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Abstract: In this paper, the estimation of the stress–strength reliability is taken into account when
the stress and strength variables have unit Gompertz distributions with a similar scale parameter.
The consideration of the unit Gompertz distribution in this context is because of its intriguing
symmetric and asymmetric properties that can accommodate various histogram proportional-type
data shapes. As the main contribution, the reliability estimate is determined via seven frequen-
tist techniques using the ranked set sampling (RSS) and simple random sampling (SRS). The pro-
posed methods are the maximum likelihood, least squares, weighted least squares, maximum prod-
uct spacing, Cramér–von Mises, Anderson–Darling, and right tail Anderson–Darling methods.
We perform a simulation work to evaluate the effectiveness of the recommended RSS-based estimates
by using accuracy metrics. We draw the conclusion that the reliability estimates in the maximum
product spacing approach have the lowest value compared to other approaches. In addition, we
note that the RSS-based estimates are superior to those obtained by a comparable SRS approach.
Additional results are obtained using two genuine data sets that reflect the survival periods of head
and neck cancer patients.

Keywords: Unit-Gompertz distribution; percentiles method; right tail Anderson–Darling; maximum
product spacing; maximum likelihood; ranked set sampling

1. Introduction

In many practical contexts, we have to deal with the uncertainty of bounded problems.
In particular, we commonly encounter quantitative variables that fall within the range of
(0, 1), such as proportions or percentages. For addressing bounded data sets in various
disciplines, several probability distributions have been developed. Recent popular ones
include the unit Birnbaum–Saunders distribution (see ref. [1]), the unit Weibull distribu-
tion (see ref. [2]), the unit Gompertz distribution (UGD) (see ref. [3]), the unit-inverse
Gaussian distribution (see ref. [4]), the unit Burr XII distribution (see ref. [5]), the unit
Gamma/Gompertz distribution (see ref. [6]), the unit generalized log Burr XII distribution
(see ref. [7]), the unit exponentiated half logistic distribution (see ref. [8]), the unit gen-
eralized inverse Weibull distribution (see ref. [9]), the another unit Burr XII distribution
(see ref. [10]), the unit xgamma distribution (see ref. [11]), the extreme left-skewed unit
distribution (see ref. [12]), the unit-power Burr X distribution (see ref. [13]), the unit inverse
exponentiated Weibull distribution (see ref. [14]), and the unit log–log distribution (see
ref. [15]).
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For the purposes of this paper, a retrospective on the UGD is necessary. To begin, its
probability density function (PDF) is indicated as:

g(w) = ϕτ1w−ϕ−1 exp
[
−τ1

(
w−ϕ − 1

)]
, (1)

for w ∈ (0, 1), and g(w) = 0 for w 6∈ (0, 1), where τ1 > 0 is the shape parameter and ϕ > 0
is the scale parameter. Hence, a random variable W with this distribution can be written as
W ∼ UGD(τ1, ϕ). The followings are the related cumulative distribution function (CDF)
and hazard function (HF):

G(w) = exp
[
−τ1

(
w−ϕ − 1

)]
, (2)

for w ∈ (0, 1), G(w) = 0 for w ≤ 1, and G(w) = 1 for w > 1, and

ϑ(w) =
ϕτ1w−ϕ−1 exp[−τ1(w−ϕ − 1)]

1− exp[−τ1(w−ϕ − 1)]
,

for w ∈ (0, 1), and ϑ(w) = 0 for w 6∈ (0, 1), respectively. In order to understand the
modeling capabilities of the UGD, plots of the PDF and HF are represented in Figure 1 for
some choices of parameters.
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Figure 1. Various plots of the PDF (a) and HF (b) of the UGD.

In this figure, we observe diverse symmetric and asymmetric shapes. In particular,
the PDF can be decreasing or unimodal, and the HF can be J-shaped, growing, or in the
form of an upside-down. These impressive panels of shapes demonstrate a functional
versatility that is attractive in the fit of proportional-type data. The UGD stands out from
most of its direct competitors in this aspect. A number of its features (moments, quantiles,
etc.) were examined by ref. [3]. The UGD has comparable behavior to certain well-known
probability distributions, such as the beta and Kumaraswamy distributions, in terms of real-
data application (see ref. [3]). The authors mentioned that the UGD may be applied to the
study of skewed data and may be useful in the fields of industrial reliability, environmental
sciences, and survival analysis. In addition, the UGD is involved in current reliability
estimation problems. For instance, based on it, the issue of assessing multicomponent
stress–strength reliability under progressive type II censoring was explored by ref. [16].
According to ref. [17], the reliability estimation in a multicomponent stress–strength based
on the UGD was taken into consideration. In their discussion, ref. [18] used record values
and inter-record periods for the inference of the UGD, along with a concrete application.
Reference [19] addressed the applicability of actual data for the UGD under dual gen-
eralized order statistics. There is, however, a lot to do with the UGD from a statistical
perspective. In this spirit and with the motivation to describe our main findings, the ranked
set sampling (RSS) needs to be presented.
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For a first description, the RSS is acknowledged as a valuable sampling strategy
(i) to achieve observational economy and (ii) to enhance the accuracy and efficiency of the
estimation in situations where the variable under evaluation is expensive to measure or chal-
lenging to obtain yet cheap and simple to rank. The notion of the RSS was initially put forth
in ref. [20], and ref. [21] reinforced it with mathematical theory. Even with a ranking error,
RSS is more effective than simple random sampling (SRS), according to the study in ref. [22].
To give more details, the RSS of the n units to be measured is produced using the following
process: First, n2 units are chosen at random from the population and divided into n
groups of n units. The lowest-ranking unit from the first sample is used for measurement,
while the other units are not. From a subsequent sample of size n, only the unit ranked
second-smallest is selected for measurement. After repeating this procedure, the largest
ranking unit of the n-th sample of size n is determined. We call this technique one cycle of
a ranked set sample of size n. To create an RSS of size n† = an, the cycle is then repeated a
number of times. In this context, the terms “n” and “a” denote the set size and cycle count,
respectively. The set size n should be mentioned as a significant component of the RSS
process. According to ref. [23], set sizes larger than five would likely not considerably boost
the RSS’s effectiveness since they would undoubtedly result in too many ranking mistakes.
In order to properly rank sets of n units, the set size n is often fixed between two and five
(see ref. [23]).

Applications of the RSS in different fields have been considered by several authors.
In an east Texas pine-hardwood forest, ref. [24] used the RSS to estimate the weights of
browsing and herbage. The use of the RSS to determine the volume of trees in a forest was
covered by ref. [25]. Reference [26] used the RSS to estimate the mean of forest, grassland,
and other vegetation resources. The application of the RSS in environmental chemistry was
investigated in ref. [27]. Reference [28] investigated how well the RSS estimated milk output
using data from 402 sheep. Reference [29] estimated the average olive yields in a field in the
west of Jordan using the multistage RSS. Using agricultural production information from
the United States Department of Agriculture, ref. [30] studied the application of the RSS
in determining the mean and median of a population. The RSS approach was considered
by ref. [31] in market and consumer surveys. Using actual data on body measurement,
ref. [32] employed the RSS approach to obtain the population means and ratio. The authors
utilized information on the height and weight of 507 people. The RSS was applied in a
study on fisheries by ref. [33].

On the other hand, in the literature, there has been much discussion on the issue
of drawing conclusions regarding the stress–strength (S-S) model R♦♦ = P(Q < W).
Here, Q stands for the stress, W for the strength, and R♦♦ is a measure of system reliability.
When the stress exceeds the system’s capacity, it is clear that the system will malfunction;
otherwise, it will continue to function. In several fields, including engineering, statistics,
and biostatistics, the S-S model is widely used. The following are some real-world examples:
structures, the aging of concrete pressure vessels, the degeneration of rocket motors, and
fatigue failure of aircraft structures (see ref. [34]). Historically, ref. [35] was the one who
initially considered the S-S model. Many academics have looked at the estimation of the
S-S reliability for varied independent distributions; see, for example, refs. [36–39].

Current discussions on the RSS and its modification techniques have included statisti-
cal inferences about the S-S reliability. In Refs. [40,41], the estimation of the S-S reliability via
the RSS for independent random samples from the exponential and Weibull distributions,
respectively, was the main topic. Using an independent Lindley distribution, an estimate
of R♦♦ has been provided in ref. [42]. The inferences for the S-S reliability of Burr type
X distributions based on the RSS were discussed in ref. [43]. For more recent studies, the
reader can refer to refs. [44–51].

In this paper, despite the fact that alternative frequentist methods can sometimes
yield estimates that are better than the maximum likelihood (ML) method, little attention
has been devoted to using them to estimate the S-S reliability based on the RSS. This is
why, in addition to the ML method, we seek to apply frequentist estimation methods in



Symmetry 2023, 15, 1121 4 of 24

this study. The suggested frequentist estimation methods include the maximum product
spacing (MPS), least squares (LS), weighted LS (WLS), Cramér–von-Mises (CV), Anderson–
Darling (AD), and right tail AD (RTAD) methods. In this research, we concentrate on
seven alternative estimation techniques to estimate R♦♦ = P(Q < W), when Q and W
are independent random variables that follow the UGD and analyze the behavior of the
various estimates for various sample sizes and parameter values via the SRS and RSS. The
findings are validated using actual data sets.

The structure of the work is as follows: in Section 2, we provide the ML estimate
(MLE) of the S-S reliability. The reliability estimate based on the LS and WLS techniques is
provided in Section 3. We derive the estimate in Section 4 by employing the MPS technique.
In Section 5, the S-S reliability estimate is generated utilizing the AD, RTAD, and CV
approaches. Both simulation research and its application to actual scenarios are discussed
in Sections 6 and 7, with comparisons between the RSS estimates and their SRS counterparts.
Section 8 concludes the argument in the paper.

2. Maximum Likelihood Estimate of R♦♦

In this section, we look at the estimation of R♦♦ = P(Q < W), when both stress Q
and strength W are modeled by random variables with UGDs defined with a common
known scale parameter. The SRS and RSS are considered.

Hence, let W ∼ UGD(τ1, ϕ) and Q ∼ UGD(τ2, ϕ) be independent random variables,
with W of PDF fW(w) and Q of CDF GQ(q). Then, the expression of R♦♦ is

R♦♦ =
∫ 1

0
GQ(w) fW(w)dw = τ1 ϕ

∫ 1

0
w−ϕ−1 exp

[
−(τ1 + τ2)

(
w−ϕ − 1

)]
dw =

τ1

τ1 + τ2
. (3)

In light of this, the S-S reliability is a function of τ1 and τ2. In accordance with the
MLE’s invariance property, an efficient estimate of R♦♦ is constructed by inserting the
MLEs of τ1 and τ2 in (3).

2.1. MLE Based on the RSS

Let Wl1(l1)d1
be the order statistics (OS) of the l1-th sample, l1 = (1, 2, . . . , nw), in the

d1-th cycle (d1 = 1, 2, . . . , aw) from the UGD(τ1, ϕ). Let Ql2(l2)d2
be the OS of the l2-th

sample, l2 = (1, 2, . . . , nq), in the d2-th cycle (d2 = 1, 2, . . . , aq) from the the UGD(τ2, ϕ).
Here, n†

1 = nwaw, and n†
2 = nqaq are the sample sizes of Wl1(l1)d1

, and Ql2(l2)d2
, respectively,

where nw and nq are the set sizes and aw, aq are the cycle numbers.
For the purpose of convenience, we refer to Wl1(l1)d1

and Ql2(l2)d2
, respectively, as Wl1d1

and Ql2d2 throughout the remainder of the work. The PDFs of Wl1d1 and Ql2d2 are precisely
the PDFs of the l1-th and l2-th OS assuming that the ordering of the observations is perfect.
The PDF of Wl1d1 , for τ1, ϕ > 0, is provided by:

gWl1d1
(wl1d1) =

nw!
(l1 − 1)!(nw − l1)!

g(wl1d1)
[
G(wl1d1)

]l1−1[1− G(wl1d1)
]nw−l1

=
nw! τ1 ϕ

(l1 − 1)!(nw − l1)!
w−ϕ−1

l1d1
exp

[
−τ1l1

(
w−ϕ

l1d1
− 1
)] [

1− exp
[
−τ1

(
w−ϕ

l1d1
− 1
)]]nw−l1

,

with wl1d1 ∈ (0, 1). It should be noted that a similar process is used to produce the PDF
of Ql2d2 . For the sake of brevity, we will not copy it here. The likelihood function (LF) of
the stress Q and the strength W based on the RSS with the perfect ranking assumption is
expressed as follows:

L◦◦(τ1, τ2) ∝
nw

∏
l1=1

aw

∏
d1=1

τ1 ϕw−ϕ−1
l1d1

exp
[
−τ1l1

(
w−ϕ

l1d1
− 1
)] [

1− exp
[
−τ1

(
w−ϕ

l1d1
− 1
)]]nw−l1

×
nq

∏
l2=1

aq

∏
d2=1

τ2 ϕq−ϕ−1
l2d2

exp
[
−τ2l2

(
q−ϕ

l2d2
− 1
)] [

1− exp
[
−τ2

(
q−ϕ

l2d2
− 1
)]]nq−l2

.

(4)
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The log-LF of (4) based on the RSS, is then provided by:

`◦◦ ∝ awnw log(τ1 ϕ)−
nw

∑
l1=1

aw

∑
d1=1

[
τ1l1

(
w−ϕ

l1d1
− 1
)
+ (ϕ + 1) log wl1d1

]
+

nw

∑
l1=1

aw

∑
d1=1

(nw − l1) log
[
1− exp

[
−τ1

(
w−ϕ

l1d1
− 1
)]]

+aqnq log(τ2 ϕ)−
nq

∑
l2=1

aq

∑
d2=1

[
τ2l2

(
q−ϕ

l2d2
− 1
)
+ (ϕ + 1) log ql2d2

]
+

nq

∑
l2=1

aq

∑
d2=1

(nq − l2) log
[
1− exp

[
−τ2

(
q−ϕ

l2d2
− 1
)]]

.

The MLEs of τ1 and τ2, denoted by τ̂1 and τ̂2, respectively, are obtained by maximizing
this function (with respect to τ1 and τ2). To achieve this aim, a differentiable approach is
also possible.

Thus, we consider

∂`◦◦

∂τ1
=

n†
1

τ1
−

nw

∑
l1=1

aw

∑
d1=1

l1
(

w−ϕ
l1d1
− 1
)
+

nw

∑
l1=1

aw

∑
d1=1

(nw − l1)
(

w−ϕ
l1d1
− 1
)

exp
[
τ1

(
w−ϕ

l1d1
− 1
)]
− 1

, (5)

and

∂`◦◦

∂τ2
=

n†
2

τ2
−

nq

∑
l2=1

aq

∑
d2=1

l2
(

q−ϕ
l2d2
− 1
)
+

nq

∑
l2=1

aq

∑
d2=1

(nq − l2)
(

q−ϕ
l2d2
− 1
)

exp
[
τ2

(
q−ϕ

l2d2
− 1
)]
− 1

. (6)

By equating the equations in (5) and (6) to zero and solving the obtained system, it is
possible to derive τ̂1 and τ̂2. Consequently, the MLE of R♦♦ based on the RSS is given by:

R̂♦♦ =
τ̂1

τ̂1 + τ̂2
.

Hence, the MLE R̂♦♦ depends only on τ̂1 and τ̂2.

2.2. MLE Based on the SRS

Here, the MLE of R♦♦ is obtained under the SRS. Let Wi1 , i1 = (1, 2, . . . , n†
1) and

Qi2 , i2 = (1, 2, . . . , n†
2) be a two independent SRS from the UGD(τ1, ϕ) and UGD(τ2, ϕ),

respectively. The LF of the two observed samples is given by:

L◦◦1 (τ1, τ2) =
n†

1

∏
i1=1

τ1 ϕw−ϕ−1
i1

exp
[
−τ1

(
w−ϕ

i1
− 1
)] n†

2

∏
i2=1

τ2 ϕq−ϕ−1
i2

exp
[
−τ2

(
q−ϕ

i2
− 1
)]

. (7)

The log-LF of (7) based on the SRS is then provided by:

`◦◦1 = n†
1 log(τ1 ϕ)−

n†
1

∑
i1=1

[
(ϕ + 1) log wi1 + τ1

(
w−ϕ

i1
− 1
)]

+ n†
2 log(τ2 ϕ)−

n†
2

∑
i2=1

[
(ϕ + 1) log qi2 + τ2

(
q−ϕ

i2
− 1
)]

.

The MLEs for τ1 and τ2, say τ̂11 and τ̂22, respectively, are obtained by maximizing this
function. To this end, a differentiable approach is also possible. Thus, we consider

∂`◦◦1
∂τ1

=
n†

1
τ1
−

n†
1

∑
i1=1

(
w−ϕ

i1
− 1
)

,
∂`◦◦1
∂τ2

=
n†

2
τ2
−

n†
2

∑
i2=1

(
q−ϕ

i2
− 1
)

. (8)

The MLEs are given as the solution of the non-linear equations in (8) after equating them with

zero using the numerical technique. As a result, the MLE ˆ̂R
♦♦

of R♦♦ based on the SRS is
obtained by inserting τ̂11 and τ̂22 in (3), according to the invariance property as below:

ˆ̂R
♦♦

=
τ̂11

τ̂11 + τ̂22
.
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3. LS and WLS Estimates of R♦♦

For estimating the unknown parameters, the LS and WLS procedures are well known
(see ref. [52]). Here, the two methods for determining the estimate of R♦♦ = P(Q < W)
are given.

Let W1:n†
1

. . . , Wn†
1 :n†

1
be an OS forming a RSS of size n†

1 = nwaw from the UGD(τ1, ϕ).

Also, let Q1:n†
2

. . . , Qn†
2 :n†

2
be an OS forming a RSS of size n†

2 = nqaq from the UGD(τ2, ϕ).
Here, nw and nq are the set sizes and aw and aq are the cycle numbers. The LS estimate

(LSE) τ̂L
1 of τ1 is obtained by minimizing

n†
1

∑
j1=1

[
G(w(j1 :n†

1)
)− j1

n†
1+1

]2
, that is

n†
1

∑
j1=1

[
exp

[
−τ1

(
w−ϕ

(j1 :n†
1)
− 1
)]
− j1

n†
1 + 1

]2

.

Hence, τ̂L
1 is the solution of the following equation:

n†
1

∑
j1=1

[[
exp

[
−τ̂L

1

(
w−ϕ

j1 :n†
1
− 1
)]]
− j1

n†
1 + 1

]
exp

[
−τ̂L

1

(
w−ϕ

j1 :n†
1
− 1
)](

w−ϕ

j1 :n†
1
− 1
)
= 0. (9)

Similarly, the LSE τ̂L
2 of τ2 is obtained by solving the following equation:

n†
2

∑
j2=1

[[
exp

[
−τ̂L

2

(
q−ϕ

j2 :n†
2
− 1
)]]
− j2

n†
2 + 1

]
exp

[
−τ̂L

2

(
q−ϕ

j2 :n†
2
− 1
)](

q−ϕ

j2 :n†
2
− 1
)
= 0. (10)

Hence, the LSE R̂L♦♦ of R♦♦ based on the RSS is obtained by putting produced τ̂L
1

and τ̂L
2 from (9) and (10) in (3). Furthermore, the WLS estimate (WLSE) τ̂W

1 of τ1 is obtained
by minimizing

n†
1

∑
j1=1

(n†
1 + 1)2

(n†
1 + 2)

j1(n†
1 − j1 + 1)

[
exp

[
−τ1

(
w−ϕ

(j1 :n†
1)
− 1
)]
− j1

n†
1 + 1

]2

.

Hence, τ̂W
1 is the solution of the following equation:

n†
1

∑
j1=1

(n†
1 + 1)2

(n†
1 + 2)

j1(n†
1 − j1 + 1)

[[
exp

[
−τ̂W

1

(
w−ϕ

j1 :n†
1
− 1
)]]
− j1

n†
1 + 1

]
exp

[
−τ̂W

1

(
w−ϕ

j1 :n†
1
− 1
)](

w−ϕ

j1 :n†
1
− 1
)
= 0. (11)

Similarly, the WLSE τ̂W
2 of τ2 is obtained by solving the following equation:

n†
2

∑
j2=1

(n†
2 + 1)2

(n†
2 + 2)

j2(n†
2 − j2 + 1)

[[
exp

[
−τ̂W

2

(
q−ϕ

j2 :n†
2
− 1
)]]
− j2

n†
2 + 1

]
exp

[
−τ̂W

2

(
q−ϕ

j2 :n†
2
− 1
)](

q−ϕ

j2 :n†
2
− 1
)
= 0. (12)

Hence, the WLSE R̂W♦♦ of R♦♦ based on the RSS is obtained by putting the deter-
mined estimates from (11) and (12) in (3).

Additionally, using the above similar procedure, the LSEs τ̂L
11 and τ̂L

22 of τ1 and τ2,
respectively, based on the SRS W(1), W(2), . . . , W(n†

1)
and Q(1), Q(2), . . . , Q(n†

2)
of sizes n†

1 and

n†
2, respectively, are obtained by solving numerically the following nonlinear equations:

n†
1

∑
i1=1

[[
exp

[
−τ̂L

11

(
w−ϕ

(i1)
− 1
)]]
− i1

n†
1 + 1

]
exp

[
−τ̂L

11

(
w−ϕ

(i1)
− 1
)](

w−ϕ

(i1)
− 1
)
= 0, (13)
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and

n†
2

∑
i2=1

[[
exp

[
−τ̂L

22

(
q−ϕ

(i2)
− 1
)]]
− i2

n†
2 + 1

]
exp

[
−τ̂L

22

(
q−ϕ

(i2)
− 1
)](

q−ϕ

(i2)
− 1
)
= 0. (14)

In order to determine the LSE ˆ̂R
L♦♦

of R♦♦ based on the SRS, we insert τ̂L
11 and τ̂L

22 that
generated from (13) and (14) in (3). In a similar way, the WLSEs τ̂W

11 and τ̂W
22 of τ1 and τ2,

respectively, based on the SRS W(1), W(2), . . . , W(n†
1)

and Q(1), Q(2), . . . , Q(n†
2)

of sizes n†
1 and

n†
2, respectively, are obtained by solving numerically the following nonlinear equations:

n†
1

∑
i1=1

(n†
1 + 1)2

(n†
1 + 2)

i1(n†
1 − i1 + 1)

[[
exp

[
−τ̂W

11

(
w−ϕ

(i1)
− 1
)]]
− i1

n†
1 + 1

]
exp

[
−τ̂W

11

(
w−ϕ

(i1)
− 1
)](

w−ϕ

(i1)
− 1
)
= 0, (15)

and

n†
2

∑
i2=1

(n†
2 + 1)2

(n†
2 + 2)

i2(n†
2 − i2 + 1)

[[
exp

[
−τ̂W

22

(
q−ϕ

(i2)
− 1
)]]
− i2

n†
2 + 1

]
exp

[
−τ̂W

22

(
q−ϕ

(i2)
− 1
)](

q−ϕ

(i2)
− 1
)

= 0. (16)

As a result, putting τ̂W
11 and τ̂W

22 generated from (15) and (16) in (3) yields the WLSE
ˆ̂R

W♦♦
of R♦♦ based on the SRS.

4. Maximum Product Spacing Estimate of R♦♦

Reference [53] proposed the MPS method for the parameter estimation as an alternative
to the ML method. Separately, ref. [54] first suggested it as a reasonable approximation
for the Kullback-Leibler information measure. In this section, the MPS estimate (MPSE) of
R♦♦ is discussed using the RSS and SRS.

Let W1:n†
1

. . . , Wn†
1 :n†

1
be an OS forming an RSS of size n†

1 = nwaw from the UGD(τ1, ϕ).

Here, the spacing of a random sample of size n†
1 = nwaw is defined as Dj1(τ1) = G(w(j1 :n†

1)
)−

G(w(j1−1:n†
1)
), j1 = 1, 2, . . . , n†

1, G(w(0)) = 0, G(w(n†
1+1:n†

1)
) = 1. The desired estimate τ̂M

1 of

τ1 is computed by maximizing the geometric mean of spacings

[n†
1+1
∏

j1=1
Dj1(τ1)

]1
/
(n†

1+1)
.

Alternatively, we maximize (n†
1 + 1)−1

n†
1+1
∑

j1=1
log
(

Dj1(τ1)
)

and compute the desired estimate

of τ1 from the following equation:

1
n†

1+1

n†
1+1
∑

j1=1

1
Dj1

(τ1)

{
exp

[
−τ̂M

1

(
w−ϕ

(j1−1:n†
1)
− 1
)](

w−ϕ

(j1−1:n†
1)
− 1
)
− exp

[
−τ̂M

1

(
w−ϕ

(j1 :n†
1)
− 1
)](

w−ϕ

(j1 :n†
1)
− 1
)}

= 0. (17)

Next, let Q(1:n†
2)

. . . , Q(n†
2 :n†

2)
be an OS forming a RSS of size n†

2 = nqaq from the UGD(τ2, ϕ).
Let us define Dj2(τ2) = G(q(j2 :n†

2)
)− G(q(j2−1:n†

2)
), j2 = 1, 2, . . . , n†

2, G(q(0)) = 0, G(q(n†
2+1:n†

2)
) = 1. The desired

estimate τ̂M
2 of τ2 is obtained from the following equation:

1
n†

2+1

n†
2+1
∑

j2=1

1
Dj2 (τ2)

{
exp

[
−τ̂M

2

(
q−ϕ

(j2−1:n†
2)
− 1
)](

q−ϕ

(j2−1:n†
2)
− 1
)
− exp

[
−τ̂M

2

(
q−ϕ

(j2 :n†
2)
− 1
)](

q−ϕ

(j2 :n†
2)
− 1
)}

= 0. (18)

Thus, it is possible to determine the MPSE R̂M♦♦ of R♦♦ after inserting τ̂M
1 and τ̂M

2
produced from (17) and (18) in (3).

Secondly, the MPSE ˆ̂R
M♦♦

is then provided based on the SRS. Using the above similar
procedure, the MPEs τ̂M

11 and τ̂M
22 of τ1 and τ2, respectively, from the SRS W(1), W(2), . . . , W(n†

1)

and Q(1), Q(2), . . . , Q(n†
2)

of sizes n†
1 and n†

2, respectively, are obtained. The uniform
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spacing is defined by Di1(τ1) = G(w(i1)) − G(w(i1−1)), i1 = 1, . . . , n†
1 with G(w(0)) = 0,

G(w(n†
1)
) = 1, for the strength W. In addition, for the stress Q, the uniform spacing is

Di2(τ2) = G(q(i2)) − G(q(i2−1)), i2 = 1, . . . , n†
2 with G(q(0)) = 0, G(q(n†

2)
) = 1. Hence,

the MPSEs τ̂M
11 and τ̂M

22 are obtained by maximizing (n†
1 + 1)−1

n†
1+1
∑

i1=1
log
(

Di1(τ1)
)

and

(n†
2 + 1)−1

n†
2+1
∑

i2=1
log
(

Di2(τ2)
)
, respectively. As a result, the desired estimates of τ1 and τ2 are

obtained by solving the following equations:

1
n†

1 + 1

n†
1+1

∑
i1=1

1
Di1(τ1)

{
exp

[
−τ̂M

11

(
w−ϕ

(i1−1) − 1
)]

τ̂M
11

(
w−ϕ

(i1−1) − 1
)
− exp

[
−τ̂M

11

(
w−ϕ

(i1)
− 1
)]

τ̂M
11

(
w−ϕ

(i1)
− 1
)}

= 0, (19)

and

1
n†

2 + 1

n†
2+1

∑
i2=1

1
Di2(τ2)

{
exp

[
−τ̂M

22

(
q−ϕ

(i2−1) − 1
)]

τ̂M
22

(
q−ϕ

(i2−1) − 1
)
− exp

[
−τ̂M

22

(
q−ϕ

(i2)
− 1
)]

τ̂M
22

(
q−ϕ

(i2)
− 1
)}

= 0. (20)

Consequently, ˆ̂R
M♦♦

is derived after putting τ̂M
11 and τ̂M

22 produced from (19) and (20)
in (3).

5. Other Estimation Methods

The minimizing of the test statistics between the empirical CDF and theoretical CDF
may be used to support the proposal of a number of estimating methods. Here, we take
into account the AD, RTAD, and CV methods to obtain the estimate of R♦♦.

5.1. Estimates of R♦♦ Based on the RSS

Suppose that W(1:n†
1)

. . . , W(n†
1 :n†

1)
is an OS forming a RSS of size n†

1 = nwaw from the

UGD(τ1, ϕ). Also, let Q(1:n†
2)

. . . , Q(n†
2 :n†

2)
be an OS forming a RSS of size n†

2 = nqaq from
the UGD(τ2, ϕ).

C1 =
−1

12n†
1
+

n†
1

∑
j1=1

[
G(w(j1 :n†

1)
)− 2j1 − 1

2n†
1

]2

=
−1

12n†
1
+

n†
1

∑
j1=1

[
exp

[
−τ1

(
w−ϕ

(j1 :n†
1)
− 1
)]
− 2j1 − 1

2n†
1

]2

, (21)

and

C2 =
−1

12n†
2
+

n†
2

∑
j2=1

[
G(q(j2 :n†

2)
)− 2j2 − 1

2n†
2

]2

=
−1

12n†
2
+

n†
2

∑
j2=1

[
exp

[
−τ2

(
q−ϕ

(j2 :n†
2)
− 1
)]
− 2j2 − 1

2n†
2

]2

. (22)

After inserting the results of τ̂C
1 and τ̂C

2 from (21) and (22) in (3), the estimate R̂C♦♦

based on the CV technique is consequently provided.
The AD estimates (ADEs) τ̂A

1 and τ̂A
2 of τ1 and τ2, respectively, are produced after

minimizing the following functions:

A1 = −n†
1 −

1
n†

1

n†
1

∑
j1=1

(2j1 − 1)
[
log G(w(j1 :n†

1)
) + log

[
1− G(w(n†

1−j1+1:n†
1)
)
]]

= −n†
1 −

1
n†

1

n†
1

∑
j1=1

(2j1 − 1)
{[

τ1

(
1− w−ϕ

(j1 :n†
1)

)]
+ log

[
1− exp

[
−τ1

(
w−ϕ

(n†
1−j1+1: n†

1)
− 1
)]]}

,

and
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A2 = −n†
2 −

1
n†

2

n†
2

∑
j2=1

(2j2 − 1)
[
log G(q(j2 : n†

2)
) + log

[
1− G(q(n†

2−j2+1: n†
2)
)
]]

= −n†
2 −

1
n†

2

n†
2

∑
j2=1

(2j2 − 1)
{[

τ2

(
1− q−ϕ

(j2 : n†
2)

)]
+ log

[
1− exp

[
−τ2

(
q−ϕ

(n†
2−j2+1: n†

2)
− 1
)]]}

.

The reliability estimate R̂A♦♦ based on the AD method is provided after putting the
produced τ̂A

1 and τ̂A
2 in (3).

The RTAD estimates (RTADEs) τ̂TA
1 and τ̂TA

2 of τ1 and τ2, respectively, are produced
after minimizing the following functions:

TA1 =
n†

1
2
− 2

n†
1

∑
j1=1

G(w(j1 : n†
1)
)− 1

n†
1

n†
1

∑
j1=1

(2j1 − 1)
[
log G(w(n†

1−j1+1: n†
1)
)
]

=
n†

1
2
− 2

n†
1

∑
j1=1

exp
[
−τ1

(
w−ϕ

(j1: n†
1)
− 1
)]

+
1

n†
1

n†
1

∑
j1=1

(2j1 − 1)
[

τ1

(
w−ϕ

(n†
1−j1+1: n†

1)
− 1
)]

,

and

TA2 =
n†

2
2
− 2

n†
2

∑
j2=1

G(q(j2 : n†
2)
)− 1

n†
2

n†
2

∑
j2=1

(2j2 − 1)
[
log G(q(n†

2−j2+1: n†
2)
)
]

=
n†

2
2
− 2

n†
2

∑
j2=1

exp
[
−τ2

(
q−ϕ

(j2: n†
2)
− 1
)]

+
1

n†
2

n†
2

∑
j2=1

(2j2 − 1)
[

τ2

(
q−ϕ

(n†
2−j2+1: n†

2)
− 1
)]

.

The reliability estimate R̂TA♦♦ based on the RTAD method is provided after putting
τ̂TA

1 and τ̂TA
2 in (3).

5.2. Estimates of R♦♦ Based on the SRS

Here, the CVE, ADE, and RTADE of R♦♦ are obtained under the SRS. Let Wi1 ,
i1 = (1, 2, . . . , n†

1) be a SRS from the UGD(τ1, ϕ), and suppose that Qi2 , i2 = (1, 2, . . . , n†
2)

is a SRS from the UGD(τ2, ϕ), respectively, all independent. With the minimization of the
following functions, the CVEs τ̂C

11 and τ̂C
22 of τ1 and τ2, respectively, are generated:

C′1 =
−1

12n†
1
+

n†
1

∑
i1=1

[
exp

[
−τ1

(
w−ϕ

(i1)
− 1
)]
− 2i1 − 1

2n†
1

]2

,

and

C′2 =
−1

12n†
2
+

n†
2

∑
i2=1

[
exp

[
−τ2

(
q−ϕ

(i2)
− 1
)]
− 2i2 − 1

2n†
2

]2

.

Consequently, the reliability estimate ˆ̂R
C♦♦

based on the CV method is obtained after
putting τ̂C

11 and τ̂C
22 in (3). The ADEs τ̂A

11 and τ̂A
22 of τ1 and τ2, respectively, are produced

after minimizing the following functions:

A′1 = −n†
1 −

1
n†

1

n†
1

∑
i1=1

(2i1 − 1)
{[

τ1

(
1− w−ϕ

(i1)

)]
+ log

[
1− exp

[
−τ1

(
w−ϕ

(n†
1−i1+1)

− 1
)]]}

,

and

A′2 = −n†
2 −

1
n†

2

n†
2

∑
i2=1

(2i2 − 1)
{[

τ2

(
1− q−ϕ

(i2)

)]
+ log

[
1− exp

[
−τ2

(
q−ϕ

(n†
2−i2+1)

− 1
)]]}

.
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The reliability estimate ˆ̂R
A♦♦

based on the AD method is provided after putting τ̂A
11

and τ̂A
22 in (3).

The RTADEs τ̂TA
11 and τ̂TA

22 of τ1 and τ2, respectively, are produced after minimizing
the following functions:

TA′1 =
n†

1
2
− 2

n†
1

∑
i1=1

exp
[
−τ1

(
w−ϕ

(i1)
− 1
)]

+
1

n†
1

n†
1

∑
i1=1

(2i1 − 1)
[

τ1

(
w−ϕ

(n†
1−i1+1)

− 1
)]

,

and

TA′2 =
n†

2
2
− 2

n†
2

∑
i2=1

exp
[
−τ2

(
q−ϕ
(i2)
− 1
)]

+
1

n†
2

n†
2

∑
i2=1

(2i2 − 1)
[

τ2

(
q−ϕ

(n†
2−i2+1)

− 1
)]

.

The reliability estimate ˆ̂R
TA♦♦

based on the RTAD method is provided after putting
τ̂TA

11 and τ̂TA
22 in (3).

6. Numerical Evaluation

Through the use of MathCAD software, version 14.0 we conduct a simulation study
in this section to assess how well the suggested methods for estimating R♦♦ under the
RSS and SRS perform. We obtain the absolute bias (AB) and mean squared error (MSE)
criteria for different estimates. Additionally, the R♦♦ estimates’ relative efficiencies (REs)
are provided, which are defined as follows:

RE(R♦♦) =
MSESRS(

ˆ̂R
♦♦

)

MSERSS(R̂♦♦)
.

• The parameter values are chosen as (τ1, τ2) = (3, 2), (0.8, 2), (5, 2), (3, 0.2), ϕ = 2,
and the true value of R♦♦ is determined as R♦♦ = 0.2857, 0.6000, 0.7143, and 0.9375,
respectively.

• The observed RSS w1d1 . . . , wnwd1 , d1 = 1, . . . ., aw from the strength and q1d2 , . . . .qnqd2 ,
d2 = 1, . . . , aq, from the stress having the set sizes: (nw, nq) = (2,2), (2,3), (3,3), (3,4),
(4,4), (4,5), (5,5), with the cycle numbers aw = aq = 10. The sample sizes are (n†

1, n†
2) =

(nwaw, nqaq) = (20,20), (20,30), (30,40), (40.40),(40,50), (50,50).
• In view of the SRS, the observed SRS w1 . . . , wn†

1
, q1 . . . , qn†

2
, are drawn from strength

and stress with sample sizes (n†
1, n†

2) = (20,20), (20,30), (30,40), (40.40), (40,50), (50,50).
• Using the inverse transformation method, 1000 random samples are created from the

strength W ∼UGD(τ1, ϕ), and stress Q ∼UGD(τ2, ϕ).
• Different estimation techniques, along with the selected sample scheme, were used to

determine the MLE, MPSE, LSE, WLSE, CVE, ADE, and RTADE, namely, R̂♦♦, R̂M♦♦,

R̂L♦♦, R̂W♦♦, R̂C♦♦, R̂A♦♦, R̂TA♦♦ based on the RSS, and ˆ̂R
♦♦

, ˆ̂R
L♦♦

, ˆ̂R
W♦♦

, ˆ̂R
M♦♦

,
ˆ̂R

C♦♦
, ˆ̂R

A♦♦
, ˆ̂R

TA♦♦
based on the SRS.

• The AB, MSE, and RE of the different R♦♦ estimates are summarized in Tables 1–3
and described graphically in Figures 2–9.

We note the following based on the measurement values in these tables and figures.

• All the reliability estimates based on the RSS are more efficient than the others based
on the SRS in most situations (see Tables 1 and 2).

• For a variety of n†
1, and n†

2, the MSEs of all the estimates under the RSS are often lower
than those under the SRS (see Tables 1 and 2).

• In the majority of the cases, as seen in Figure 2, the MSEs of the R♦♦ estimates decrease
as nw and nq increase.
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• The MSE of the R♦♦ estimates for the RTAD method has the highest values (see
Figures 2 and 3).

• The MSE of the R♦♦ estimates for the MPS method has the smallest values, as seen in
Figures 2 and 3.

• In the majority of the time, the MSEs of the R♦♦ estimates decrease as (n†
1, n†

2) in-
creases, also the R♦♦ estimates from the MPS method typically take the lowest values
when using the SRS (see Table 2 and Figures 4 and 5).

• For both sampling methods, the MSEs of the R♦♦ estimates for the MPS method have
the lowest values. While the MSEs of the R♦♦ estimates for the AD method take the
highest values in the SRS, the highest values are given to the MSEs of the estimates for
the RTAD method in the RSS scheme.

• Figures 6 and 7 show that the RSS is preferable to the SRS with respect to MSE
measures in most cases.

• Figures 8 and 9 show that the RTAD is the most efficient method for R♦♦ at the true
values R♦♦ = 0.2857, 0.9375 and aw = aq = 10.

• The RE increases as nw and nq increase (Figures 8 and 9).
• The MSE always decreases as nw and nq increase, indicating that the estimates are all

consistent.
• The estimates become more accurate as n†

1 and n†
2 increase, indicating that they are

asymptotically unbiased.
• The MSE always decreases as the true value of R♦♦ increases, indicating that the

estimates are all consistent.

Figure 2. MSE of the R♦♦ estimates for all the methods at R♦♦ = 0.60000 in the RSS.

Figure 3. MSE of the R♦♦ estimates for all the methods at R♦♦ = 0.71430 in the RSS.
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Figure 4. MSE of the R♦♦ estimates for all the methods at R♦♦ = 0.28570 in the SRS.

Figure 5. MSE of the R♦♦ estimates for all the methods at R♦♦ = 0.93750 in the SRS.

Figure 6. MSE of the R♦♦ estimates for all the methods at (nw, nq) = (4, 4), (n†
1, n†

2) = (40, 40) and
R♦♦ = 0.60000.
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Figure 7. MSE of the R♦♦ estimates for all the methods at (nw, nq) = (2, 3), (n†
1, n†

2) = (20, 30) and
R♦♦ = 0.71430.

Figure 8. RE of the R♦♦ estimates at R♦♦ = 0.28570 for different (nw, nq) at aw = aq = 10.

Figure 9. RE of the R♦♦ estimates at R♦♦ = 0.93750 for different (nw, nq) at aw = aq = 10.
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Table 1. Measures of different R♦♦ estimates for the UGD under the RSS.

R♦♦ (nw, nq) (n†
1 , n†

2)
RSS

Measures ML MPS LS WLS CV AD RTAD

0.28570

(2,2) (20,20)
AB 0.00984 0.00526 0.00824 0.00645 0.00735 0.00842 0.00743

MSE 0.00584 0.00518 0.00605 0.00598 0.00672 0.00636 0.00954

(2,3) (20,30)
AB 0.00865 0.00515 0.00764 0.00532 0.00634 0.00804 0.00694

MSE 0.00484 0.00496 0.00573 0.00554 0.00582 0.00563 0.00832

(3,3) (30,30)
AB 0.00724 0.00456 0.00698 0.00486 0.00597 0.00784 0.00617

MSE 0.00421 0.00441 0.00513 0.00496 0.00524 0.00503 0.00785

(3,4) (30,40)
AB 0.00736 0.00414 0.00615 0.00443 0.00524 0.00705 0.00585

MSE 0.00384 0.00327 0.00475 0.00425 0.00495 0.00486 0.00715

(4,4) (40,40)
AB 0.00635 0.00385 0.00595 0.00419 0.00492 0.00674 0.00516

MSE 0.00284 0.00224 0.00386 0.00326 0.00406 0.00396 0.00625

(4,5) (40,50)
AB 0.00574 0.00313 0.00553 0.00394 0.00421 0.00618 0.00497

MSE 0.00214 0.00196 0.00314 0.00273 0.00374 0.00304 0.00535

(5,5) (50,50)
AB 0.00527 0.00265 0.00428 0.00316 0.00407 0.00544 0.00421

MSE 0.00197 0.00115 0.00245 0.00207 0.00274 0.00235 0.00432

0.60000

(2,2) (20,20)
AB 0.00743 0.00498 0.00072 0.00039 0.00434 0.00084 0.00583

MSE 0.00477 0.0039 0.0054 0.00498 0.00611 0.00468 0.00783

(2,3) (20,30)
AB 0.00718 0.00402 0.00034 0.00032 0.00343 0.00027 0.00924

MSE 0.00347 0.00303 0.00386 0.00374 0.00423 0.00345 0.00531

(3,3) (30,30)
AB 0.00722 0.00186 0.00035 0.00021 0.0011 0.0003 0.00356

MSE 0.00235 0.00219 0.00262 0.0024 0.00281 0.00235 0.00345

(3,4) (30,40)
AB 0.00662 0.0038 0.00026 0.00085 0.00314 0.00025 0.0044

MSE 0.00186 0.00174 0.00211 0.00197 0.00225 0.00189 0.00287

(4,4) (40,40)
AB 0.00149 0.00437 0.00014 0.00022 0.001 0.00012 0.00215

MSE 0.00118 0.00125 0.00146 0.00136 0.00158 0.00129 0.00167

(4,5) (40,50)
AB 0.00099 0.00972 0.0028 0.00236 0.00011 0.0032 0.00189

MSE 0.00094 0.00086 0.00128 0.0012 0.00095 0.00119 0.0011

(5,5) (50,50)
AB 0.00119 0.00355 0.00011 0.00011 0.00098 0.0001 0.00316

MSE 0.00075 0.00071 0.0011 0.001 0.00107 0.00099 0.00097

0.71430

(2,2) (20,20)
AB 0.00865 0.00122 0.00029 0.00206 0.00887 0.00012 0.00815

MSE 0.00385 0.00354 0.00422 0.00396 0.00465 0.0038 0.00578

(2,3) (20,30)
AB 0.00656 0.00137 0.00118 0.00204 0.00823 0.00012 0.00952

MSE 0.00259 0.00244 0.00303 0.00279 0.003 0.00253 0.00395

(3,3) (30,30)
AB 0.00216 0.00143 0.00158 0.00001 0.00448 0.00257 0.0043

MSE 0.00185 0.00163 0.0019 0.00178 0.00205 0.00165 0.0022

(3,4) (30,40)
AB 0.00227 0.01319 0.0021 0.00114 0.00288 0.00248 0.00254

MSE 0.0015 0.00131 0.00167 0.00152 0.00165 0.00147 0.00161

(4,4) (40,40)
AB 0.00862 0.00487 0.00222 0.00338 0.00658 0.0011 0.00659

MSE 0.0012 0.00114 0.00122 0.00124 0.00143 0.00123 0.0014

(4,5) (40,50)
AB 0.0025 0.00112 0.00064 0.00111 0.00471 0.00039 0.00569

MSE 0.00101 0.00082 0.0011 0.00108 0.00116 0.0011 0.0011

(5,5) (50,50)
AB 0.00213 0.01059 0.0012 0.00221 0.00479 0.00012 0.00539

MSE 0.00082 0.00063 0.00099 0.00084 0.00097 0.00084 0.00086



Symmetry 2023, 15, 1121 15 of 24

Table 1. Cont.

R♦♦ (nw, nq) (n†
1 , n†

2)
RSS

Measures ML MPS LS WLS CV AD RTAD

0.93750

(2,2) (20,20)
AB 0.00274 0.00148 0.00646 0.00468 0.00128 0.00441 0.00191

MSE 0.00077 0.00052 0.00093 0.00084 0.00083 0.00077 0.00127

(2,3) (20,30)
AB 0.00149 0.00129 0.00605 0.00453 0.00047 0.00411 0.00203

MSE 0.00049 0.00036 0.00058 0.00066 0.00058 0.00056 0.00069

(3,3) (30,30)
AB 0.0015 0.00113 0.0048 0.00307 0.00046 0.00335 0.00168

MSE 0.00034 0.0003 0.00048 0.00041 0.00038 0.00052 0.00046

(3,4) (30,40)
AB 0.00019 0.0011 0.00488 0.00368 0.00069 0.00338 0.00204

MSE 0.00026 0.00021 0.00034 0.00029 0.0003 0.00041 0.00026

(4,4) (40,40)
AB 0.00094 0.00946 0.00365 0.0023 0.00034 0.00256 0.00083

MSE 0.00015 0.00012 0.00027 0.00022 0.00025 0.00034 0.00017

(4,5) (40,50)
AB 0.00108 0.00855 0.00303 0.00183 0.00018 0.00184 0.00069

MSE 0.00013 0.0001 0.00021 0.00018 0.00019 0.00019 0.00014

(5,5) (50,50)
AB 0.00163 0.00702 0.00247 0.00108 0.0007 0.00119 0.00015

MSE 0.00009 0.00007 0.00018 0.00016 0.00016 0.00015 0.00011

Table 2. Measures of different R♦♦ estimates for the UGD under the SRS.

R♦♦ (n†
1 , n†

2)
SRS

Measures ML MPS LS WLS CV AD RTAD

0.28570

(20,20)
AB 0.17519 0.16174 0.70317 0.03157 0.26093 0.68545 0.27421

MSE 0.04012 0.03529 0.1537 0.06734 0.2734 0.47193 0.18969

(20,30)
AB 0.0155 0.08533 0.00692 0.15086 0.06247 0.68119 0.03833

MSE 0.03795 0.02963 0.1251 0.04891 0.27865 0.44683 0.1861

(30,30)
AB 0.01155 0.01964 0.00495 0.1309 0.04692 0.5967 0.02273

MSE 0.03158 0.02953 0.17423 0.03795 0.18737 0.4159 0.13309

(30,40)
AB 0.00786 0.00738 0.00375 0.12996 0.01081 0.30458 0.01076

MSE 0.02984 0.02638 0.14688 0.03057 0.13454 0.3966 0.11841

(40,40)
AB 0.00516 0.00628 0.00175 0.11865 0.01036 0.31973 0.01107

MSE 0.02315 0.02057 0.13789 0.02395 0.09834 0.28643 0.10976

(40,50)
AB 0.00428 0.00416 0.00462 0.11579 0.00972 0.28663 0.01087

MSE 0.01976 0.01863 0.12788 0.02064 0.09012 0.21727 0.10107

(50,50)
AB 0.00397 0.00267 0.00246 0.10546 0.00171 0.21865 0.01025

MSE 0.01765 0.01456 0.11956 0.01965 0.07966 0.19753 0.09674

0.60000

(20,20)
AB 0.16002 0.13942 0.38944 0.13881 0.12924 0.37839 0.2296

MSE 0.03454 0.02722 0.15278 0.04306 0.05375 0.14373 0.07758

(20,30)
AB 0.15797 0.13129 0.38094 0.1309 0.12695 0.37826 0.21932

MSE 0.03334 0.02279 0.11157 0.04075 0.04296 0.14344 0.06812

(30,30)
AB 0.15625 0.13065 0.35707 0.13 0.12106 0.37306 0.18365

MSE 0.02932 0.02111 0.13672 0.03384 0.03406 0.13996 0.05182

(30,40)
AB 0.14254 0.12985 0.35202 0.12101 0.09539 0.37205 0.15646

MSE 0.02769 0.02039 0.13388 0.027 0.02869 0.13431 0.04696

(40,40)
AB 0.1479 0.11533 0.39135 0.15334 0.10949 0.38588 0.13785

MSE 0.0204 0.01768 0.12339 0.02076 0.02234 0.11897 0.02834
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Table 2. Cont.

R♦♦ (n†
1 , n†

2)
SRS

Measures ML MPS LS WLS CV AD RTAD

(40,50)
AB 0.13747 0.11036 0.38623 0.14828 0.10107 0.37535 0.12876

MSE 0.01887 0.01526 0.11963 0.01946 0.01974 0.11223 0.01936

(50,50)
AB 0.11556 0.10785 0.31877 0.12854 0.10096 0.32765 0.11876

MSE 0.01505 0.01288 0.11546 0.01624 0.01583 0.11056 0.01758

0.71430

(20,20)
AB 0.14297 0.12973 0.27983 0.17008 0.15636 0.2394 0.23269

MSE 0.02638 0.01974 0.07833 0.03225 0.02796 0.06102 0.05619

(20,30)
AB 0.1322 0.11779 0.27176 0.12216 0.10126 0.24578 0.20279

MSE 0.02006 0.01498 0.05396 0.02298 0.02145 0.05146 0.04489

(30,30)
AB 0.11959 0.12683 0.27559 0.12866 0.11089 0.2472 0.12942

MSE 0.01765 0.01282 0.04602 0.01516 0.01954 0.04177 0.02913

(30,40)
AB 0.11096 0.11965 0.22987 0.12098 0.10944 0.22875 0.11987

MSE 0.01588 0.01095 0.03987 0.01304 0.01698 0.03864 0.02226

(40,40)
AB 0.10875 0.11258 0.21877 0.11877 0.07861 0.21545 0.11543

MSE 0.01499 0.00995 0.02397 0.01087 0.01515 0.03265 0.01995

(40,50)
AB 0.10087 0.10998 0.18763 0.10258 0.05789 0.20966 0.10976

MSE 0.01268 0.00734 0.02065 0.00955 0.01341 0.02968 0.01592

(50,50)
AB 0.08446 0.05676 0.16868 0.08634 0.03668 0.18443 0.10025

MSE 0.01086 0.00575 0.01065 0.00785 0.01135 0.02267 0.01299

0.93750

(20,20)
AB 0.07436 0.09124 0.93698 0.11872 0.2761 0.87643 0.58189

MSE 0.02577 0.01244 0.04794 0.03022 0.02426 0.05289 0.04265

(20,30)
AB 0.20656 0.22591 0.93733 0.24662 0.71968 0.9375 0.24549

MSE 0.0175 0.0111 0.03217 0.02135 0.02084 0.04142 0.04047

(30,30)
AB 0.14405 0.20795 0.93725 0.43749 0.41608 0.98324 0.1437

MSE 0.01226 0.00928 0.02844 0.01315 0.01211 0.03079 0.01935

(30,40)
AB 0.23887 0.32184 0.99743 0.61278 0.51933 0.98764 0.05003

MSE 0.00968 0.00754 0.02117 0.01181 0.01056 0.02763 0.01138

(40,40)
AB 0.13043 0.23449 0.93731 0.2402 0.49519 0.9375 0.04162

MSE 0.00684 0.0045 0.01922 0.01006 0.00999 0.01953 0.00854

(40,50)
AB 0.20397 0.27371 0.76449 0.22049 0.70024 0.84536 0.17623

MSE 0.0061 0.00381 0.01254 0.00906 0.00845 0.01176 0.00796

(50,50)
AB 0.15677 0.21486 0.79876 0.28434 0.61279 0.87534 0.11587

MSE 0.00425 0.00275 0.01008 0.00885 0.00795 0.01056 0.00715

Table 3. RE of different R♦♦ estimates of the UGD.

R♦♦ (nw, nq) (n†
1, n†

2)
RE

ML MPS LS WLS CV AD RTAD

0.28570

(2,2) (20,20) 6.86986 6.81801 25.40496 11.26087 40.68452 74.16785 19.88365

(2,3) (20,30) 7.84091 5.97379 21.83246 8.82852 47.87801 79.3659 22.36779

(3,3) (30,30) 7.50119 6.69615 33.96296 7.65121 35.75763 82.6839 16.95414

(3,4) (30,40) 7.77083 8.06728 30.92211 7.19294 27.1798 81.60494 16.56084

(4,4) (40,40) 8.15141 9.18304 35.7228 7.3454 24.22167 72.33081 17.5616

(4,5) (40,50) 9.23364 9.5051 40.72611 7.56044 24.09626 71.46967 18.89234

(5,5) (50,50) 8.95939 12.66087 48.80122 9.49275 29.07409 84.05532 22.39398
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Table 3. Cont.

R♦♦ (nw, nq) (n†
1, n†

2)
RE

ML MPS LS WLS CV AD RTAD

0.60000

(2,2) (20,20) 7.24109 6.97949 28.29259 8.64659 8.79705 30.71154 9.90805

(2,3) (20,30) 9.60807 7.52145 28.90415 10.89572 10.15603 41.57681 12.82863

(3,3) (30,30) 12.4766 9.63927 52.18321 14.11176 12.121 59.55745 15.02029

(3,4) (30,40) 14.8871 11.71839 63.45024 13.70558 12.75111 71.06349 16.36237

(4,4) (40,40) 17.28814 14.144 84.5137 15.26471 14.13924 92.22481 16.92951

(4,5) (40,50) 20.07447 17.84795 93.46406 16.21833 20.78211 94.31429 17.60364

(5,5) (50,50) 20.12032 18.23654 104.96364 16.243 14.79215 111.67677 18.12062

0.71430

(2,2) (20,20) 6.85195 5.57627 18.56161 8.14394 6.0129 16.05789 9.72145

(2,3) (20,30) 7.74517 6.13811 17.80858 8.23656 7.15 20.33992 11.36456

(3,3) (30,30) 9.54054 7.86503 24.22105 8.51685 9.53171 25.31515 13.24091

(3,4) (30,40) 10.58667 8.36031 23.87545 8.58092 10.28848 26.28571 13.81141

(4,4) (40,40) 12.4875 8.72807 19.64754 8.7621 10.5972 26.54472 14.24065

(4,5) (40,50) 12.55149 8.95537 18.77582 8.83796 11.56379 26.98 14.47545

(5,5) (50,50) 13.24756 9.13365 10.76061 9.34881 11.70103 26.99214 15.1

0.93750

(2,2) (20,20) 33.46753 23.92308 51.54839 35.97024 29.23012 68.68831 33.57953

(2,3) (20,30) 35.71429 30.84444 55.4569 32.35152 35.93264 73.96964 58.64638

(3,3) (30,30) 36.05882 30.92333 59.25 32.07561 31.85526 59.20981 42.06522

(3,4) (30,40) 37.24615 35.90524 62.25 40.7069 35.20667 67.39268 43.78077

(4,4) (40,40) 45.59333 37.51833 71.19778 45.74091 39.96 57.45294 50.23529

(4,5) (40,50) 46.92308 38.14 59.72857 50.33333 44.47368 61.89474 56.88571

(5,5) (50,50) 47.26667 39.34286 56 55.3125 49.70938 70.37333 64.96364

7. Real Data Applications

Two data sets that ref. [55] proposed were considered in this section. The data collection
includes two groups of head and neck cancer patients. The survival times of 58 head and
neck cancer patients treated with radiation are shown in the data set for the first group,
whereas the survival times of 44 patients treated with radiotherapy plus chemotherapy are
shown in the data set for the second group. The information is as follows:

Data set I (W): 523, 583, 594, 14.48, 16.1, 22.7, 34, 41.55, 42, 45.28, 49.4, 84, 91, 160, 160,
165, 108, 112, 129, 133, 133, 139, 140, 140, 146, 149, 154, 157, 146, 149, 154, 157, 160, 160, 165,
173, 176, 218, 6.53, 7, 10.42, 225, 241, 248, 273, 277, 297, 405, 417, 53.62, 63, 64, 83, 420, 440,
1101, 1146, 1417.

Data set II (Q): 25.87, 31.98, 37, 41.35, 47.38, 55.46, 58.36, 63.47, 319, 339, 432, 469, 68.46,
78.26, 173, 179, 194, 195, 74.47, 81.43, 84, 92, 519, 633, 725, 94, 110, 112, 119, 127, 130, 133,
140, 146, 12.2, 23.56, 23.74, 155, 159, 209, 249, 281, 817, 1776.

We divide the data by 2000 to have values between 0 and 1. The Kolmogorov-Smirnov
(K-S) goodness-of-fit test is used to fit each of the two data sets individually using the
UGD. The UGD fits the data sets, according to the K-S test (K-ST) and the accompanying
p-value. It is noted that for Data sets I and II, the K-ST of the UGD has values of 0.16913
and 0.070689, respectively, with p-values of 0.07245 and 0.9694.

The initial PDF shapes are reported utilizing the non-parametric kernel density esti-
mation approach in Figures 10 and 11 for both data sets. From Figures 10 and 11, we can
see that the shape of the PDF is asymmetric for both data sets. The normality condition
is checked via the QQ plot; see Figures 10 and 11. The outliers can also be spotted using
the box plot; see Figures 10 and 11. Henceforth, we can say that there are outliers in both
data sets. Figures 12 and 13 display the estimated CDF (ECDF), estimated PDF (EPDF),
PP—plots, and estimated survival function (ESF) for the UGD. Thanks to its asymmetric
properties, the UGD is an appropriate model for fitting these data.
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Figure 10. Some basic non-parametric plots for Data set I.
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Figure 11. Some basic non-parametric plots for Data set II.

In the earlier sections, it was assumed that stress and strength random variables
followed the UGD with the same scale parameter and that the estimates of R♦♦ were then
examined. Consequently, in order to estimate it using actual data, we also need to see if the
specifications of their second scale are the same.

First, it is assumed that W ∼ UGD(τ1, ϕ1) and Q ∼ UGD(τ2, ϕ2). We perform the
following tests of the hypothesis: H0 : ϕ1 = ϕ2 vs H1 : ϕ1 6= ϕ2.
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The associated likelihood function, based on the SRS, is given by:

L1(τ1, ϕ1, τ2, ϕ2) =
n†

1

∏
l1=1

τ1 ϕ1w−ϕ1−1
l1

exp
[
−τ1

(
w−ϕ1

l1
− 1
)]

×
n†

2

∏
l2=1

τ2 ϕ2q−ϕ2−1
l2

exp
[
−τ2

(
q−ϕ2

l2
− 1
)]

.

The MLEs of τ1, ϕ1, τ2 and ϕ2 are as follows: τ̂1 = 0.11552, ϕ̂1 = 0.33684, τ̂2 = 1.11884
and ϕ̂2 = 0.48394, and the log-likelihood value is log L1(τ1, ϕ1, τ2, ϕ2) = −68.040.

Second, suppose that W ∼ UGD(τ1, ϕ) and Q ∼ UGD(τ2, ϕ), also, as the same steps
in the above, the corresponding LF is given by:

L2(τ1, τ2, ϕ) =
n†

1

∏
l1=1

τ1 ϕw−ϕ−1
l1

exp
[
−τ1

(
w−ϕ

l1
− 1
)]

×
n†

2

∏
l2=1

τ2 ϕq−ϕ−1
l2

exp
[
−τ2

(
q−ϕ

l2
− 1
)]

.

The MLEs of τ1, τ2 and ϕ are as follows: τ̂1 = 0.23668 τ̂2 = 0.18232 and ϕ̂ = 0.22347
and the log-likelihood value is log L2(τ1, τ2, ϕ) = −68.223.

Then the likelihood ratio statistic is constructed as follows:

LR = −2 log
(

L2(τ1, τ2, ϕ)

L1(τ1, ϕ1, τ2, ϕ2)

)
,

that is, −2(logL2(τ1, τ2, ϕ)− logL1(τ1, ϕ1, τ2, ϕ2)) = 0.366. As a result, the null hypoth-
esis cannot be rejected. Therefore, in this case, the assumption of ϕ1 = ϕ2 is justified.
Thus, both tests accept the null hypothesis that each data set is drawn from the UGD with
the same scale parameter.
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Figure 12. ECDF, EPDF, PP plots and ESF of the UGD for Data set I.
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Figure 13. ECDF, EPDF, PP plots and ESF of the UGD for Data set II.

Then, using the suggested estimating methods for real data sets, we acquire various es-
timates of R♦♦. We observe that the MPS method cannot be used to estimate the parameters
and reliability of Data set I because they have equal values
Dj1(τ1) = G(w(j1 :n†

1)
) − G(w(j1−1:n†

1)
), Di1(τ1) = G(w(i1)) − G(w(i1−1)), i1 = 1, . . . , n†

1
based on the strength W, are equal to zero at most observation in both RSS and SRS.
A similar observation is found for the second data set. Thus, different methods of esti-
mation under different criteria are used to determine the estimated parameters, CV test
(CVT), AD test (ADT), K-ST, and p-values for the proposed model. They are presented
in Tables 4 and 5 for the two real data sets, respectively. Therefore, the only estimates in
Tables 4 and 5 are the ML, LS, WLS, CV, AD, and RTAD estimates.

From these data, we suppose a SRS of size (n†
1, n†

2) = (20, 20), whereas for the RSS, a
small set size of (nw, nq) = (2, 2) is considered with cycles count being aw = aq = 10. It
is interesting to observe that the RSS and SRS are contrasted using the same quantity of
measurement units. We determine the estimates of the parameters and reliability in each
design using the preceding techniques with a perfect ranking. We use the previous criteria
measures, i.e., CVT, ADT, K-ST, and p-value, to compare the different estimates from the
two data sets.

Table 4. Different estimates of τ1, τ2, ϕ and R♦♦ for Data sets I and II under the RSS and SRS.

Sampling Parameter ML LS WLS CV AD RTAD

RSS

τ1 0.0985 0.0364 0.02502 0.01995 0.08008 0.01273

τ2 0.0658 0.0215 0.01479 0.01095 0.0517 0.00782

ϕ 0.8061 1.1919 1.3158 1.42399 0.88302 1.57378

R♦♦ 0.59954 0.62828 0.62844 0.64563 0.60768 0.61925

SRS

τ1 0.0999 0.05228 0.04501 0.01016 0.1442 0.006

τ2 0.06654 0.02944 0.02361 0.00536 0.09 0.00367

ϕ 0.8119 1.05798 1.10582 1.6 0.69261 1.83009

R♦♦ 0.60021 0.63978 0.65594 0.65453 0.61571 0.62078
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Table 5. Goodness of fit measures by different estimation methods for Data sets I and II under the
RSS and SRS.

Data Method Design CVT ADT K-ST p-Value

Data I
(W)

ML
RSS 0.31307 1.77129 0.80208 0.19792

SRS 0.35676 1.97197 0.83753 0.16247

LS
RSS 0.58241 3.02593 0.59506 0.40494

SRS 0.81977 4.03263 0.6442 0.3558

WLS
RSS 0.68988 3.51439 0.64709 0.35291

SRS 0.85842 4.21798 0.66789 0.33211

CV
RSS 0.80507 4.03447 0.46013 0.5399

SRS 1.19579 5.85561 0.8254 0.1746

AD
RSS 0.31975 1.80642 0.80061 0.19939

SRS 0.46097 2.52828 0.80468 0.19532

RTAD
RSS 0.92209 4.56446 0.54294 0.45706

SRS 1.33812 6.5031 0.6411 0.3589

Data II
(Q)

ML
RSS 0.09068 0.52067 0.85594 0.14406

SRS 0.11648 0.69209 0.92817 0.07183

LS
RSS 0.17787 24.00754 0.44851 0.55149

SRS 1.20519 25.88331 0.89192 0.10808

WLS
RSS 0.24755 24.41183 0.52657 0.47343

SRS 1.22362 26.32725 0.90168 0.09832

CV
RSS 0.32337 24.82667 0.56885 0.43115

SRS 0.57053 25.14119 0.94204 0.05796

AD
RSS 0.07759 23.39339 0.16622 0.83378

SRS 0.15845 23.91292 0.89778 0.10222

RTAD
RSS 0.46001 2.58214 0.71077 0.28923

SRS 0.78925 4.15739 0.94517 0.05483

The findings in Tables 4 and 5 illustrate that the R♦♦ estimates, via the RSS, are better
than their equivalents in the SRS in terms of the smallest values of CVT, ADT, K-ST, and
largest values of P–values, using the ML, LS, WLS, CV, AD, and RTAD methods.

8. Summary and Conclusions

In this paper, various estimation techniques for estimating the S-S reliability when
both stress and strength random variables have the unit Gompertz distribution based on
the RSS and SRS are covered. The methods that have been suggested include the maximum
likelihood, least squares, weighted least squares, maximum product spacing, Cramér–
von Mises, Anderson–Darling, and right tail Anderson–Darling methods. To assess the
effectiveness of the proposed estimates based on both sampling designs, a simulation
research is conducted. According to the results, for all the estimating techniques taken into
consideration, the RSS estimates outperform the SRS estimates in terms of MSE, absolute
bias, and efficiency values. The estimates based on the MPS have the smallest MSE for both
sampling techniques. The reliability estimates based on the AD and RTAD methods have
the largest MSE based on the SRS and RSS, respectively. Two real data sets that indicate the
survival times of head and neck cancer patients have been used to provide further findings.
Future research might look at the inference in a multicomponent S-S model based on the
different RSS modifications.
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