When the
PDF has a monotonic decreasing trend, the HRF has a bathtub trend, which can be observed in
Fig. 3. Real-time applications frequently require both monotonic and non-monotonic hazard rate
trends; so these versatile HRF forms are ideal. In any lifetime model, inverted bathtub curves and
increasing, and decreasing HRF are attractive characteristics that can be incorporated into the
model.

4 Statistical and Mathematical Characteristics

4.1 Quantile Function (QF)

The QF also determines the characteristics of the probability distribution, such as the moments.
Furthermore, the quantile function describes the model and can be used as an alternative mechanism
for data analysis [15]. Assume G(Qp; ��) is the HLUG-TI distribution�s CDF at pth quantiles Qp.
Then the pth quantile of the HLUG-TI r.v. is

Q(p; ��) =

"
1� 1

�
log

"
1�

�
1� p
1 + p

� 1
�

##�1
�

; 0 < p < 1: (17)

~Z = Q(0:5; ��) shows the median of Z. There is a similar explanation for the other partition values.
In particular, by setting p = (0:25; 0:75) in Eq. (17), the �rst, and third quartiles are obtained.
The associated quantile density function is obtained by di¤erentiating Q(p; ��)

Q0(p; ��) = � 2

(1 + u)2���

�
1� p
1 + p

� 1
�
�1
"
1� 1

�
log

(
1�

�
1� p
1 + p

� 1
�

)#���+1
�

�

"�
1� p
1 + p

� 1
�

� 1
#�1

: (18)
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Figure 3. Variations of PDF and HRF of the HLUG-TI at different values of parameters.

4. Statistical and Mathematical Characteristics
4.1. Quantile Function (QF)

The QF also determines the characteristics of the probability distribution, such as
the moments. Furthermore, the quantile function describes the model and can be used
as an alternative mechanism for data analysis [15]. Assume G(Qp; Θ̆) is the HLUG-TI
distribution’s CDF at pth quantiles Qp. Then the pth quantile of the HLUG-TI random
variable is

Q(p; Θ̆) =

[
1− 1

λ
log

[
1−

(
1− p
1 + p

) 1
φ

]]−1
β

, 0 < p < 1. (17)

Z̃ = Q(0.5; Θ̆) shows the median of Z. There is a similar explanation for the other partition
values. In particular, by setting p = (0.25, 0.75) in Equation (17), the first, and third quar-
tiles are obtained. The associated quantile density function is obtained by differentiating
Q(p; Θ̆):
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Q′(p; Θ̆) = − 2
(1 + u)2βλφ

(
1− p
1 + p

) 1
φ−1
[

1− 1
λ

log

{
1−

(
1− p
1 + p

) 1
φ

}]−( β+1
β

)

[(
1− p
1 + p

) 1
φ

− 1

]−1

. (18)

At various levels of β and different values of model parameters φ and λ, Figure 4
shows maps of skewness, kurtosis and median. The model is discovered to be leptokurtic
to platykurtic in nature and positively skewed. As φ and λ rise, the skewness becomes
approximately equal to 2.3 at the first level of β. The skewness is higher at lower φ and a
higher value of λ. Furthermore, the distribution peakedness yields higher values at lower
φ and λ, but as φ and λ increase, it ends up being roughly 1.5. Additionally, the median
yields lower values at lower φ and λ, but as φ and λ rise, it approaches 1.

Fig. 4. E¤ects of skewness and kurtosis of HLUG-TI for certain values of parameters.

At various levels of � and di¤erent values of model parameters � and �, Fig. 4 shows maps of
skewness, kurtosis and median. The model is discovered to be leptokurtic to platykurtic in nature
and positively skewed. As � and � rises, skewness becomes approximately equal to 2.3 at the �rst
level of �. Skewness is higher at lower � and higher value of �: Furthermore distribution peakedness
yields higher values at lower � and �, but as � and � increase, it ends up to roughly 1.5. Also
median yields lower values at lower � and �, but as � and � rises, it approaches 1.

Partition measures can be used to assess the variability of kurtosis and skewness of Z using
partition measures. Bowley�s skewness is as follows:

S�� =
Q
�
0:75; ��

�
� 2Q

�
0:5; ��

�
+Q

�
0:25; ��

�
IQR

; (19)

and kurtosis is

K�� =
Q
�
0:875; ��

�
�Q

�
0:625; ��

�
+Q

�
0:375; ��

�
�Q

�
0:125; ��

�
IQR

: (20)

Fig. 5. Plots of skewness of HLUG-TI
�
��
�
for certain parameter values.

9

Figure 4. Effects of skewness and kurtosis of HLUG-TI for certain values of parameters.

Partition measures can be used to assess the variability of the kurtosis and skewness
of Z using partition measures. Bowley’s skewness is as follows:

SΘ̆ =
Q
(
0.75; Θ̆

)
− 2Q

(
0.5; Θ̆

)
+ Q

(
0.25; Θ̆

)
IQR

, (19)

and kurtosis is

KΘ̆ =
Q
(
0.875; Θ̆

)
−Q

(
0.625; Θ̆

)
+ Q

(
0.375; Θ̆

)
−Q

(
0.125; Θ̆

)
IQR

. (20)

A contour map typically shows a bunch of lines, often wavy or forming concentric,
irregular closed loops or other patterns. Each of these lines, called a contour or contour
line, is simply a line along which some quantity (for example, wind speed temperature) is
everywhere the same. Contour graphs are plotted for skewness and median behavior in
comparison to HLUG-TI distribution and the pertinent parameter values in Figures 5–7 for
various values of β. It is observed that skewness increases at higher values of φ but lower
levels of λ for both β = 0.05, 1.9 (see Figure 5). Furthermore, in Figure 5, it is noted that
lower skewness occurs near all levels of λ and lower levels of φ. Figure 6 demonstrates
that for lower levels of φ and all levels of λ, kurtosis is increased, whereas for all levels of
λ and higher values of φ, it declines. Furthermore, when 0.4 ≤ φ ≤ 0.9, and 0 ≤ λ ≤ 0.6,
kurtosis is decreased. Moreover, in Figure 6 for all levels of λ, 0 ≤ φ ≤ 1 and φ ≥ 4, the
kurtosis declines, whereas for lower levels of λ, and 0.8 ≤ φ ≤ 2.3, the kurtosis increases.
Figure 7 shows plotted contour graphs for the median of the HLUG-TI distribution for
various values of pertinent parameters. It is noted that for higher levels of parameters φ
and λ, the median is increased, whereas it declines for lower values of parameters φ and
higher levels of λ. On the other side, a similar trend is noted for β = 1.9 (see Figure 7).
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Fig. 4. E¤ects of skewness and kurtosis of HLUG-TI for certain values of parameters.

At various levels of � and di¤erent values of model parameters � and �, Fig. 4 shows maps of
skewness, kurtosis and median. The model is discovered to be leptokurtic to platykurtic in nature
and positively skewed. As � and � rises, skewness becomes approximately equal to 2.3 at the �rst
level of �. Skewness is higher at lower � and higher value of �: Furthermore distribution peakedness
yields higher values at lower � and �, but as � and � increase, it ends up to roughly 1.5. Also
median yields lower values at lower � and �, but as � and � rises, it approaches 1.

Partition measures can be used to assess the variability of kurtosis and skewness of Z using
partition measures. Bowley�s skewness is as follows:

S�� =
Q
�
0:75; ��

�
� 2Q

�
0:5; ��

�
+Q

�
0:25; ��

�
IQR

; (19)

and kurtosis is

K�� =
Q
�
0:875; ��

�
�Q

�
0:625; ��

�
+Q

�
0:375; ��

�
�Q

�
0:125; ��

�
IQR

: (20)

Fig. 5. Plots of skewness of HLUG-TI
�
��
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for certain parameter values.
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Figure 5. Plots of skewness of HLUG-TI
(
Θ̆
)

for certain parameter values.

Fig. 6. Plot of kurtosis of HLUG-TI
�
��
�
for certain parameter values.
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A contour map typically shows a bunch of lines, often wavy or forming concentric, irregular
closed loops or other patterns. Each of these lines, called a contour or contour line, is simply a line
along which some quantity (for example wind speed temperature) is everywhere the same. Contour
graphs are plotted for skewness and median behaviour in comparison to HLUG-TI distribution and
the pertinent parameters values in Figs. 5-7 for various values of �. It is observed that skewness
is increases at higher values of � but lower levels of � for both � = 0:05; 1:9 (see Figs. 5a and 5b).
Furthermore, in Figs. 5(a� b), it is noted that lower skewness occurs near the all levels of � and
lower levels of �. Fig. 6a demonstrates that for lower levels of � and all levels of �; kurtosis incresed
whereas all levels of � and higher values of �; it declines. Furthermore, when 0:4 � � � 0:9; and
0 � � � 0:6; kurtosis decreased. Moreover, in Fig. 6b for all levels of �, 0 � � � 1 and � � 4
kurtosis declines whereas lower levels of �; and 0:8 � � � 2:3; kurtosis increased. Fig. 7a is
plotted contour graphs for the median of the HLUG-TI distribution for various values of pertinent
parameters. It is noted that for higher levels of both parameters � and �; the median is increased,
whereas it declines for lower values of parameters � and higher levels of �. On the other side, a
similar trend is noted for � = 1:9 (see Fig. 7b).
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4.2. Ordinary Moments

For Θ̆ > 0, by replacing (13) with the description of the sth moment of random variable
Z. Thus,

µ́s = E(Zs) =

1∫
0

zsdFZ(z; Θ̆); s = 1, 2, ... (21)

The integral in (21) can be assessed by any computational software. An equivalent
expression is given with a probable precision gain in terms of errors while using Remark 1:

µ́s =

1∫
0

zs
+∞

∑
w=0

+∞

∑
r=1

Λw,rgr(z)dz, (22)

where gr(z) = rβλz−β−1eλr(1−z−β). Let λrz−β = t, then rβλz−β−1dz = −dt and after some
algebraic manipulation, we have

µ́s =
+∞

∑
w=0

+∞

∑
r=1

(λr)
s
β Λw,reλrΓ

(
1− s

β
, λr
)

, (23)

where Γ(τ, x) =
∞∫
x

yτ−1e−ydy is an incomplete gamma function. An alternative expression

of µ́s in terms of exponential integral is given by

µ́s =
+∞

∑
w=0

+∞

∑
r=1

eλrλrΛw,rE s
β
(λr), (24)

where En(x) = xn−1Γ(1− n, x). The mean and variance of Z can be defined as µz = µ́1 and
σ2

z = µ́2 − µ2
z , respectively, i.e.,

µz =
+∞

∑
w=0

+∞

∑
r=1

(λr)
1
β eλrΛw,rΓ

(
1− 1

β
, λr
)

, (25)

Additionally, in terms of the exponential integral, we have

µz =
+∞

∑
w=0

+∞

∑
r=1

eλrλrΛw,rE 1
β
(λr). (26)

Therefore,

σ2
z =

+∞

∑
w=0

+∞

∑
r=1

(λr)
2
β eλrΛw,rΓ

(
1− 2

β
, λr
)
− (µz)

2. (27)

Numerical values for some moments, skewness, variance, and kurtosis of Z for various
values of the considered parameters are reported in Table 1. Table 1 reveals that for higher
values of β, by keeping λ and φ fixed, the first four moments about origin, skewness and
kurtosis are increased, while the variance exhibits the opposite behavior.
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Table 1. Some moments, variance, skewness and kurtosis of Z for different parametric values.

(β, λ, φ) (3, 2, 2) (2, 2, 2) (3, 3, 2) (4, 3, 5) (2, 7, 3) (0.6, 1.7, 7)

E(Z) 0.87516 0.82088 0.90743 0.89166 0.91499 0.29191
E
(
Z2) 0.77125 0.68403 0.82689 0.79691 0.83961 0.09797

E
(
Z3) 0.68403 0.57754 0.75642 0.71382 0.77248 0.03674

E
(
Z4) 0.61022 0.49330 0.69444 0.64077 0.71249 0.01510

σ2
Z 0.00535 0.01018 0.00346 0.00186 0.00239 0.01275

S 8.67374 5.77620 11.6341 15.6444 14.7932 1.86490
K 1.20946 1.19683 1.23356 1.24648 1.26732 1.21331

4.3. Moment Generating Function (mgf)

The mgf is frequently used to describe models. The HLUG-TI mgf is described as

M
(

z|Θ̆
)
= E

(
etz) = +∞

∑
s=0

ts

s!
µ́s =

+∞

∑
s,w=0

+∞

∑
r=1

ts

s!
(λr)

s
β eλrΛw,rΓ

(
1− s

β
, λr
)

. (28)

4.4. Incomplete Noncentral Moments

Incomplete noncentral moments play a significant role in determining inequality, in-
cluding the revenue quantities and curves of Lorenz and Bonferroni, which are based on
incomplete distribution moments.

The definition of the upper incomplete gamma function denoted by Γ($, x) is

Γ($, x) =
∞∫

x

u$−1e−udu, x > 0, $ ∈ R. (29)

Additionally, the upper incomplete gamma function can be given using the exponential
integral function as follows (cf. Olver et al. [16]):

Eh̄(x) =

∞∫
1

t−h̄e−txdt, x > 0, h̄ ∈ R,

Eh̄(x) = xh̄−1Γ(1− h̄, x), x, h̄ ∈ R. (30)

The sth incomplete moment µ́Z, s(ν) of Z is

µ́Z, s(ν) =

ν∫
0

zsdFZ( z|Θ̆); s = 1, 2, ... (31)

Let λrz−β = t, then rβλz−β−1dz = −dt , and we obtain the following simplified form:

µ́Z, s(ν) =
+∞

∑
w=0

+∞

∑
r=1

(λr)
s
β eλrΛw,rΓ

(
1− s

β
,

λr
νβ

)
, (32)

and in terms of the exponential integral function, we have

µ́Z, s(ν) =
+∞

∑
w=0

+∞

∑
r=1

λreλrΛw,rν
s− 1

β E s
β

(
λr
νβ

)
. (33)
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Furthermore, the extent of variation in a data may be assessed to some extent by all
deviations from µ and Z̃:

∆Z =

1∫
0

|z− µ| f (z)dz = 2µF(µ)− 2µ́Z, 1(µ). (34)

The mean deviations of Z about median Z̃ can be expressed as

ΨZ =

1∫
0

∣∣z− Z̃
∣∣ f (z)dz = µ− 2µ́Z, 1

(
Z̃
)
. (35)

The Bonferroni curve is given by

B̃(q) =
1

qµ
µ́Z, 1Q(q; Θ̆) =

1
qµ

µ́Z, 1

[
1− 1

λ
log

[
1−

(
1− q
1− q

) 1
φ

]]−1
β

, 0 < q < 1, (36)

where the Lorenz curves is given as

L̃(q) = qB̃(q), 0 < q < 1. (37)

4.5. Central Moments

The sth central moment of HLUG-TI
(
Θ̆
)

is obtained as

µs =
∞

∑
j=0

(
s
j

)
(−1)jµj

1∫
0

zs−jdFZ( z|Θ̆); (38)

µs =
+∞

∑
j=0

+∞

∑
w=0

+∞

∑
r=1

(
s
j

)
(−1)jµj(λr)

s−j
β eλrΛw,rΓ

(
1− (s− j)

β
, λr
)

. (39)

4.6. Characteristic Function (CF)

The CF of Z can be assessed as

Φ
(

τz|Θ̆
)
=

1∫
0

eiτzdFZ( z|Θ̆). (40)

Appplying Taylor expansion on eiτz, we have

Φ
(

τz|Θ̆
)
=

+∞

∑
s=0

(iτ)s

s!

1∫
0

zsdFZ( z|Θ̆). (41)

Utilizing Equation (23), we are able to derive the characteristic function of HLUG-
TI(φ, Θ) as follows:

Φ
(

τz|Θ̆
)
=

+∞

∑
s,w=0

+∞

∑
r=1

(iτ)s

s!
(λr)

s
β Λw,reλrΓ

(
1− s

β
, λr
)

. (42)
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4.7. Factorial Generating Function (FGF)

FGF of HLUG-TI
(
Θ̆
)

is attained as

Ψ
(

τz|Θ̆
)

=

1∫
0

elog(1+τ)z
dFZ( z|Θ̆) (43)

=
+∞

∑
s=0

(log(1 + τ))s

s!

1∫
0

zsdFZ( z|Θ̆),

=
+∞

∑
s=0

(log(1 + τ))s

s!

1∫
0

zsdFZ( z|Θ̆). (44)

Using (23), the FGF of HLUG-TI
(
Θ̆
)

is taken in the form

Ψ
(

τz|Θ̆
)
=

+∞

∑
s,w=0

+∞

∑
r=1

(log(1 + τ))s

s!

[
(λr)

s
β Λw,reλrΓ

(
1− s

β
, λr
)]

. (45)

4.8. Order Statistics (ODS)

The first discussion of order statistics (ODS) from the perspective of the standard
normal distribution appeared in Tippett [17]. It is continually expanding in scope to
model a wide range of phenomena, typically in reliability analysis and life testing. In this
section, we present some insightful results about the ODS of HLUG-TI (Θ̆) model. Suppose
Z(1) ≤ Z(2)... ≤ Z(n) be ODS of a random sample size n from model G(z). Consequently,
for m = 1, 2, ..., n, the PDF of mth ODS, Z(m) is

g(m)

(
z|Θ̆

)
= K̃ G

(
z|Θ̆

)m−1{1− G
(

z|Θ̆
)}n−mg

(
z|Θ̆

)
, (46)

where K̃ = n!
(m−1)!(n−m)! . Therefore, the PDF of mth ODS is attained via putting Equations

(13), (14) and (46), changing a with f + m− 1:

g(m)

(
z|Θ̆

)
= Ψ̂

+∞

∑
r=1

f+m−1

∑
k=0

+∞

∑
w,l,m1

Λ f+m−1,k,m1 ∆m1(z)Λw,rgr(z), (47)

where

Ψ̂ = K̃
n−m

∑
f=0

(
n−m

f

)
(−1) f ,

Λ f+m−1,k,m1 =

(
f + m− 1

k

)
(−1) f+m−1+k+l+m12k Γ(l + k)

l!Γ(k)
Γ(φl + 1)

m1!Γ(φl + 1−m1)
Λw,r,

and ∆m1(z) = exp
{
−λm1

(
z−β − 1

)}
. The CDF of Z(m) is

G(m)( z|φ, Θ) =
n

∑
j=m

(
n
j

)
G( z|φ, Θ)j{1− G( z|φ, Θ)}n−j. (48)

Thus, the CDF of mth ODS, Z(m) of HLUG-TI (Θ̆) is

G(m)( z|φ, Θ) = Φ
p+j

∑
k=0

+∞

∑
l,m1

Λp+j,k,m1 ∆m1(z), (49)
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where Φ =
n
∑

j=m

n−j
∑

p=0
(−1)p(n−j

p )(n
j), and Λp+j,k,m1 = (−1)p+j+k+l+m1(p+j

k )2k Γ(φl+1)
m1!Γ(φl+1−m1)

Γ(l+k)
l!Γ(k) . Specifically, the CDFs of Z(n) and Z(1) are obtain, respectively as

G(n)(z) = Gn(z), G(1)(z) = 1− [1− G(z)]n, (50)

where G(.) is given in (12):

G(n)
(

z|Θ̆
)
=

n

∑
k=0

+∞

∑
l,m1

Λn,k,m1 ∆m1(z), (51)

G(1)
(

z|Θ̆
)
= 1− 2n

(
1−

+∞

∑
w=0

+∞

∑
r=0

Λw,rFr(z; Θ̆)

)n

. (52)

Let Q(m)(q) be (for 0 < q < 1) the QF of Z(m). Then from (39), we obtain

Q(n)(q) = Q
(

q1/n
)

, Q(1)(q) = Q
{

1− [1− q]1/n
}

, (53)

where Q(.) is QF of Z. Therefore, from (17) and (53), the qfs of Z(n) and Z(1) are in closed-
form. For the independent and identically random variable, it is possible to determine the
equation for the sth ordinary moment of ODS when µ́s < ∞. Thus, we can define the sth

moment of mth ODS Z(m) as (see [18])

µs
(m) = Ę

{
Zs
(m)

}
=

n

∑
j=n−m+1

(
n
j

)(
j− 1

n−m

)
(−1)j−n+m−1Įj(s), (54)

where Įj(s) = s
1∫

0
zs−1[1− G

(
z|Θ̆

)]jdz.

In particular, for the HLUG-TI
(
Θ̆
)
, we obtain

Įj(s) = s
n

∑
j=n−m+1

(
n
j

)(
j− 1

n−m

)
(−1)j−n+m−1

1∫
0

zs−1[1− G
(

z|Θ̆
)]jdz, (55)

where the final integral can be numerically evaluated.

5. Parameter Estimation with Simulation

This section examines the estimation of Θ̆ using the six various approaches indicated
in the introduction section while using the HLUG-TI (Θ̆) distribution as a statistical model.
From now, z1, z2, ..., zn show n observed values from Z, with their values in ascending order
z(1) ≤ z(2) ≤ ... ≤ z(n).

5.1. Maximum Likelihood Estimators

Let z1, z2, ..., zn show n observed values from the HLUG-TI (Θ̆) distribution. Then,
MLEs can be determined by maximizing the following function:

l
(

z| Θ̆
)

= n log 2 + n log φ + n log β + n log λ− (β + 1)
n

∑
i=1

log zi − λ
n

∑
i=1

(
z−β

i − 1
)

+(φ− 1)
n

∑
i=1

log
[
1− exp

{
−λ
(

z−β
i − 1

)}]
−2

n

∑
i=1

log
{

1 +
[
1− exp

{
−λ
(

z−β
i − 1

)}]φ
}

, (56)
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Therefore, the MLEs are created by simultaneously solving the following equations
∂l
(

z| Θ̆
)
/∂φ = 0, ∂l

(
z| Θ̆

)
/∂λ = 0 and ∂l

(
z| Θ̆

)
/∂β = 0, where

∂l
(

z| Θ̆
)

∂φ
=

n
φ
+

n

∑
i=1

log
[
1− exp

{
−λ
(

z−β
i − 1

)}]

−2
n

∑
i=1

[
1− exp

{
−λ
(

z−β
i − 1

)}]φ
log
[
1− exp

{
−λ
(

z−β
i − 1

)}]
1 +

[
1− exp

{
−λ
(

z−β
i − 1

)}]φ , (57)

∂l
(

z| Θ̆
)

∂λ
=

n
λ
−

n

∑
i=1

(
z−β

i − 1
)
+ (φ− 1)

n

∑
i=1

e−λ
(

z−β
i −1

)(
z−β

i − 1
)

1− exp
{
−λ
(

z−β
i − 1

)}

−2
n

∑
i=1

(
z−β

i − 1
)

e−λ
(

z−β
i −1

)
φ
[
1− exp

{
−λ
(

z−β
i − 1

)}]φ−1

1 +
[
1− exp

{
−λ
(

z−β
i − 1

)}]φ , (58)

and

∂l
(

z| Θ̆
)

∂β
=

n
β
−

n

∑
i=1

log zi + λ
n

∑
i=1

z−β
i log zi − (φ− 1)

n

∑
i=1

λz−β
i log zie

−λ
(

z−β
i −1

)
1− exp

{
−λ
(

z−β
i − 1

)}

+2
n

∑
i=1

λφz−β
i log zie

−λ
(

z−β
i −1

)[
1− exp

{
−λ
(

z−β
i − 1

)}]φ−1

1 +
[
1− exp

{
−λ
(

z−β
i − 1

)}]φ . (59)

5.2. Least Square Estimators

It is possible to minimize the following function in order to obtain the least square
estimators of the unknown parameters Θ̆ of HLUG-TI (Θ̆) distribution:

LS(Θ̆) =
n

∑
i=1

[
G(z(i); Θ̆)− i

n + 1

]2
, (60)

=
n

∑
i=1

1−
[
1− exp

{
−λ
(

z−β

(i) − 1
)}]φ

1 +
[
1− exp

{
−λ
(

z−β

(i) − 1
)}]φ −

i
n + 1


2

. (61)

with respect to unknown parameters Θ̆.
The nonlinear equations can also be solved to find the least square estimators, such as

∂LS(Θ̆)/∂φ = 0, ∂LS(Θ̆)/∂λ and ∂LS(Θ̆)/∂β = 0, where

∂LS(Θ̆)

∂φ
= 2

n

∑
i=1

ξ1
i (Θ̆)

1−
[
1− exp

{
−λ
(

z−β

(i) − 1
)}]φ

1 +
[
1− exp

{
−λ
(

z−β

(i) − 1
)}]φ −

i
n + 1

, (62)

∂LS(Θ̆)

∂λ
= 2

n

∑
i=1

ξ2
i (Θ̆)

1−
[
1− exp

{
−λ
(

z−β

(i) − 1
)}]φ

1 +
[
1− exp

{
−λ
(

z−β

(i) − 1
)}]φ −

i
n + 1

, (63)
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∂LS(Θ̆)

∂β
= 2

n

∑
i=1

ξ3
i (Θ̆)

1−
[
1− exp

{
−λ
(

z−β

(i) − 1
)}]φ

1 +
[
1− exp

{
−λ
(

z−β

(i) − 1
)}]φ −

i
n + 1

, (64)

where

ξ1
i (Θ̆) = −2

[
1− e−λ

(
z−β
(i) −1

)]φ

log[1− e−λ
(

z−β
(i) −1

)
][

1 +
(

1− e−λ
(

z−β
(i) −1

))φ
]2 , (65)

ξ2
i (Θ̆) = −2

φe−λ
(

z−β
(i) −1

)[
1− e−λ

(
z−β
(i) −1

)]φ−1(
z−β

(i) − 1
)

[
1 +

(
1− e−λ

(
z−β
(i) −1

))φ
]2 , (66)

ξ3
i (Θ̆) = 2

φλ z−β

(i) log zi e−λ
(

z−β
(i) −1

)[
1− e−λ

(
z−β
(i) −1

)]φ−1

[
1 +

(
1− e−λ

(
z−β
(i) −1

))φ
]2 . (67)

5.3. Weighted Least Square Estimators

The WLSEs, φ̂WLSE, λ̂WLSE and β̂WLSE can be calculated by minimizing the subsequent
function with respect to φ, λ and β

W(Θ̆) =
n

∑
i=1

(n + 2)(n + 1)2

i(n− i + 1)

[
G(z(i); Θ̆)− i

n + 1

]2
, (68)

=
n

∑
i=1

(n + 2)(n + 1)2

i(n− i + 1)

1−
[
1− exp

{
−λ
(

z−β

(i) − 1
)}]φ

1 +
[
1− exp

{
−λ
(

z−β

(i) − 1
)}]φ −

i
n + 1


2

. (69)

We can also obtain these estimators by solving ∂W(Θ̆)/∂φ = 0, ∂W(Θ̆)/∂λ and
∂W(Θ̆)/∂β = 0, where

∂W(Θ̆)

∂φ
= 2

n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)

ξ1
i (Θ)

1−
[
1− exp

{
−λ
(

z−β

(i) − 1
)}]φ

1 +
[
1− exp

{
−λ
(

z−β

(i) − 1
)}]φ −

i
n + 1

, (70)

∂W(Θ̆)

∂λ
= 2

n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)

ξ2
i (Θ)

1−
[
1− exp

{
−λ
(

z−β

(i) − 1
)}]φ

1 +
[
1− exp

{
−λ
(

z−β

(i) − 1
)}]φ −

i
n + 1

, (71)

∂W(Θ̆)

∂β
= 2

n

∑
i=1

(n + 1)2(n + 2)
i(n− i + 1)

ξ2
i (Θ)

1−
[
1− exp

{
−λ
(

z−β

(i) − 1
)}]φ

1 +
[
1− exp

{
−λ
(

z−β

(i) − 1
)}]φ −

i
n + 1

, (72)

where ξ
j
i(Θ), j = 1, 2, 3 are given in (65)–(67).
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5.4. Cramér–von Mises Estimators

Cramér–von Mises estimators φ̂CVME, λ̂CVME and β̂CVME of parameters φ, λ and β can
be calculated by minimizing the following function with respect to φ, λ and β:

C(Θ̆) =
1

12n
+

n

∑
i=1

[
G(z(i); Θ̆)− 2i− 1

2n

]2
,

=
1

12n
+

n

∑
i=1

1−
[
1− exp

{
−λ
(

z−β

(i) − 1
)}]φ

1 +
[
1− exp

{
−λ
(

z−β

(i) − 1
)}]φ −

2i− 1
2n


2

. (73)

To find similar estimators, the following nonlinear equations should be solved:

∂C(Θ̆)

∂φ
= 2

n

∑
i=1

ξ1
i (Θ̆)

1−
[
1− exp

{
−λ
(

z−β

(i) − 1
)}]φ

1 +
[
1− exp

{
−λ
(

z−β

(i) − 1
)}]φ −

2i− 1
2n

 = 0, (74)

∂C(Θ̆)

∂λ
= 2

n

∑
i=1

ξ2
i (Θ̆)

1−
[
1− exp

{
−λ
(

z−β

(i) − 1
)}]φ

1 +
[
1− exp

{
−λ
(

z−β

(i) − 1
)}]φ −

2i− 1
2n

 = 0, (75)

∂C(Θ̆)

∂β
= 2

n

∑
i=1

ξ3
i (Θ̆)

1−
[
1− exp

{
−λ
(

z−β

(i) − 1
)}]φ

1 +
[
1− exp

{
−λ
(

z−β

(i) − 1
)}]φ −

2i− 1
2n

 = 0, (76)

where ξ
j
i(Θ̆), j = 1, 2, 3 are defined in (65)–(67).

5.5. ADE and RTADE Approach

Anderson and Darling [19] established the Anderson–Darling (AD) test. In particular,
the AD test rapidly converges toward the asymptote ([20–22]). The Anderson–Darling
statistic is obtained as

ADS2
n = n

∫ ∞

−∞

[
G
(

z(i)
)
− Gn

(
z(i)
)]2

G
(

z(i)
)(

1− G(z(i))
) dG

(
z(i)
)

, (77)

where Gn

(
z(i)
)

is the empirical distribution function and G
(

z(i)
)

is the cumulative dis-
tribution given in (3). Boos [23] also examined the AD estimators’ characteristics. The
Anderson–Darling estimators φ̂ADE, λ̂ADE and β̂ADE of the parameters φ, λ and β are
determined by minimizing the following function with respect to φ, λ and β:

A(Θ̆) = −n− 1
n

n

∑
i=1

(2i− 1)
(

log[G(z(i); Θ̆)] + log[Ḡ(z(n+1−i); Θ̆)]
)

, (78)

where Ḡ(.) = 1−G(.). To find similar estimators, the following nonlinear equations should
be solved:

∂A(Θ̆)

∂φ
= − 1

n

n

∑
i=1

(2i− 1)

[
ξ1

i (Θ̆)

G(z(i); Θ̆)
−

ξ1
(n+1−i)(Θ̆)

Ḡ(z(n+1−i); Θ̆)

]
= 0, (79)

∂A(Θ̆)

∂λ
= − 1

n

n

∑
i=1

(2i− 1)

[
ξ2

i (Θ̆)

G(z(i); Θ̆)
−

ξ2
(n+1−i)(Θ̆)

Ḡ(z(n+1−i); Θ̆)

]
= 0, (80)
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∂A(Θ̆)

∂β
= − 1

n

n

∑
i=1

(2i− 1)

[
ξ3

i (Θ̆)

G(z(i); Θ̆)
−

ξ3
(n+1−i)(Θ̆)

Ḡ(z(n + 1− i); Θ̆)

]
= 0, (81)

where ξ
j
i(Θ̆) and j = 1, 2, 3 are given in Equations (65)–(67), respectively.

The right-tail AD statistics provided by [11,17,21] are the most commonly used statis-
tics and is given by

RTADS2
n = n

∫ ∞

−∞

[
G
(

z(i)
)
− Gn

(
z(i)
)]2(

1− G(z(i))
) dG

(
z(i)
)

. (82)

Its computational form can be written in the form of

R(Θ̆) =
n
2
− 2

n

∑
i=1

log G(z(i); Θ̆)− 1
n

n

∑
i=1

(2i− 1) log[Ḡ(z(n+1−i); Θ̆)], (83)

where Ḡ(.) = 1 − G(.). The right-tail AD estimators (RTADEs) can be evaluated con-
currently by solving the following equations: ∂R

(
Θ̆
)
/∂φ = 0, ∂R

(
Θ̆
)
/∂λ = 0 and

∂R
(
Θ̆
)
/∂β = 0, where

∂R(Θ̆)

∂φ
= −2

n

∑
i=1

ξ1
i (Θ̆)

G(z(i); Θ̆)
+

1
n

n

∑
i=1

(2i− 1)
ξ1

n+1−i(Θ̆)

Ḡ(z(i); Θ̆)
, (84)

∂R(Θ̆)

∂λ
= −2

n

∑
i=1

ξ2
i (Θ̆)

G(z(i); Θ̆)
+

1
n

n

∑
i=1

(2i− 1)
ξ2

n+1−i(Θ̆)

Ḡ(z(i); Θ̆)
, (85)

∂R(Θ̆)

∂β
= −2

n

∑
i=1

ξ3
i (Θ̆)

G(z(i); Θ̆)
+

1
n

n

∑
i=1

(2i− 1)
ξ3

n+1−i(Θ̆)

Ḡ(z(i); Θ̆)
, (86)

where ξ
j
i(Θ̆), j = 1, 2, 3 are given in (65)–(67).

6. Simulation Study

Since it is not theoretically possible to compare the effectiveness of different estimators
derived in the aforementioned sections, we use a Monte Carlo simulation analysis to
determine which of the six traditional estimation procedures is the most effective. We
generated samples of different sizes n = 30, 34, ..., 600 from the HLUG-TI distribution
for the real value of parameters (λ, β, φ) = {(1.5, 1.3, 1.2), (1.9, 2.3, 2.6), (0.4, 1.2, 1.7)}. The
theoretical and simulated density functions of the HLUG-TI

(
Θ̆
)

model for given parameters
choices are given in Figure 8. To obtain the bias average and MSE for each case, we execute
the algorithm 10,000 times. The validity of the estimators is assessed using these biases and
the MSE. The best estimator techniques are those that reduce MSE and estimator bias. The
following stages are used to implement a simulation study for this purpose:

unbiasedness because as n increases, the bias goes to zero. From Figs. 9 � 11, the following
observations can be extracted.

Fig. 8. Plot of theoretical and simulated PDF of HLUG-TI for certain parameters values.

Fig. 9. Plots of biases and MSEs for the parameters � = 1:5; � = 1:3 and � = 1:2 of HLUG-TI
model.

21

Figure 8. Plot of theoretical and simulated PDF of HLUG-TI for certain parameter values.
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1. Generate ten thousand samples of size n from (4) for the HLUG-TI model. This work
is done simply by the quantile function and generated data from the uniform distribution.

2. Evaluate the estimates for 10,000 samples, say
(
λ̂i, β̂i, φ̂i

)
for i = 1, 2, ..., 10,000.

3. Perform the biases and MSE calculations. The following formulas are used to
accomplish these goals:

BiasΘ̆(n) =
1

10,000

10,000

∑
i=1

(
Θ̆∗i − Θ̆

)
, (87)

MSEΘ̆(n) =
1

10,000

10,000

∑
i=1

(
Θ̆∗i − Θ̆

)2, (88)

where Θ̆ = (λ, β, φ).
4. For all estimation approaches, these procedures were repeated for n = 30, 34, ..., 600,

with the aforementioned parameters. To determine the value of estimators, we used R’s
optim function. In Figures 9–11, the simulation outcomes are shown graphically. As seen
in Figures 9–11, these biases and MSEs change with regard to n (left and right panels).

The pattern in the MSEs indicates consistency because the MSEs converge to zero
when the value of n increases, but we can conclude that the estimators have the property of
asymptotic unbiasedness because as n increases, the bias goes to zero. From Figures 9–11,
the following observations can be extracted:

• For all estimation techniques, the bias of λ̂, β̂ and φ̂ reduces as n increases.
• For all methods, the biases of λ̂ are generally positive.
• For all methods, the negative biases of β̂ and φ̂ are also observed.
• The bias of parameter λ is larger than parameter β and φ.
• Under all of the methods, the MSEs of λ̂ seem larger.
• Based on Figures 9–11, the MLE method has the minimal amount of MSE; however,

for a large sample size, all methods have almost the same behavior and converge to
zero as expected.

• Using the entries of the graphical study for different parametric combinations, we
can conclude that the MLE method outperforms all other estimation methods with an
overall minimum amount of bias and MSE. Therefore, depending on the simulation
study, the MLE method performs best for HLUG-TI distribution.

unbiasedness because as n increases, the bias goes to zero. From Figs. 9 � 11, the following
observations can be extracted.

Fig. 8. Plot of theoretical and simulated PDF of HLUG-TI for certain parameters values.

Fig. 9. Plots of biases and MSEs for the parameters � = 1:5; � = 1:3 and � = 1:2 of HLUG-TI
model.

21

Figure 9. Cont.
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unbiasedness because as n increases, the bias goes to zero. From Figs. 9 � 11, the following
observations can be extracted.

Fig. 8. Plot of theoretical and simulated PDF of HLUG-TI for certain parameters values.

Fig. 9. Plots of biases and MSEs for the parameters � = 1:5; � = 1:3 and � = 1:2 of HLUG-TI
model.

21

Figure 9. Plots of biases and MSEs for the parameters λ = 1.5, β = 1.3 and φ = 1.2 of HLUG-TI model.

Fig. 10. Plots of biases and MSEs for the parameters � = 1:9; � = 2:3 and � = 2:6 of HLUG-TI
model.

22

Figure 10. Plots of biases and MSEs for the parameters λ = 1.9, β = 2.3 and φ = 2.6 of HLUG-
TI model.
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Fig. 10. Plots of biases and MSEs for the parameters � = 1:9; � = 2:3 and � = 2:6 of HLUG-TI
model.

22

Fig. 11. Plots of biases and MSEs for the parameters � = 0:4; � = 1:2 and � = 1:7 of HLUG-TI
model.

� For all estimation techniques, the bias of �̂; �̂ and �̂ reduces as n increases.

� For all methods, the biases of �̂ are generally positive.

� For all methods, the negative biases of �̂ and �̂ are also observed.

� The bias of parameter � is larger than parameter � and �.

� Under the all methods, the MSEs of �̂ seems larger.

� Based on Figs. 9-11, the MLE method has the minimum amount of MSE; however, for large
sample size, all methods have almost the same behavior and converge to zero as expected.

� Using the entries of the graphical study for di¤erent parametric combinations, we can conclude
that the MLE method outperforms all other estimation methods with an overall minimum
amount of bias and MSE. Therefore, depending on the simulation study, the MLE method
performs best for HLUG-TI distribution.

A general conclusion from the �gures is that, for all approaches, bias and MSE for three parame-
ters converge to zero as sample sizes increase. This demonstrates the reliability of these estimating

strategies for the HLUG-TI
�
��
�
model�s parameters.

7 Real data applications

In this section, we implement the HLUG-TI
�
��
�
model on practical datasets to demonstrate its

versatility in comparison to a set of competing models. The objective of the HLUG-TI
�
��
�
model

23

Figure 11. Plots of biases and MSEs for the parameters λ = 0.4, β = 1.2 and φ = 1.7 of HLUG-
TI model.

A general conclusion from the figures is that, for all approaches, bias and MSE for
three parameters converge to zero as sample sizes increase. This demonstrates the reliability
of these estimating strategies for the HLUG-TI

(
Θ̆
)

model’s parameters.

7. Real Data Applications

In this section, we implement the HLUG-TI
(
Θ̆
)

model on practical datasets to demon-
strate its versatility in comparison to a set of competing models. The objective of the
HLUG-TI

(
Θ̆
)

model is to provide an alternate distribution to fit the unit interval data
in comparison to other distributions found in the literature. The first dataset from the
reliability engineering field consists of 20 observations of the failure times of mechanical
components [24]. The second dataset relates to the total milk yield in the first birth of
107 cows at the Carnauba farm in Brazil. These data are available in these studies [25,26].
To conclude, for the two datasets, the HLUG-TI model shows to be the most suitable model,
demonstrating its applicability in a realistic environment. The parameters of the models
were estimated by the MLE method [27,28].

Now, we compare the HLUG-TI model to a set of competing models, which are as fol-
lows: unit-Gompertz [1], Kumaraswamy [29], unit-Weibull [30], transmuted Kumaraswamy
(TKSW, [31]) and Lehmann Type-I (LTI, [32]) distributions. To determine the rationality
of utilizing the HLUG-TI distribution to fit these datasets, the goodness-of-fit measures
the following: Akaike information criterion (AIC), Bayesian information criterion (BIC),
Cramer–von Mises (CVM) and Anderson–Darling (AD). Consequently, the Kolmogorov–
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Smirnov (K-S) test is considered, and the P-value (PV) of K-S test was specified to compare
models. The K-S statistic of the distance between the fitted and empirical distribution
functions is one of the most widely used goodness-of-fit test statistics for determining
how well a random sample’s distribution agrees with a theoretical distribution. The best
model has high PV and low AIC, BIC, CVM, and AD values [33]. An overview of the
estimated MLEs and fitted information criteria for both data sets using various models
can be seen in Tables 2–5. The values of the above measures suggest that the HLUG-TI
model is a suitable competitor to other competitive distributions, and it also has the best
fit among them. The histograms of the data sets and the fitted density function, as well
as the plot of the empirical and estimated CDF of these fitted distributions, are shown
in Figures 12 and 13 to help determine if the HLUG-TI model is suitable. Figure 14 also
shows the P-P plots for the HLUG-TI model. Based on such graphical methods, we can
suggest that the HLUG-TI model is a better model for the data sets under consideration.
The profile likelihood functions of parameters of HLUG-TI for both data sets are presented
in Figures 15 and 16.

Table 2. MLEs and SEs of the parameters of considered distribution for Data Set I.

Distributions MLEs Standard Errors

Unit-Gompertz (η, b) 22.4727, 0.0348 67.0628, 0.0994
KSwamy(α, β) 0.5875, 0.6115 0.1607, 0.1339
Unit-Weibull(α, β) 0.9688, 0.7394 0.1874, 0.1125
HLUG-TI(λ, β, φ) 0.1081, 0.8046, 0.4845 0.1553, 0.3711, 0.1301
TKSW(α, β, λ) 0.6091, 0.5854, 0.1246 0.1782, 0.1750, 0.4948
LTI(α) 0.8166 0.1491

Table 3. MLEs and SEs of the parameters of considered distribution for Data Set II.

Distributions MLEs Standard Errors

Unit-Gompertz (η, b) 2.1193, 0.3878 0.8683, 0.1145
KSwamy(α, β) 2.1949, 3.4363 0.2224, 0.5820
Unit-Weibull(α, β) 0.9846, 1.5620 0.1015, 0.1064
HLUG-TI(λ, β, φ) 70.70084, 0.0252, 3.7046 62.5229, 0.0216, 0.5616
TKSW(α, β, λ) 1.8231, 3.4361,−0.5608 0.2735, 0.5622, 0.2246
LTI(α) 1.1123 0.1075

Table 4. Values of the considered goodness-of-fit measures for Data I.

Distribution AIC BIC HQIC −LL K − S PV

Unit-Gompertz (η, b) 2.6975 5.4999 3.5940 −0.6513 0.1955 0.1766
KSwamy(α, β) −3.0050 −0.2026 −2.1085 −3.5025 0.1600 0.3850
Unit-Weibull(α, β) −1.7447 1.0577 −0.8482 −2.8723 0.1664 0.3393
HLUG-TI(λ, β, φ) −5.9084 −1.7048 −4.5637 −5.9542 0.11441 0.7857
TKSW(α, β, λ) −1.0692 3.1344 0.2756 −3.5346 0.1568 0.4097
LTI(α) 0.6801 2.0813 1.1284 −0.6599 0.1926 0.1895

Table 5. Values of the considered goodness-of-fit measures for Data II.

Distribution AIC BIC HQIC −LL K − S PV

Unit-Gompertz (η, b) −6.977409 −1.631752 −4.810351 −5.488705 0.18347 0.001488
KSwamy(α, β) −46.78936 −41.4437 −44.6223 −25.39468 0.07625 0.5626
Unit-Weibull(α, β) −29.8423 −24.49664 −27.67524 −16.92115 0.12061 0.08891
HLUG-TI(λ, β, φ) −48.86908 −40.85059 −45.61849 −27.43454 0.0692 0.6851
TKSW(α, β, λ) −48.09763 −40.07914 −44.84704 −27.04881 0.0670 0.6835
LTI(α) 0.8290953 3.501924 1.912625 −0.5854524 0.24183 0.0000
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Table 4. Values of the considered goodness-of-�t measures for Data I.

Distribution AIC BIC HQIC -LL K � S PV

Unit Gompertz (�; b) 2.6975 5.4999 3.5940 -0.6513 0.1955 0.1766
KSwamy(�; �) -3.0050 -0.2026 -2.1085 -3.5025 0.1600 0.3850
Unit Weibull(�; �) -1.7447 1.0577 -0.8482 -2.8723 0.1664 0.3393
HLUG-TI(�; �; �) -5.9084 -1.7048 -4.5637 -5.9542 0.11441 0.7857
TKSW(�; �; �) -1.0692 3.1344 0.2756 -3.5346 0.1568 0.4097
LTI(�) 0.6801 2.0813 1.1284 -0.6599 0.1926 0.1895

Table 5. Values of the considered goodness-of-�t measures for Data II.

Distribution AIC BIC HQIC -LL K � S PV

Unit Gompertz (�; b) -6.977409 -1.631752 -4.810351 -5.488705 0.18347 0.001488
KSwamy(�; �) -46.78936 -41.4437 -44.6223 -25.39468 0.07625 0.5626
Unit Weibull(�; �) -29.8423 -24.49664 -27.67524 -16.92115 0.12061 0.08891
HLUG-TI(�; �; �) -48.86908 -40.85059 -45.61849 -27.43454 0.0692 0.6851
TKSW(�; �; �) -48.09763 -40.07914 -44.84704 -27.04881 0.0670 0.6835
LTI(�) 0.8290953 3.501924 1.912625 -0.5854524 0.24183 0.0000

Fig. 12: Estimated densities and empirical (left) and estimated cdf (right) for the data set I:

Fig. 13: Estimated densities and empirical (left) and estimated cdf (right) for the data set II.
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Figure 12. Estimated densities and empirical (left) and estimated CDF (right) for the data set I.
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TKSW(�; �; �) -1.0692 3.1344 0.2756 -3.5346 0.1568 0.4097
LTI(�) 0.6801 2.0813 1.1284 -0.6599 0.1926 0.1895

Table 5. Values of the considered goodness-of-�t measures for Data II.

Distribution AIC BIC HQIC -LL K � S PV

Unit Gompertz (�; b) -6.977409 -1.631752 -4.810351 -5.488705 0.18347 0.001488
KSwamy(�; �) -46.78936 -41.4437 -44.6223 -25.39468 0.07625 0.5626
Unit Weibull(�; �) -29.8423 -24.49664 -27.67524 -16.92115 0.12061 0.08891
HLUG-TI(�; �; �) -48.86908 -40.85059 -45.61849 -27.43454 0.0692 0.6851
TKSW(�; �; �) -48.09763 -40.07914 -44.84704 -27.04881 0.0670 0.6835
LTI(�) 0.8290953 3.501924 1.912625 -0.5854524 0.24183 0.0000

Fig. 12: Estimated densities and empirical (left) and estimated cdf (right) for the data set I:

Fig. 13: Estimated densities and empirical (left) and estimated cdf (right) for the data set II.

25

Figure 13. Estimated densities and empirical (left) and estimated cdf (right) for Data Set II.

Fig. 14: P-P plot for Data Sets I and II.

Fig. 15: Uni-modal pro�le likelihood functions of parameters of HLUG-TI for Data I.

Fig. 16: Uni-modal pro�le likelihood functions of parameters of HLUG-TI for Data II.
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Figure 14. P-P plot for Data Sets I and II.

Figure 15. Unimodal profile likelihood functions of parameters of HLUG-TI for Data I.

Fig. 14: P-P plot for Data Sets I and II.

Fig. 15: Uni-modal pro�le likelihood functions of parameters of HLUG-TI for Data I.

Fig. 16: Uni-modal pro�le likelihood functions of parameters of HLUG-TI for Data II.
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Figure 16. Unimodal profile likelihood functions of parameters of HLUG-TI for Data II.
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8. Conclusions

In this study, we present a novel three-parameter model called the half-logistic unit-
Gompertz type-I (HLUG-TI) distribution, which generalizes the unit-Gompertz distribution.
It is competent at modeling data with increasing, bathtub, unimodal, and then bathtub haz-
ard rate functions. Some mathematical properties of the introduced model are derived. The
HLUG-TI parameters are estimated using six estimation methods, namely the maximum
likelihood, least squares, weighted least-squares, Cramér–von Mises, Anderson–Darling,
and right-tail Anderson–Darling estimators. The simulation study is conducted to explore
the efficiency of these estimators and to provide a guideline for applied statisticians and
engineers in choosing the best estimation method. Further, the importance of the HLUG-TI
model is utilized by two real data applications. The goodness-of-fit for the two data sets
show that the introduced model outperforms the four competitors, all of which are based
on the bounded interval.

Author Contributions: Conceptualization, A.S., T.N.S., S.D., S.A.L. and T.A.A.; Methodology, T.N.S.
and T.A.A.; Software, A.S., T.N.S.; Formal analysis, A.S., T.N.S. and S.A.L.; Data curation, A.S., T.N.S.
and S.A.L.; Writing—original draft, A.S., T.N.S., S.D. and T.A.A.; Writing—review & editing, A.S.,
T.N.S. and S.D.; Visualization, T.N.S., A.S. and S.D.; Supervision, S.D.; Funding acquisition, T.A.A.
All authors have read and agreed to the published version of the manuscript.

Funding: The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura
University for supporting this work by Grant Code 22UQU4310063DSR12.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Previously published data were used to support this study. These prior
studies are cited at relevant places within the text as references.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Nomenclature

Abbreviations
GSE Generalized Spacing Estimator HRF Hazard Rate Function
PDF Probability Density Function PCE Percentile Estimator
MLE Maximum Likelihood Estimation LME L-Moments Estimator
CDF Cumulative Distribution Function CF Characteristic Function
CHRF Cumulative Hazard Rate Function QF Quantile Function
MGF Moment Generating Function UG Unit-Gompertz
SF Survival Function LSE Least Squares Estimator
HLUG-TI Half-Logistic Unit-Gompertz Type-I TIHL-G Type-I Half-Logistic-G
WLSE Weighted Least Squares Estimation r.v. random variable
CVME Cramér–von Mises estimator ADE Anderson–Darling Estimator
RTAD Right-Tail Anderson–Darling FGF Factorial Generating Function
Symbols
g(z; φ, Θ) PDF G(z; φ, Θ) CDF
S(z; φ, Θ) SF h(z; φ, Θ) HRF
H(z) CHRF
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