Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (204)

Search Parameters:
Keywords = rice-planthopper

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1320 KiB  
Article
Fenmezoditiaz Inhibited the Acquisition and Transmission of Southern Rice Black-Streaked Dwarf Virus by Sogatella furcifera
by Yuting Chen, Lixin Mao, Xiulan Ding, Hengchien Liu, Devendra J. Vyas and Dongsheng Jia
Insects 2025, 16(9), 875; https://doi.org/10.3390/insects16090875 (registering DOI) - 23 Aug 2025
Abstract
Rice planthoppers are the most destructive pests of rice production and the vectors of rice viruses. Fenmezoditiaz as a novel mesoionic insecticide is used for rice planthopper management by targeting the insect’s neural nicotinic acetylcholine receptor. This study aimed to evaluate the effects [...] Read more.
Rice planthoppers are the most destructive pests of rice production and the vectors of rice viruses. Fenmezoditiaz as a novel mesoionic insecticide is used for rice planthopper management by targeting the insect’s neural nicotinic acetylcholine receptor. This study aimed to evaluate the effects of fenmezoditiaz on the acquisition, propagation, and transmission of southern rice black-streaked dwarf virus (SRBSDV) by the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacida). The results revealed that sublethal concentrations of fenmezoditiaz significantly impaired SRBSDV acquisition and viral replication in S. furcifera. Fenmezoditiaz-treated viruliferous S. furcifera exhibited a lower transmission efficiency of SRBSDV to un-infected rice seedlings. Electrical penetration graph (EPG) recordings revealed prolonged non-probing (NP), salivary secretion (N2/N3), and xylem feeding (N5) durations, alongside shortened phloem contact behavior (N4a/N4b), of fenmezoditiaz-treated individuals, indicating disrupted feeding behaviors, which are critical for reducing viral infection. By reducing viral titers and interfering with phloem ingestion, fenmezoditiaz significantly suppresses SRBSDV transmission. These findings revealed fenmezoditiaz’s dual role in pest control and viral transmission blockage, providing a foundation for incorporation into integrated management of vector-borne plant viruses. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

16 pages, 3142 KiB  
Review
Mechanisms of Resistance of Oryza sativa to Phytophagous Insects and Modulators Secreted by Nilaparvata lugens (Hemiptera, Delphacidae) When Feeding on Rice Plants
by Xiaohong Zheng, Weiling Wu, Yuting Huang, Kedong Xu and Xinxin Shangguan
Agronomy 2025, 15(8), 1891; https://doi.org/10.3390/agronomy15081891 - 6 Aug 2025
Viewed by 318
Abstract
The brown planthopper, Nilaparvata lugens (Stål, 1854), is the most devastating pest of rice (Oryza sativa L.). Although insecticides are used to control this pest, host plant resistance is a more effective and economic solution. Therefore, identification of N. lugens-resistant genes [...] Read more.
The brown planthopper, Nilaparvata lugens (Stål, 1854), is the most devastating pest of rice (Oryza sativa L.). Although insecticides are used to control this pest, host plant resistance is a more effective and economic solution. Therefore, identification of N. lugens-resistant genes and elucidation of their underlying resistance mechanisms are critical for developing elite rice cultivars with enhanced and durable resistance. Research has shown that in the long-term evolutionary arms race, rice has developed complex defense systems against N. lugens, while N. lugens has developed diverse and sophisticated strategies to overcome the plant’s defenses. This review emphasizes recent advances in the molecular interactions between rice and the N. lugens, particularly focusing on the resistance mechanisms of 17 cloned major N. lugens resistance genes, which have significantly improved our understanding of the molecular basis of rice–N. lugens interactions. We also highlight the roles of several N. lugens salivary components in activating or suppressing rice defense responses. These insights provide a foundation for developing sustainable and effective strategies to manage this devastating pest of rice. Full article
(This article belongs to the Special Issue New Insights into Pest and Disease Control in Rice)
Show Figures

Figure 1

13 pages, 1085 KiB  
Article
Comparative Endosymbiont Community Structures of Nonviruliferous and Rice Stripe Virus-Viruliferous Laodelphax striatellus (Hemiptera: Delphacidae) in Korea
by Jiho Jeon, Minhyeok Kwon, Bong Choon Lee and Eui-Joon Kil
Viruses 2025, 17(8), 1074; https://doi.org/10.3390/v17081074 - 1 Aug 2025
Viewed by 456
Abstract
Insects and their bacterial endosymbionts form intricate ecological relationships, yet their role in host–pathogen interactions are not fully elucidated. The small brown planthopper (Laodelphax striatellus), a polyphagous pest of cereal crops, acts as a key vector for rice stripe virus (RSV), [...] Read more.
Insects and their bacterial endosymbionts form intricate ecological relationships, yet their role in host–pathogen interactions are not fully elucidated. The small brown planthopper (Laodelphax striatellus), a polyphagous pest of cereal crops, acts as a key vector for rice stripe virus (RSV), a significant threat to rice production. This study aimed to compare the endosymbiont community structures of nonviruliferous and RSV-viruliferous L. striatellus populations using 16S rRNA gene sequencing with high-throughput sequencing technology. Wolbachia was highly dominant in both groups; however, the prevalence of other endosymbionts, specifically Rickettsia and Burkholderia, differed markedly depending on RSV infection. Comprehensive microbial diversity and composition analyses revealed distinct community structures between nonviruliferous and RSV-viruliferous populations, highlighting potential interactions and implications for vector competence and virus transmission dynamics. These findings contribute to understanding virus-insect-endosymbiont dynamics and could inform strategies to mitigate viral spread by targeting symbiotic bacteria. Full article
(This article belongs to the Special Issue Plant Viruses and Their Vectors: Epidemiology and Control)
Show Figures

Figure 1

11 pages, 1739 KiB  
Article
Metabolic and Behavioral Impacts of Gustatory Receptor NlGr23 Silencing in the Brown Planthopper
by Kui Kang, Jie Zhang, Renhan Fang and Jun Lü
Agronomy 2025, 15(8), 1797; https://doi.org/10.3390/agronomy15081797 - 25 Jul 2025
Viewed by 205
Abstract
The brown planthopper (BPH), Nilaparvata lugens, is the most destructive insect pest of rice. BPH infestations severely threaten rice yield worldwide. The gustatory receptor NlGr23 plays a critical role in mediating the repulsive reaction to oxalic acid of the BPH. We integrated [...] Read more.
The brown planthopper (BPH), Nilaparvata lugens, is the most destructive insect pest of rice. BPH infestations severely threaten rice yield worldwide. The gustatory receptor NlGr23 plays a critical role in mediating the repulsive reaction to oxalic acid of the BPH. We integrated transcriptomic and proteomic analyses to determine the metabolic and behavioral consequences of NlGr23 silencing. The RNAi-mediated knockdown of NlGr23 increased body weight and honeydew production, indicating enhanced feeding activity. The results of multiomics profiling revealed disrupted lipid homeostasis, identifying 187 differentially expressed genes and 150 differentially expressed proteins. These genes were enriched in pathways including glycerophospholipid metabolism, fatty acid biosynthesis, and AMPK signaling. The results of biochemical assays showed that NlGr23 silencing elevated triacylglycerol levels by 68.83%, and reduced glycerol and free fatty acid levels, suggesting impaired lipolysis. The NlGr23 loss-of-function mutation mechanistically activates the AMPK pathway, suppresses lipid breakdown, and promotes energy storage. This study established NlGr23 as a key regulator linking chemosensation to metabolic reprogramming, providing new insights into gustatory receptor-mediated energy homeostasis in the BPH. Full article
Show Figures

Figure 1

22 pages, 5013 KiB  
Article
Driving by a Publicly Available RGB Image Dataset for Rice Planthopper Detection and Counting by Fusing Swin Transformer and YOLOv8-p2 Architectures in Field Landscapes
by Xusheng Ji, Jiaxin Li, Xiaoxu Cai, Xinhai Ye, Mostafa Gouda, Yong He, Gongyin Ye and Xiaoli Li
Agriculture 2025, 15(13), 1366; https://doi.org/10.3390/agriculture15131366 - 25 Jun 2025
Viewed by 680
Abstract
Rice (Oryza sativa L.) has long been threatened by the brown planthopper (BPH, Nilaparvata lugens) and white-backed planthopper (WBPH, Sogatella furcifera). It is difficult to detect and count rice planthoppers from RGB images, and there are a limited number of [...] Read more.
Rice (Oryza sativa L.) has long been threatened by the brown planthopper (BPH, Nilaparvata lugens) and white-backed planthopper (WBPH, Sogatella furcifera). It is difficult to detect and count rice planthoppers from RGB images, and there are a limited number of publicly available datasets for agricultural pests. This study publishes a publicly available planthopper dataset, explores the potential of YOLOv8-p2 and proposes an efficient improvement strategy, designated SwinT YOLOv8-p2, for detecting and counting BPH and WBPH from RGB images. The Swin Transformer was incorporated into the YOLOv8-p2 in the strategy. Additionally, the Spatial and Channel Reconstruction Convolution (SCConv) was applied, replacing Convolution (Conv) in the C2f module of YOLOv8. The dataset contains diverse pest small targets, and it is easily available to the public. YOLOv8-p2 can accurately detect different pests, with mAP50, mAP50:95, F1-score, Recall, Precision and FPS up to 0.847, 0.835, 0.899, 0.985, 0.826 and 16.69, respectively. The performance of rice planthopper detection was significantly improved by SwinT YOLOv8-p2, with increases in mAP50 and mAP50:95 ranging from 1.9% to 61.8%. Furthermore, the correlation relationship between the manually counted and detected insects was strong for SwinT YOLOv8-p2, with an R2 above 0.85, and RMSE and MAE below 0.64 and 0.11. Our results suggest that SwinT YOLOv8-p2 can efficiently detect and count rice planthoppers. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

24 pages, 4623 KiB  
Article
Metabolomic Profiling of BPH14/BPH15 Pyramiding Rice and Its Implications for Brown Planthopper Resistance
by Liang Hu, Dabing Yang, Hongbo Wang, Xueshu Du, Yan Wu, Liang Lv, Tongmin Mou, Aiqing You and Jinbo Li
Agronomy 2025, 15(6), 1428; https://doi.org/10.3390/agronomy15061428 - 11 Jun 2025
Viewed by 1056
Abstract
Rice, a vital crop, faces significant threats from the brown planthopper (BPH), which impacts plant growth and yield. Pyramiding the BPH resistance genes BPH14 and BPH15 provides rice crops with reliable and lasting protection against BPH. Nonetheless, current research lacks clarity on the [...] Read more.
Rice, a vital crop, faces significant threats from the brown planthopper (BPH), which impacts plant growth and yield. Pyramiding the BPH resistance genes BPH14 and BPH15 provides rice crops with reliable and lasting protection against BPH. Nonetheless, current research lacks clarity on the molecular processes responsible for BPH14/BPH15-mediated resistance to BPH. In this study, utilizing high-throughput metabolomics and integrating transcriptomic data, we investigated the metabolic adaptations of the BPH14/BPH15 pyramiding line (B1415) and its recurrent parent (RP) during early and late infestation stages. The analysis identified 1007 metabolites, mainly consisting of lipids and lipid-like molecules, together with phenylpropanoid and polyketide classes. Differentially accumulated metabolites (DAMs) displayed different patterns in B1415 and RP, particularly in flavonoid and phenylpropanoid biosynthesis pathways, which were more pronounced in the resistant B1415. Furthermore, ferulic acid (FA) was found to negatively regulate BPH resistance. These findings elucidate critical metabolic pathways involved in rice defense mechanisms and underscore the potential of B1415’s enhanced metabolic responses in conferring durable resistance against BPH. Full article
(This article belongs to the Special Issue New Insights into Pest and Disease Control in Rice)
Show Figures

Figure 1

16 pages, 4429 KiB  
Article
Spider Web DNA Metabarcoding Provides Improved Insight into the Prey Capture Ability of the Web-Building Spider Tetragnatha keyserlingi Simon (Araneae: Tetragnathidae)
by Jie Sun, Xuhao Song, Bin Wang, Dongmei Chen, Tingbang Yang and Shichang Zhang
Agriculture 2025, 15(12), 1235; https://doi.org/10.3390/agriculture15121235 - 6 Jun 2025
Viewed by 651
Abstract
Spiders play a crucial role as predators in terrestrial ecosystems, particularly in controlling insect populations. Tetragnatha keyserlingi Simon (Araneae: Tetragnathidae) is a dominant species in rice field ecosystems, where it builds webs amidst rice clusters to capture prey. Despite its known predation on [...] Read more.
Spiders play a crucial role as predators in terrestrial ecosystems, particularly in controlling insect populations. Tetragnatha keyserlingi Simon (Araneae: Tetragnathidae) is a dominant species in rice field ecosystems, where it builds webs amidst rice clusters to capture prey. Despite its known predation on major rice pests like rice planthoppers, comprehensive field reports on its prey composition are scarce. Herein, we performed a field investigation to explore the population dynamic relationships between T. keyserlingi and major rice pests. Additionally, we employed DNA metabarcoding to analyze the prey spectrum of this spider from both the spider’s opisthosoma and its web. The results showed that the population dynamics of T. keyserlingi and Nilaparvata lugens (Stål) displayed synchrony. Dietary DNA metabarcoding analysis revealed that, compared with the opisthosoma, DNA extracted from spider webs exhibited a higher abundance of prey reads and yielded a higher diversity of identified prey species. Phytophagous pests were the dominant prey group identified in both sample types. In web samples, the most abundant prey reads were from Chironomidae, followed by Delphacidae, Ceratopogonidae, Aleyrodidae, Muscidae, Coenagrionidae, and other prey families. Notably, Delphacidae constituted the predominant prey reads identified from the spider’s opisthosoma, and the corresponding positive rate for Delphacidae was 86.7%. These results indicate that the web of T. keyserlingi can capture a diverse range of prey in rice fields. Among the prey captured by the spider web, rice planthoppers appear to be a primary dietary component of T. keyserlingi, emphasizing its potential as a biocontrol agent for rice planthoppers in integrated pest management strategies. Leveraging spider web DNA metabarcoding enhances our understanding of T. keyserlingi’s prey capture ability, as the residual prey DNA in webs provides critical insights into the foraging dynamics and ecological interactions of web-building spiders. Full article
(This article belongs to the Special Issue Advances in Biological Pest Control in Agroecosystems)
Show Figures

Figure 1

15 pages, 1672 KiB  
Article
Synergistic Response Mechanisms in Rice Seedlings Exposed to Brown Planthopper Infestation and High-Temperature Stress
by Danyun Cao, Yuchen Ping, Yiru Lin, Jinyan Hu, Zimeng Wang, Wei Yuan, Tongtong Li, Linxin Liu, Bo Zhang, Shijiao Xiong, Cong Dang and Dawei Xue
Plants 2025, 14(11), 1644; https://doi.org/10.3390/plants14111644 - 28 May 2025
Viewed by 492
Abstract
Recently, rice yield has been severely affected by both brown planthopper (BPH, Nilaparvata lugens) infestation and high-temperature stress. Numerous previous studies have identified genes conferring resistance to BPH and high-temperature tolerance in rice, respectively. However, it remains unclear how rice synergistically responds [...] Read more.
Recently, rice yield has been severely affected by both brown planthopper (BPH, Nilaparvata lugens) infestation and high-temperature stress. Numerous previous studies have identified genes conferring resistance to BPH and high-temperature tolerance in rice, respectively. However, it remains unclear how rice synergistically responds to these two stress factors. In the present study, we found that pre-treatment with high temperature can enhance rice seeding resistance to BPH, while BPH feeding did not alter the high-temperature tolerance of rice. This result can be elucidated by the subsequent transcriptome analysis. Differentially expressed genes (DEGs) following high-temperature treatment were enriched in metabolic processes and phenylpropanoid biosynthesis pathways, thereby enhancing rice resistance to BPH. Further weighted gene co-expression network analysis (WGCNA) indicated that genes in the magenta and black modules were predominantly associated with the protein folding and transmembrane transport biological processes. And several candidate genes, including Loc_Os01g02170 and Loc_Os01g59870, were identified that may play crucial roles in simultaneously regulating rice resistance to BPH and high-temperature stress. This research will provide new gene resources for cultivating rice with compound traits and provide ideas for the mechanism analysis of rice response to multiple stresses. Full article
(This article belongs to the Special Issue Crop Functional Genomics and Biological Breeding—2nd Edition)
Show Figures

Figure 1

12 pages, 1199 KiB  
Article
OsEDS1 and OsPAD4 Are Involved in Brown Planthopper Resistance in Rice
by Linzhi Fang, Rong Su, Cunyan Li, Xiaodong Liu, Yuanyuan Song, Rensen Zeng, Qiongli Wang, Haitao Cui and Daoqian Chen
Plants 2025, 14(11), 1612; https://doi.org/10.3390/plants14111612 - 25 May 2025
Viewed by 476
Abstract
The crucial roles of the lipase-like protein enhanced disease susceptibility 1 (EDS1) and phytoalexin deficient 4 (PAD4) in disease resistance in Arabidopsis have been identified. However, their function in rice (Oryza sativa L.) resistance to brown planthopper (BPH, Nilaparvata lugens Stål), the [...] Read more.
The crucial roles of the lipase-like protein enhanced disease susceptibility 1 (EDS1) and phytoalexin deficient 4 (PAD4) in disease resistance in Arabidopsis have been identified. However, their function in rice (Oryza sativa L.) resistance to brown planthopper (BPH, Nilaparvata lugens Stål), the most notorious pest of rice, remains unknown. In this study, the transcript levels of OsEDS1 and OsPAD4 were rapidly altered by BPH infestation. Mutation in either OsPAD4 or OsEDS1 resulted in increased rice susceptibility to BPH, which was associated with increased honeydew excretion and an increased host preference of BPH. Furthermore, mutation in either OsPAD4 or OsEDS1 led to decreased basal levels of salicylic acid (SA) and jasmonic acid (JA) in the absence of BPH, along with the depressed expression of the defense-responsive genes OsPAL, OsICS1, OsPR1a, OsLOX1, OsAOS1 and OsJAZ11 involved in SA and JA biosynthesis and signaling. The BPH infestation-mediated elevation of SA levels and the expression of SA biosynthesis and signaling genes was dampened in eds1 and pad4 plants, whereas BPH infestation-mediated depressions of JA levels and the expression of JA biosynthesis and signaling genes were reversed in eds1 and pad4 plants. Taken together, our findings indicated that both OsPAD4 and OsEDS1 positively regulate rice resistance to BPH. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

10 pages, 3168 KiB  
Article
Reduction in Gonad Development and Sperm Motility in Male Brown Planthopper Nilaparvata lugens via RNAi-Mediated Knockdown of tramtrack
by Bo Feng, Yang Hu and Fanghai Wang
Int. J. Mol. Sci. 2025, 26(8), 3643; https://doi.org/10.3390/ijms26083643 - 12 Apr 2025
Viewed by 569
Abstract
The brown planthopper Nilaparvata lugens, a major rice pest, threatens global food security through rapid reproduction. This study investigates the role of the tramtrack (ttk) gene in male reproductive development and spermatogenesis using RNA interference (RNAi). Gene expression analysis revealed [...] Read more.
The brown planthopper Nilaparvata lugens, a major rice pest, threatens global food security through rapid reproduction. This study investigates the role of the tramtrack (ttk) gene in male reproductive development and spermatogenesis using RNA interference (RNAi). Gene expression analysis revealed higher ttk levels in testes. RNAi-mediated knockdown of ttk in fourth-instar male nymphs reduced its expression by up to 80%, leading to severely impaired gonad development. Testes, vas deferens, and accessory glands in treated males exhibited 8–89% volume reductions compared to controls, accompanied by a 51–69% decline in sperm count and 60–85% reduction in sperm motility. Consequently, eggs fertilized by treated males showed a 73% decrease in hatching rates, with arrested embryonic development. These findings demonstrate ttk’s critical role in spermatogenesis and gonad maturation in N. lugens, highlighting its potential as an RNAi target for sustainable pest control strategies. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 6310 KiB  
Article
Transcriptomic Comparison of Rice lncRNAs in Response to Feeding by Brown Planthopper Populations with Different Virulence
by Yaxuan Wang, Xinfeng Wang, Kunjie Zhang, Jing Xiao, Fang Liu, Houhong Yang, Yubiao Cai, Fengxiang Lai, Qiang Fu and Pinjun Wan
Int. J. Mol. Sci. 2025, 26(8), 3486; https://doi.org/10.3390/ijms26083486 - 8 Apr 2025
Cited by 1 | Viewed by 562
Abstract
The brown planthopper (BPH) is one of the major rice pests causing significant damage to rice production worldwide, due to its high reproductive capacity and strong migratory ability. A series of BPH-resistant rice varieties have been developed, but the durability of effective resistance [...] Read more.
The brown planthopper (BPH) is one of the major rice pests causing significant damage to rice production worldwide, due to its high reproductive capacity and strong migratory ability. A series of BPH-resistant rice varieties have been developed, but the durability of effective resistance is constrained by the evolution of BPH virulence, requiring in-depth insights into resistance mechanisms. In this paper, we used strand-specific lncRNA-seq to characterize the lncRNA regulatory mechanisms on rice response to BPH infestation. Overall, 4321 lncRNAs were identified, 60 of which were significantly upregulated in response to BPH infestation, specifically differing between BPH populations with variable virulence. Differential expression analysis and qRT-PCR validation showed that these lncRNAs are involved in the regulation of several defense pathways, including jasmonic acid signaling and flavonoid biosynthesis, with their distinct roles in resistant and susceptible rice varieties. Notably, lncRNAs like LNC_002533 were found to be negatively correlated with flavonoid biosynthesis, suggesting a potential role in modulating rice defense responses. In contrast, LNC_001986 and LNC_000397 were positively correlated with genes involved in glutathione metabolism, which may be associated with enhanced resistance. These findings highlight the critical regulatory functions of lncRNAs in rice-BPH interactions and provide a molecular framework for improving rice resistance through targeted genetic engineering. This study significantly contributes to functional genomics by elucidating lncRNA-mediated regulatory mechanisms and offers promising avenues for developing durable pest-resistant rice varieties. Full article
(This article belongs to the Collection Feature Papers in Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 1963 KiB  
Article
Functional and Numerical Responses of Tytthus chinensis (Hemiptera: Miridae) to Sogatella furcifera (Hemiptera: Delphacidae)
by Qian Huang, Liping Long, Suosheng Huang, Biqiu Wu, Cheng Li and Yan Ling
Insects 2025, 16(4), 339; https://doi.org/10.3390/insects16040339 - 24 Mar 2025
Viewed by 518
Abstract
The predatory function and numerical responses of natural enemy insects are critical for evaluating their biological control potential, particularly in understanding pest suppression mechanisms and ecological adaptability. Here, we examined the predation capacity of Tytthus chinensis Stål (Hemiptera: Miridae) on Sogatella furcifera eggs [...] Read more.
The predatory function and numerical responses of natural enemy insects are critical for evaluating their biological control potential, particularly in understanding pest suppression mechanisms and ecological adaptability. Here, we examined the predation capacity of Tytthus chinensis Stål (Hemiptera: Miridae) on Sogatella furcifera eggs under laboratory conditions (24 ± 1 °C, 12:12 h light:dark photoperiod, 75% humidity). Functional response experiments were conducted at different prey densities (3, 4, 10, 20, and 30 eggs/day), and life table parameters were established to evaluate the effects of prey density on the development, reproduction, and population dynamics of T. chinensis. The daily average predation of nymphs significantly increased with age, and their functional responses fitted the Holling Type II response. In the adult stage, the daily average predation of females was significantly higher than that of males, and males had a higher a/Th ratio, which reflected sex-specific predation strategies. Prey density significantly influenced survival, reproduction, and population dynamics. The minimum prey density required for population stability was 4 eggs/day, and survival and reproduction rates markedly increased at 10 eggs/day. At 30 eggs/day, females reproduced earlier, and the lifespan of males was shortened. These findings confirm the strong pest control ability of T. chinensis and highlight the critical role of S. furcifera egg density in regulating the population dynamics of T. chinensis. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

12 pages, 2643 KiB  
Article
Chitin Deacetylase Gene Family Positively Regulates the Accumulation of Rice Stripe Virus in Laodelphax striatellus Fallén (Hemiptera: Delphacidae) Ovaries
by Wenxing Hu, Ao You, Jiao Zhang, Yao Li, Shimin Zuo, Fang Liu and Lu Zhang
Insects 2025, 16(4), 334; https://doi.org/10.3390/insects16040334 - 22 Mar 2025
Viewed by 732
Abstract
Chitin deacetylase modifies chitin and has critical functions in the growth and development of insects; however, whether it has other roles is unclear. Laodelphax striatellus not only directly feeds on the phloem sap of rice but also transmits RSV, leading to significant losses [...] Read more.
Chitin deacetylase modifies chitin and has critical functions in the growth and development of insects; however, whether it has other roles is unclear. Laodelphax striatellus not only directly feeds on the phloem sap of rice but also transmits RSV, leading to significant losses in rice production. In this study, four CDA genes were identified based on SBPH genomic data and were classified into groups I and III based on a phylogenetic analysis. The expression of LsCDA1 and LsCDA2 in RSV-infected SBPH was increased by 282% and 159%, respectively, relative to the non-infected SBPH control. Additionally, RSV enhanced the expression of LsCDA1 (increased by 194%) in the ovaries. Yeast two-hybrid and glutathione-S-transferase pull-down assays demonstrated the interaction between LsCDA1 and RSV proteins NP and NS2. Furthermore, the knockdown of LsCDA1 expression decreased viral loads in RSV-infected SBPH and its ovaries by 66% and 72% relative to the dsGFP control. Silencing LsCDA1 significantly decreased VgR expression in SBPH and its ovaries and reduced fecundity. These results indicate that LsCDA1 positively regulates RSV accumulation in the ovaries and SBPH reproduction by modulating VgR expression, which offers a novel strategy for controlling both RSV and SBPH by targeting LsCDA1. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

15 pages, 596 KiB  
Review
New Insights into the Regulatory Non-Coding RNAs Mediating Rice–Brown Planthopper Interactions
by Liang Hu, Yan Wu, Wenjun Zha, Lei Zhou and Aiqing You
Agronomy 2025, 15(3), 686; https://doi.org/10.3390/agronomy15030686 - 13 Mar 2025
Viewed by 901
Abstract
The brown planthopper (Nilaparvata lugens Stål, BPH) is a destructive pest of rice. Non-coding RNAs (ncRNAs) regulate the defense mechanisms in rice and the adaptive strategies of BPHs. In rice, ncRNAs modulate key resistance pathways such as jasmonic acid biosynthesis, flavonoid production, [...] Read more.
The brown planthopper (Nilaparvata lugens Stål, BPH) is a destructive pest of rice. Non-coding RNAs (ncRNAs) regulate the defense mechanisms in rice and the adaptive strategies of BPHs. In rice, ncRNAs modulate key resistance pathways such as jasmonic acid biosynthesis, flavonoid production, and phenylpropanoid metabolism, which increases BPH resistance. In BPHs, ncRNAs regulate processes such as reproduction, metabolism, and wing polyphenism, which facilitate adaptation and virulence. Cross-kingdom interactions between rice and BPHs reveal the dynamic molecular interplay that underpins this pest–host relationship. These new insights into ncRNA functions will help improve innovative pest management strategies and equip rice varieties with enhanced BPH resistance. Full article
(This article belongs to the Special Issue New Insights into Pest and Disease Control in Rice)
Show Figures

Figure 1

14 pages, 3496 KiB  
Article
Transcriptome Analysis and Resistance Identification of bar and BPH9 Co-Transformation Rice
by Sanhe Li, Changyan Li, Jianyu Wang, Lei Zhou, Bian Wu, Zaihui Zhou, Xiaolei Fan, Aiqing You and Kai Liu
Int. J. Mol. Sci. 2025, 26(4), 1762; https://doi.org/10.3390/ijms26041762 - 19 Feb 2025
Viewed by 728
Abstract
Insect pests and weeds are the two major biotic factors affecting crop yield in the modern agricultural system. In this study, a brown planthopper (BPH) resistance gene (BPH9) and glufosinate tolerance gene (bar) were stacked into a single T-DNA [...] Read more.
Insect pests and weeds are the two major biotic factors affecting crop yield in the modern agricultural system. In this study, a brown planthopper (BPH) resistance gene (BPH9) and glufosinate tolerance gene (bar) were stacked into a single T-DNA cassette and transformed into an indica rice (Oryza sativa L.) line H23. The present study employed a gene stacking process that combines more than one gene/trait into an individual transgenic plant to meet the increasing cropping demands under complex conditions. The transgenic rice H23 (H23R) co-expressing bar and BPH9 genes demonstrated both glufosinate tolerance and BPH resistance. We utilized transcriptome data to reveal the mechanism of BPH9-mediated brown planthopper resistance and to analyze the impact of exogenous transgenic fragments on upstream and downstream genes at insertion sites. The evaluation of insect resistance and glufosinate tolerance confirmed H23R as an excellent double-resistant transgenic rice. These findings indicate that H23R can satisfy insect management and weed control in the modern rice agricultural system. However, a deregulation study will help with prospective commercial planting. Full article
(This article belongs to the Special Issue Research on Plant Genomics and Breeding: 2nd Edition)
Show Figures

Figure 1

Back to TopTop