Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (436)

Search Parameters:
Keywords = reuse of treated wastewater

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 741 KiB  
Article
Wastewater Reuse to Address Climate Change: Insight from Legionella Contamination During Wastewater Treatment
by Manuela Macrì, Marta Catozzo, Silvia Bonetta and Sara Bonetta
Water 2025, 17(15), 2275; https://doi.org/10.3390/w17152275 - 31 Jul 2025
Viewed by 150
Abstract
Climate change is significantly affecting water availability, emphasising the need for sustainable strategies such as wastewater reuse. While this represents a promising alternative resource, insufficiently treated wastewater may pose health risks, particularly through aerosol formation during irrigation, which can facilitate Legionella transmission. This [...] Read more.
Climate change is significantly affecting water availability, emphasising the need for sustainable strategies such as wastewater reuse. While this represents a promising alternative resource, insufficiently treated wastewater may pose health risks, particularly through aerosol formation during irrigation, which can facilitate Legionella transmission. This study aimed to evaluate the presence of Legionella across various stages in a wastewater treatment plant (WWTP) that reuses effluent for agricultural purposes. Samples from the influent, four treatment phases, and the final effluent were analysed using both culture-based methods and quantitative PCR (qPCR) for Legionella spp. and L. pneumophila. qPCR detected Legionella spp. in all samples and L. pneumophila in 66% of them. In contrast, the culture-based analysis showed much lower detection levels, with only one positive sample at the influent stage—likely due to microbial interference or growth inhibition. Although contamination decreased in the final effluent, Legionella was still detected in water designated for reuse (Legionella spp. in 100% and L. pneumophila in 17% of samples). No treatment stage appeared to promote Legionella proliferation, likely due to WWTP characteristics, in addition to wastewater temperature and COD. These findings underscore the importance of monitoring Legionella in reclaimed water and developing effective control strategies to ensure the safe reuse of treated wastewater in agriculture. Full article
(This article belongs to the Special Issue Legionella: A Key Organism in Water Management)
Show Figures

Figure 1

23 pages, 1627 KiB  
Article
A Comprehensive Ecotoxicological Evaluation of a Treated Olive Mill Wastewater and Obtained Sludge
by José N. Pinto, Andreia Pereira, Ana Rita R. Silva, Diogo N. Cardoso, Amid Mostafaie, Fábio Campos, Iryna Rehan, Olga Moreira, Ivã Guidini Lopes, Daniel Murta, Alexandra Afonso, Margarida Oliveira, Karina S. Silvério, Maria Teresa Santos, Fátima Carvalho, Adelaide Almeida and Susana Loureiro
Toxics 2025, 13(8), 648; https://doi.org/10.3390/toxics13080648 (registering DOI) - 30 Jul 2025
Viewed by 157
Abstract
Olive mill wastewaters (OMWWs) are an environmental problem in the Mediterranean region, and it is crucial to explore strategies for their treatment and repurposing. The chemical precipitation technique (CPT) has been presented as a cost-effective wastewater treatment solution that might be applied to [...] Read more.
Olive mill wastewaters (OMWWs) are an environmental problem in the Mediterranean region, and it is crucial to explore strategies for their treatment and repurposing. The chemical precipitation technique (CPT) has been presented as a cost-effective wastewater treatment solution that might be applied to OMWW. The CPT-resulting precipitant subproducts (sludge) may be reprocessed (e.g., agricultural fertilizer and/or soil amendment), while the treated wastewater may be repurposed or reused (e.g., irrigation, aquaponic, or industrial processes). This study aimed to evaluate the efficacy of CPT in treating wastewater from the olive oil industry from an ecotoxicological perspective. Additionally, to assess the safe use of the obtained sludge in CPT treatment, its effects on soil biota were assessed. For this, a set of ecotoxicological assays using freshwater (Raphidocelis subcapitata, Daphnia magna and Danio rerio), terrestrial invertebrates (Folsomia candida and Enchytraeus crypticus), and plants (Brassica oleracea and Lolium perenne) were used as model organisms. Results demonstrated that CPT reduced OMWW toxicity to freshwater organisms, offering a favorable outlook on CPT’s potential as a wastewater treatment method. Increasing application rates of sludge in soil reduced the shoot biomass and the hydric content of both plants compared to the control. Survival of F. candida and E. crypticus was not affected by sludge in soil at any tested application rate, yet sludge application negatively affected the reproduction of both species, even at relevant sludge application rates (2%) of sludge in soils. Overall, the applicability of this sludge obtained by the CPT treatment in soils should be carefully evaluated due to the observed adverse effects on soil biota. Although the results of CPT were promising in reducing the toxicity of OMWW for these aquatic species, some adjustments/improvements should be performed to improve this technique and use all the obtained resources (treated water and sludge) in a fully circular perspective. Full article
(This article belongs to the Special Issue Biomass Conversion and Organic Waste Utilization in Wastewater)
Show Figures

Graphical abstract

21 pages, 12045 KiB  
Article
Combating Environmental Antimicrobial Resistance Using Bacteriophage Cocktails Targeting β-Lactam-Resistant High-Risk Clones of Klebsiella pneumoniae and Escherichia coli in Wastewater: A Strategy for Treatment and Reuse
by María D. Zapata-Montoya, Lorena Salazar-Ospina and Judy Natalia Jiménez
Water 2025, 17(15), 2236; https://doi.org/10.3390/w17152236 - 27 Jul 2025
Viewed by 374
Abstract
Wastewater is a hotspot for the spread of antimicrobial resistance (AR); therefore, bacteriophages offer a promising biocontrol alternative to overcome the limitations of conventional disinfection. This study evaluated the efficacy of bacteriophages and cocktails for the biocontrol of carbapenem-resistant Klebsiella pneumoniae (CR-Kp [...] Read more.
Wastewater is a hotspot for the spread of antimicrobial resistance (AR); therefore, bacteriophages offer a promising biocontrol alternative to overcome the limitations of conventional disinfection. This study evaluated the efficacy of bacteriophages and cocktails for the biocontrol of carbapenem-resistant Klebsiella pneumoniae (CR-Kp) (CG258 and ST307) and Escherichia coli producers of extended-spectrum β-lactamases (ESBL-Ec) (ST131) in simulated wastewater. A synthetic wastewater matrix was prepared in which bacterial viability and bacteriophage stability were assessed for 72 h. CR-Kp or ESBL-Ec strain were treated with individual bacteriophages or phage-cocktails (dosed in different ways) and bacterial loads were monitored for 54 h. The Klebsiella phages FKP3 and FKP14 eliminated 99% (−2.9 Log) of CR-Kp-CG258 at 54 h, and FKP10 reduced 99% (−2.15 Log) of the CR-Kp-ST307 strains. The Klebsiella phage-cocktail in a single dose reduced to 99.99% (−4.12 Log) of the CR-Kp-CG258 at 36 h. Coliphage FEC1 reduced to 2.12 Log (99%) of ESBL-Ec-blaCTX-M-G9, and FEC2 and FEC4 reduced approximately 1 Log (90%) of ESBL-Ec-blaCTX-M-G9 and blaCTX-M-G1. The coliphage cocktail increased the reduction up to 2.2 Logarithms. This study provides evidence supporting the use of bacteriophage cocktails for the control of resistant bacteria in wastewater, a sustainable intervention to mitigate the spread of AR and support water reuse safety. Full article
Show Figures

Graphical abstract

5 pages, 270 KiB  
Proceeding Paper
Building a Circular Economy Option Through Wastewater Treatment and a Resource Recovery Approach
by Anastasios Zouboulis and Effrosyni Peleka
Proceedings 2025, 121(1), 10; https://doi.org/10.3390/proceedings2025121010 - 24 Jul 2025
Viewed by 169
Abstract
This work studies and analyzes the transition from a linear to a circular economy through wastewater treatment and resource recovery. As wastewater volumes grow, sustainable management becomes critical. This study highlights the reuse of treated effluent, beneficial sludge utilization, and energy generation via [...] Read more.
This work studies and analyzes the transition from a linear to a circular economy through wastewater treatment and resource recovery. As wastewater volumes grow, sustainable management becomes critical. This study highlights the reuse of treated effluent, beneficial sludge utilization, and energy generation via anaerobic digestion. Wastewater treatment plants should be envisioned as hubs for recovering water, materials, and energy, rather than disposal facilities. Emphasizing resource efficiency, the circular economy approach offers viable solutions to challenges related to resource scarcity, climate change, and ecological impact. Full article
Show Figures

Figure 1

17 pages, 2890 KiB  
Review
Catalytic Ozonation for Reverse Osmosis Concentrated Water Treatment: Recent Advances in Different Industries
by Siqi Chen, Yun Gao, Wenquan Sun, Jun Zhou and Yongjun Sun
Catalysts 2025, 15(7), 692; https://doi.org/10.3390/catal15070692 - 20 Jul 2025
Viewed by 370
Abstract
Reverse osmosis (RO) concentrated water can be effectively treated with catalytic ozone oxidation technology, an effective advanced oxidation process. In order to provide a thorough reference for the safe treatment and reuse of RO concentrated water, this paper examines the properties of RO [...] Read more.
Reverse osmosis (RO) concentrated water can be effectively treated with catalytic ozone oxidation technology, an effective advanced oxidation process. In order to provide a thorough reference for the safe treatment and reuse of RO concentrated water, this paper examines the properties of RO concentrated water, such as its high salt content, high levels of organic pollutants, and low biochemistry. It also examines the mechanism of its role in treating RO concentrated water and combs through its applications in municipal, petrochemical, coal chemical, industrial parks, and other industries. The study demonstrates that ozone oxidation technology can efficiently eliminate the organic matter that is difficult to break down in RO concentrated water and lower treatment energy consumption; however, issues with free radical inhibitor interference, catalyst recovery, and stability still affect its use. Future research into multi-technology synergistic processes, the development of stable and effective non-homogeneous catalysts, and the promotion of their use at the “zero discharge” scale for industrial wastewater are all imperative. Full article
(This article belongs to the Special Issue State-of-the-Art of Heterostructured Photocatalysts)
Show Figures

Graphical abstract

18 pages, 2410 KiB  
Article
Nanostructured Cellulose Acetate Membranes Embedded with Al2O3 Nanoparticles for Sustainable Wastewater Treatment
by Ines Elaissaoui, Soumaya Sayeb, Mouna Mekki, Francesca Russo, Alberto Figoli, Karima Horchani-Naifer and Dorra Jellouli Ennigrou
Coatings 2025, 15(7), 823; https://doi.org/10.3390/coatings15070823 - 15 Jul 2025
Viewed by 344
Abstract
Electrospun nanofiber membranes based on cellulose acetate (CA) have gained increasing attention for wastewater treatment due to their high surface area, tuneable structure, and ease of functionalization. In this study, the performance of CA membranes was enhanced by incorporating aluminum oxide (Al2 [...] Read more.
Electrospun nanofiber membranes based on cellulose acetate (CA) have gained increasing attention for wastewater treatment due to their high surface area, tuneable structure, and ease of functionalization. In this study, the performance of CA membranes was enhanced by incorporating aluminum oxide (Al2O3) nanoparticles (NPs) at varying concentrations (0–2 wt.%). The structural, morphological, and thermal properties of the resulting CA/Al2O3 nanocomposite membranes were investigated through FTIR, XRD, SEM, water contact angle (WCA), pore size measurements, and DSC analyses. FTIR and XRD confirmed strong interactions and the uniform dispersion of the Al2O3 NPs within the CA matrix. The incorporation of Al2O3 improved membrane hydrophilicity, reducing the WCA from 107° to 35°, and increased the average pore size from 0.62 µm to 0.86 µm. These modifications led to enhanced filtration performance, with the membrane containing 2 wt.% Al2O3 achieving a 99% removal efficiency for Indigo Carmine (IC) dye, a maximum adsorption capacity of 45.59 mg/g, and a high permeate flux of 175.47 L·m−2 h−1 bar−1. Additionally, phytotoxicity tests using Lactuca sativa seeds showed a significant increase in germination index from 20% (untreated) to 88% (treated), confirming the safety of the permeate for potential reuse in agricultural irrigation. These results highlight the effectiveness of Al2O3-modified CA electrospun membranes for sustainable wastewater treatment and water reuse. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Graphical abstract

22 pages, 828 KiB  
Review
Agricultural Irrigation Using Treated Wastewater: Challenges and Opportunities
by Christian C. Obijianya, Elif Yakamercan, Mahmoud Karimi, Sridevi Veluru, Ivan Simko, Sulaymon Eshkabilov and Halis Simsek
Water 2025, 17(14), 2083; https://doi.org/10.3390/w17142083 - 11 Jul 2025
Viewed by 558
Abstract
Reusing and recycling treated wastewater is a sustainable approach to meet the growing demand for clean water, ensuring its availability for both current and future generations. Wastewater can be treated in such advanced ways that it can be used for industrial operations, recharging [...] Read more.
Reusing and recycling treated wastewater is a sustainable approach to meet the growing demand for clean water, ensuring its availability for both current and future generations. Wastewater can be treated in such advanced ways that it can be used for industrial operations, recharging groundwater, irrigation of fields, or even manufacturing drinkable water. This strategy meets growing water demand in water-scarce areas while protecting natural ecosystems. Treated wastewater is both a resource and a challenge. Though it may be nutrient-rich and can increase agricultural output while showing resource reuse and environmental conservation, high treatment costs, public acceptance, and contamination hazards limit its use. Proper treatment can reduce these hazards, safeguarding human health and the environment while enhancing its benefits, including a stable water supply, nutrient-rich irrigation, higher crop yields, economic development, and community resilience. On the one hand, inadequate treatment may lead to soil salinization, environmental degradation, and hazardous foods. Examining the dual benefits and risks of using treated wastewater for agricultural irrigation, this paper investigates the complexities of its use as a valuable resource and as a potential hazard. Modern treatment technologies are needed to address these difficulties and to ensure safe and sustainable use. If properly handled, treated wastewater reuse has enormous potential for reducing water scarcity and expanding sustainable agriculture as well as global food security. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Graphical abstract

31 pages, 3790 KiB  
Systematic Review
Plants Used in Constructed Wetlands for Aquaculture: A Systematic Review
by Erick Arturo Betanzo-Torres, Gastón Ballut-Dajud, Graciano Aguilar-Cortés, Elizabeth Delfín-Portela and Luis Carlos Sandoval Herazo
Sustainability 2025, 17(14), 6298; https://doi.org/10.3390/su17146298 - 9 Jul 2025
Viewed by 735
Abstract
The latest FAO report indicates that aquaculture accounts for 51% of the global production volume of fish and seafood. However, despite the continuous growth of this activity, there is evidence of the excessive use of groundwater in its production processes, as well as [...] Read more.
The latest FAO report indicates that aquaculture accounts for 51% of the global production volume of fish and seafood. However, despite the continuous growth of this activity, there is evidence of the excessive use of groundwater in its production processes, as well as pollution caused by nutrient discharges into surface waters due to the water exchange required to maintain water quality in fishponds. Given this context, the objectives of this study were as follows: (1) to review which emergent and floating plant species are used in constructed wetlands (CWs) for the bioremediation of aquaculture wastewater; (2) to identify the aquaculture species whose wastewater has been treated with CW systems; and (3) to examine the integration of CWs with recirculating aquaculture systems (RASs) for water reuse. A systematic literature review was conducted, selecting 70 scientific articles published between 2003 and 2023. The results show that the most used plant species in CW systems were Phragmites australis, Typha latifolia, Canna indica, Eichhornia crassipes, and Arundo donax, out of a total of 43 identified species. These plants treated wastewater generated by 25 aquaculture species, including Oreochromis niloticus, Litopenaeus vannamei, Ictalurus punctatus, Clarias gariepinus, Tachysurus fulvidraco, and Cyprinus carpio, However, only 40% of the reviewed studies addressed aspects related to the incorporation of RAS elements in their designs. In conclusion, the use of plants for wastewater treatment in CW systems is feasible; however, its application remains largely at the experimental scale. Evidence indicates that there are limited real-scale applications and few studies focused on the reuse of treated water for agricultural purposes. This highlights the need for future research aimed at production systems that integrate circular economy principles in this sector, through RAS–CW systems. Additionally, there is a wide variety of plant species that remain unexplored for these purposes. Full article
Show Figures

Figure 1

25 pages, 3133 KiB  
Article
Wastewater Impact on Surface Water Quality and Suitability of Water Reuse in Agriculture Using a Comprehensive Methodology Based on PCA and Specific Indices
by Iulia Ajtai, Anda Anton, Carmen Roba, Camelia Botezan, Ioana Piștea, Marius Oprea and Călin Baciu
Water 2025, 17(13), 2011; https://doi.org/10.3390/w17132011 - 4 Jul 2025
Viewed by 374
Abstract
Effluents from wastewater treatment plants (WWTPs) represent a potential pollution risk to surface waters. Moreover, the growing practice of using treated wastewater for irrigation has recently received increased attention in terms of its suitability, raising concerns about its impact on soil health, agricultural [...] Read more.
Effluents from wastewater treatment plants (WWTPs) represent a potential pollution risk to surface waters. Moreover, the growing practice of using treated wastewater for irrigation has recently received increased attention in terms of its suitability, raising concerns about its impact on soil health, agricultural productivity, and human well-being. The aim of this study is to apply a comprehensive approach to assess the impact of wastewater from a Romanian WWTP on surface water quality and its suitability for irrigation practices. For this purpose, a set of physico-chemical parameters were analyzed, and a Water Quality Index (WQI) was developed based on Principal Component Analysis (PCA). The irrigation suitability of the effluent was further assessed using key parameters (electrical conductivity—EC; total dissolved solids—TDSs; turbidity; Biochemical Oxygen Demand—BOD5) and specific irrigation indices (Sodium Adsorption Ratio—SAR; Permeability Index—PI; Residual Sodium Carbonate—RSC; Sodium percentage—%Na; Kelly’s ratio—KR). The results for the surface water quality indicated high contents of Na+ (10.2–42.5 mg/L), Cl (11.9–48.4 mg/L), and SO42− (10.7–68.5 mg/L) downstream of the wastewater discharge point. The WQI, which reflects overall water quality for environmental health, showed excellent water quality, with a mean of 34 upstream and 47 downstream, suggesting the potential impact of treated wastewater discharge downstream. However, the irrigation indices revealed elevated sodium levels in the effluent, with %Na (up to 86%) categorizing 70% of the samples as unsuitable, while KR (up to 6.2) classified all samples as unsuitable. These findings suggest that despite a low impact on the river water, elevated sodium levels in effluent may limit suitability for irrigation, highlighting the importance of monitoring effluent water reuse. Full article
(This article belongs to the Special Issue Ecological Wastewater Treatment and Resource Utilization)
Show Figures

Figure 1

23 pages, 9327 KiB  
Article
Domestic Reclaimed Water for Circular Agriculture: Improving Agronomic Performance of Sweet Sorghum in a Semiarid Tropical Climate
by Breno Leonan de Carvalho Lima, Jucilene Silva Araújo, José Thyago Aires Souza, Elder Cunha de Lira, Jose Nildo Tabosa, Eurico Lustosa do Nascimento Alencar, Jose Edson Florentino de Moraes, Ceres Duarte Guedes Cabral de Almeida, Alexsandro Oliveira da Silva, Mario Monteiro Rolim, Abelardo Antônio de Assunção Montenegro, Thieres George Freire da Silva and Ênio Farias de França e Silva
Sustainability 2025, 17(13), 5765; https://doi.org/10.3390/su17135765 - 23 Jun 2025
Viewed by 399
Abstract
Water scarcity in semiarid regions represents a critical challenge for sustainable agriculture, reducing the availability of forage and affecting livestock systems. The reuse of treated wastewater offers an environmentally friendly alternative to meet water and nutrient needs, supporting the principles of the circular [...] Read more.
Water scarcity in semiarid regions represents a critical challenge for sustainable agriculture, reducing the availability of forage and affecting livestock systems. The reuse of treated wastewater offers an environmentally friendly alternative to meet water and nutrient needs, supporting the principles of the circular economy. Sweet sorghum, with its remarkable tolerance to abiotic stress, represents a resilient crop option. Evaluating its agronomic and industrial responses to different depths of irrigation using reclaimed water is essential for improving resource-efficient agricultural practices in water-limited environments. This study evaluated the effects of different irrigation regimes with treated wastewater on the growth, productivity, and water use efficiency of sweet sorghum grown in a semiarid region of Brazil. The experiment was conducted in a randomized complete block design, with five irrigation regimes ranging from 50% to 150% of crop evapotranspiration (ETc) and four replications. Irrigation was carried out with treated wastewater using a drip irrigation system. Growth parameters, fresh biomass, water use efficiency, and soluble solids content (°Brix) were analyzed in two consecutive harvests (main and ratoon crop). Deficit irrigation regimes (50% and 75% of ETc) resulted in higher water use efficiency and higher °Brix, whereas regimes above 100% of ETc reduced water use efficiency and biomass productivity. The ratoon crop showed greater sensitivity to water management, with significant productivity responses under irrigation around 100% of ETc. The first harvest was more productive in terms of fresh biomass and plant growth. Reclaimed water is a sustainable and efficient strategy for cultivating sweet sorghum in semiarid regions. Deficit irrigation regimes can be technically viable for maximizing water use efficiency and production quality, while proper irrigation management is crucial to avoiding losses associated with excessive water application. Full article
Show Figures

Figure 1

13 pages, 914 KiB  
Article
Natural Coagulants as an Efficient Alternative to Chemical Ones for Continuous Treatment of Aquaculture Wastewater
by Isabella T. Tomasi, Rui A. R. Boaventura and Cidália M. S. Botelho
Appl. Sci. 2025, 15(12), 6908; https://doi.org/10.3390/app15126908 - 19 Jun 2025
Viewed by 373
Abstract
Aquaculture effluents are a growing source of water pollution, releasing suspended solids, organic matter, nitrogen, and phosphorus into aquatic environments. Recirculating aquaculture systems (RASs) have emerged as a more sustainable solution, allowing water to be continuously treated and reused. Within RASs, coagulation–flocculation is [...] Read more.
Aquaculture effluents are a growing source of water pollution, releasing suspended solids, organic matter, nitrogen, and phosphorus into aquatic environments. Recirculating aquaculture systems (RASs) have emerged as a more sustainable solution, allowing water to be continuously treated and reused. Within RASs, coagulation–flocculation is a key treatment step due to its simplicity and effectiveness. Tannin-based coagulants have gained attention as natural alternatives to traditional chemical agents. Although natural coagulants have been studied in aquaculture, only a few works explore their use in continuous-flow systems. This study evaluates a chestnut shell-based (CS) coagulant applied in continuous mode for the post-treatment of aquaculture effluent. The performance of CS was compared with Tanfloc, aluminum sulfate, and ferric chloride in removing color and dissolved organic carbon (DOC). At natural pH (6.5) and 50 mg·L−1, CS and Tanfloc achieved color removal of 61.0% and 65.5%, respectively, outperforming chemical coagulants. For DOC, Tanfloc and chemical coagulants removed 45–50%, while CS removed 32%. All coagulants removed over 90% of phosphorus, but nitrogen removal was limited (30–40%). These results highlight the potential of tannin-derived coagulants, particularly from agro-industrial residues, as sustainable solutions for aquaculture wastewater treatment in continuous systems. Full article
Show Figures

Figure 1

12 pages, 397 KiB  
Article
Comparison Study of Urban Wastewater Treatment Using Conventional Biologic Treatment and Submerged Membrane Bioreactor Processes
by Halis Gazi Hiz and Hüdaverdi Arslan
Water 2025, 17(12), 1810; https://doi.org/10.3390/w17121810 - 17 Jun 2025
Viewed by 381
Abstract
Today, the demand for clean water resources causes the rapid consumption of water and the finding of alternative water resources. The recovery and reuse of wastewater after treatment is important for water sustainability, and in recent years, the use of wastewater by completely [...] Read more.
Today, the demand for clean water resources causes the rapid consumption of water and the finding of alternative water resources. The recovery and reuse of wastewater after treatment is important for water sustainability, and in recent years, the use of wastewater by completely or partially treating it has gained importance due to the water shortage that has emerged as a result of global climate change. It can be used in agricultural areas where water is frequently used, especially if the water content is suitable after treatment. In this study, the use of water from the treatment plant as irrigation water in agricultural areas was investigated. The effluent of the Mezitli and Kızkalesi Wastewater Treatment Plants in Mersin was used for this purpose. In the investigation of the usability of the treated water in agricultural irrigation, analyses were made for many pollutants. In order to examine the usability of wastewater after treatment in irrigation water, parameters such as total phosphorus (TP), total nitrogen (TN), biological oxygen demand (BOD) and heavy metals were examined in order to meet the nutrient needs of plants. The analysis results were evaluated according to the agricultural irrigation water criteria specified in the Wastewater Treatment Plant Technical Procedures Communiqué. As a result, the analysis results of the treated water were compared with the limit values in the regulations, and it was evaluated that the treated water in the Mezitli Wastewater Treatment Plant did not meet the limit values of irrigation water usage criteria. However, it has been evaluated that the effluent from the Kızkalesi Wastewater Treatment Plant, which was treated with the MBR process, meets the limit values and therefore can be used for agricultural irrigation purposes. As a result, when the analysis results performed on treated water were compared with the Wastewater Treatment Plant Technical Procedures Communiqué irrigation water limit values, it was evaluated that the treated water of the Mezitli Wastewater Treatment Plant did not meet irrigation water limit values, but the treated water of the Kızkalesi Wastewater Treatment Plant with the MBR process met the irrigation water limit values and therefore could be used for agricultural irrigation purposes. The study results showed that the treated water in the Mezitli Wastewater Treatment Plant could not be used for agricultural irrigation, but the treated water in the Kızkalesi Wastewater Treatment Plant could be used for agricultural irrigation. Full article
Show Figures

Figure 1

19 pages, 1224 KiB  
Review
Environmental Impact of Wastewater on Surface and Groundwater in Central Asia
by Marzhan S. Kalmakhanova, Assel A. Kurtebayeva, Zhanna T. Tleuova, Bagdat Satybaldiev, Seitzhan A. Orynbayev, Arindam Malakar, Helder T. Gomes and Daniel D. Snow
Sustainability 2025, 17(12), 5370; https://doi.org/10.3390/su17125370 - 11 Jun 2025
Viewed by 657
Abstract
This review aims to increase attention on present water quality issues on Central Asia, finding gaps in the literature on ways to address treatment needs, and help ensure future use of Central Asia surface waters and groundwater for all beneficial uses. Central Asia [...] Read more.
This review aims to increase attention on present water quality issues on Central Asia, finding gaps in the literature on ways to address treatment needs, and help ensure future use of Central Asia surface waters and groundwater for all beneficial uses. Central Asia is a landlocked region known for its harsh climatic conditions and scarce water resources, despite being home to some of the world’s largest internal drainage basins. The available literature suggests that increasing salinity has rendered water unsuitable for irrigation and consumption; hazardous trace elements are found throughout Central Asia, most often associated with mining and industrial sources; and that legacy pesticides influence water quality, particularly in agriculturally influenced basins. This study also focuses on the effects of municipal and industrial wastewater discharge. Additionally, the impact of inadequately treated wastewater on water resources is analyzed through a review of available data and reports regarding surface and groundwater quantity and quality. Given the challenges of water scarcity and accessibility, the reuse of treated wastewater is becoming increasingly important, offering a valuable alternative that necessitates careful oversight to ensure public health, environmental sustainability, and water security. However, due to insufficient financial and technical resources, along with underdeveloped regulatory frameworks, many urban areas lack adequate wastewater treatment facilities, significantly constraining their safe and sustainable reuse. Proper management of wastewater effluent is critical, as it directly influences the quality of both surface and groundwater, which serve as key sources for drinking water and irrigation. Due to their persistent and biologically active nature even at trace levels, we discuss contaminants of emerging concern such as antibiotics, pharmaceuticals, and modern agrochemicals. This review thus highlights gaps in the literature reporting on impacts of wastewater inputs to water quality in Central Asia. It is recommended that future research and efforts should focus on exploring sustainable solutions for water quality management and pollution control to assure environmental sustainability and public health. Full article
Show Figures

Figure 1

17 pages, 3316 KiB  
Article
Evaluation of the Phytoremediation Capacity of a Natural Wetland Adjacent to Fluvial and Vehicular Infrastructure for Domestic Wastewater Treatment: A Case Study in Central Mexico
by Irouri Cristóbal-Muñoz, Yasunari Cristóbal-Muñoz, Jorge Víctor Prado-Hernández, David Cristóbal-Acevedo, Emilio Quintana-Molina and Samantha Rodríguez-Rosas
Water 2025, 17(11), 1560; https://doi.org/10.3390/w17111560 - 22 May 2025
Viewed by 578
Abstract
Untreated domestic wastewater discharged into rivers and streams severely deteriorates water quality and aquatic ecosystems, especially in regions lacking adequate treatment infrastructure. This study aimed to evaluate the effectiveness of phytoremediation of domestic wastewater by the Sector Popular natural wetland (Mexico), located adjacent [...] Read more.
Untreated domestic wastewater discharged into rivers and streams severely deteriorates water quality and aquatic ecosystems, especially in regions lacking adequate treatment infrastructure. This study aimed to evaluate the effectiveness of phytoremediation of domestic wastewater by the Sector Popular natural wetland (Mexico), located adjacent to fluvial and crossing structures. The evaluation was conducted by comparing contamination levels in the influent and effluent water, based on Mexican Official Standards (NOM-001-SEMARNAT-1996, NOM-003-SEMARNAT-1997, and NOM-001-SEMARNAT-2021), as well as several water quality indicators for irrigation. The wetland reduced concentrations of five-day biochemical oxygen demand by 98%, chemical oxygen demand by 95%, total suspended solids by 96%, total nitrogen by 92%, total phosphorus by 67%, and fecal coliforms by 96%. However, the treated water did not meet reuse standards for public services due to elevated salinity and residual presence of fecal microorganisms. These findings confirm that natural wetlands can significantly improve the quality of domestic wastewater and help mitigate environmental degradation in rivers. This approach represents a feasible and complementary strategy for wastewater treatment in regions with similar hydrological and infrastructure conditions. Full article
(This article belongs to the Section Water and One Health)
Show Figures

Graphical abstract

13 pages, 1862 KiB  
Article
Hydroponic Wastewater Treatment with Microalgae: A Sustainable Alternative for Irrigating Pelargonium × hortorum
by Alejandro Rápalo-Cruz, Cintia Gómez-Serrano, Cynthia Victoria González-López, Miguel Urrestarazu-Gavilán and Silvia Jiménez-Becker
Horticulturae 2025, 11(5), 547; https://doi.org/10.3390/horticulturae11050547 - 19 May 2025
Viewed by 689
Abstract
Microalgae are an effective solution for the treatment and valorization of wastewater generated in hydroponic systems. In the current context of sustainability and resource management, the search for ecological alternatives in agriculture is essential. This study investigated the use of wastewater from hydroponic [...] Read more.
Microalgae are an effective solution for the treatment and valorization of wastewater generated in hydroponic systems. In the current context of sustainability and resource management, the search for ecological alternatives in agriculture is essential. This study investigated the use of wastewater from hydroponic systems, purified by microalgae, for the irrigation of Pelargonium × hortorum. An experiment was designed under controlled conditions in which different irrigation treatments were applied. Hydroponic leachates treated by microalgae were used at 100%, 75%, and 50% (diluted using tap water), in addition to tap water as a negative control and nutrient solution as a positive control. The treatment system was established in a raceway photobioreactor, which allowed the proliferation of microalgae that act as bioremediators for the elimination of pollutants and the removal of nitrogen and phosphorus. The growth parameters, biomass, and general health of the Pelargonium × hortorum plants were evaluated, complemented with physicochemical analyses of the water carried out during the experimental period. These analyses showed that the water obtained after the purification process retained nutrients that can be reused for irrigation. The results indicated that plants irrigated with treated water showed significant improvements in height, diameter, number of leaves, leaf area, leaf dry weight, and flower dry weight compared to those irrigated with tap water. In conclusion, the study shows that the treatment of hydroponic wastewater by means of microalgal cultivation represents a viable and ecological alternative for the irrigation of ornamental plants such as Pelargonium × hortorum. The implementation of this system contributes both to the reduction of pollutants and to the optimal use of water resources, establishing a solid basis for future research in which additional nutrients could be incorporated to balance the nutrient solution studied. Full article
Show Figures

Graphical abstract

Back to TopTop