Comparison Study of Urban Wastewater Treatment Using Conventional Biologic Treatment and Submerged Membrane Bioreactor Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information About Wastewater Treatment Plants
2.2. Real Wastewater Characteristics of Wastewater Treatment Plants
3. Result and Discussion
3.1. Characterization Results of Initial Wastewater and Treated Water
3.2. Evaluation According to the Classification of Treated Wastewater to Be Used in Irrigation
3.3. Evaluation of the Chemical Quality of Treated Water for Use in Irrigation Water
3.4. Evaluation of Heavy Metal Content of Treated Water for Use in Irrigation Water
3.5. Evaluation of the Nutrient Content of Treated Water for Use in Irrigation Water
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ASP | Mezitli Wastewater Treatment Plant |
MBR | Kızkalesi Wastewater Treatment Plant |
BOD | biological oxygen demand |
COD | chemical oxygen demand |
TP | Total phosphorus |
TN | Total nitrogen |
NO3-N | Nitrate nitrogen |
SS | Suspended solids |
TDS | Total dissolved solids |
SAR | Sodium adsorption rate |
Na | Sodium |
Cl | Chloride |
B | Boron |
As | Arsenic |
Cd | Cadmium |
Cr6+ | Chromium |
Co | Cobalt |
Cu | Copper |
Pb | Lead |
Ni | Nickel |
Zn | Zinc |
References
- Uddin, M.G.; Nash, S.; Olbert, A.I. A review of water quality index models and their use for assessing surface water quality. Ecol. Indic. 2021, 122, 107218. [Google Scholar] [CrossRef]
- Lin, L.; Yang, H.; Xu, X. Effects of Water Pollution on Human Health and Disease Heterogeneity: A Review. Front. Environ. Sci. 2022, 10, 880246. [Google Scholar] [CrossRef]
- Mannina, G.; Gulhan, H.; Ni, B.J. Water reuse from wastewater treatment: The transition towards circular economy in the water sector. Bioresour. Technol. 2022, 363, 127951. [Google Scholar] [CrossRef] [PubMed]
- Hristov, J.; Barreiro-Hurle, J.; Salputra, G.; Blanco, M.; Witzke, P. Reuse of treated water in European agriculture: Potential to address water scarcity under climate change. Agric. Water Manag. 2021, 251, 106872. [Google Scholar] [CrossRef]
- Al-Hazmi, H.E.; Mohammadi, A.; Hejna, A.; Majtacz, J.; Esmaeili, A.; Habibzadeh, S.; Saeb, M.R.; Badawi, M.; Lima, E.C.; Mąkinia, J. Wastewater reuse in agriculture: Prospects and challenges. Environ. Res. 2023, 236, 116711. [Google Scholar] [CrossRef]
- Miller-Robbie, L.; Ramaswami, A.; Amerasinghe, P. Wastewater treatment and reuse in urban agriculture: Exploring the food, energy, water, and health nexus in Hyderabad, India. Environ. Res. Lett. 2017, 12, 075005. [Google Scholar] [CrossRef]
- Gholami-Shabani, M.; Nematpour, K. Reuse of Wastewater as Non-Conventional Water: A Way to Reduce Water Scarcity Crisis. In Wastewater Treatment and Sludge Management Systems-the Gutter-to-Good Approaches; IntechOpen: London, UK, 2024. [Google Scholar] [CrossRef]
- Villamar, C.A.; Vera-Puerto, I.; Rivera, D.; De la Hoz, F.D. Reuse and recycling of livestock and municipal wastewater in Chilean agriculture: A preliminary assessment. Water 2018, 10, 817. [Google Scholar] [CrossRef]
- Rebello, T.A.; Roque, R.P.; Gonçalves, R.F.; Calmon, J.L.; Queiroz, L.M. Life cycle assessment of urban wastewater treatment plants: A critical analysis and guideline proposal. Water Sci. Technol. 2021, 83, 501–514. [Google Scholar] [CrossRef]
- Phan, L.T.; Schaar, H.; Saracevic, E.; Krampe, J.; Kreuzinger, N. Effect of ozonation on the biodegradability of urban wastewater treatment plant effluent. Sci. Total Environ. 2022, 812, 152466. [Google Scholar] [CrossRef]
- Ates, N.; Uzal, N.; Yetis, U.; Dilek, F.B. Removal of pesticides from secondary treated urban wastewater by reverse osmosis. Environ. Sci. Pollut. Res. 2023, 30, 8732–8745. [Google Scholar] [CrossRef]
- Official Gazette of the Republic of Turkey. Wastewater Treatment Plants Technical Procedures Communiqué (WTPWC); 20 March 2010 Number: 27527, Republic of Turkey Presidency General Secretariat General Directorate of Law and Legislation 06560 Beştepe/Ankara; Official Gazette of the Republic of Turkey: Ankara, Turkey, 2010. [Google Scholar]
- Safdar, H.; Amin, A.; Shafiq, Y.; Ali, A.; Yasin, R. Abbas Shoukat, Maqsood Ul Hussan, Muhammad Ishtiaq Sarwar. A review: Impact of salinity on plant growth. Nat. Sci. 2019, 17, 34–40. [Google Scholar] [CrossRef]
- Scharwies, J.D.; Dinneny, J.R. Water transport, perception, and response in plants. J. Plant Res. 2019, 132, 311–324. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.P.; Su, Q. Chapter 5: Irrigation Water Quality. In Irrigation Engineering: Principles, Processes, Procedures, Design, and Management; Cambridge University Press: Cambridge, UK, 2022; pp. 81–93. [Google Scholar] [CrossRef]
- Karakuş, C.B.; Yıldız, S. Evaluation for Irrigation Water Purposes of Groundwater Quality in the Vicinity of Sivas City Centre (Turkey) by Using Gis and an Irrigation Water Quality Index. Irrig. Drain. 2020, 69, 121–137. [Google Scholar] [CrossRef]
- Sepahvand, A.; Singh, B.; Sihag, P.; Nazari Samani, A.; Ahmadi, H.; Fiz Nia, S. Assessment of the various soft computing techniques to predict sodium absorption ratio (SAR). ISH J. Hydraul. Eng. 2021, 27, 124–135. [Google Scholar] [CrossRef]
- Şener, E.; Şener, Ş.; Varol, S. Evaluation of Irrigation Water Quality using GIS-based analytic hierarchy process (AHP) in Kızılırmak Delta (Turkey). Arab. J. Geosci. 2022, 15, 678. [Google Scholar] [CrossRef]
- Simsek, C.; Gunduz, O. IWQ Index: A GIS-integrated technique to assess irrigation water quality. Environ. Monit. Assess. 2007, 128, 277–300. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Hassan, A.; Arshad, P.; Anjum, M.A. Different sources of irrigation water affect heavy metal accumulation in soils and some properties of guava fruits. Environ. Sci. Pollut. Res. 2022, 29, 35986–35995. [Google Scholar] [CrossRef]
- Almuktar, S.A.A.A.N.; Abed, S.N.; Scholz, M. Wetlands for wastewater treatment and subsequent recycling of treated effluent: A review. Environ. Sci. Pollut. Res. 2018, 25, 23595–23623. [Google Scholar] [CrossRef]
- Namdeti, R.; Lakkimsetty, N.R.; Gaddala, B.R.; Thandlam, A.K.; Varaprasad, C.; Doddamani, D.; Salim, D.; Al, M.; Prema, P.M. Membrane Bioreactors: Integration of Biological Processes with Membrane Technology for Wastewater Treatment. J. Membr. Sci. Res. 2025, 11, 616. [Google Scholar] [CrossRef]
- Hamidi, M.N. Membrane bioreactor technology for greywater treatment: A review. Sep. Purif. Technol. 2025, 361, 131451. [Google Scholar] [CrossRef]
- Gao, T.; Jin, Y.; Xiao, K. Techno–Economic and Environmental Impact Assessment of Membrane Bioreactors for Wastewater Treatment: A Review. Engineering, 2025; in press. [Google Scholar] [CrossRef]
- Iorhemen, O.T.; Hamza, R.A.; Tay, J.H. Membrane bioreactor (MBR) technology for wastewater treatment and reclamation: Membrane fouling. Membranes 2016, 6, 33. [Google Scholar] [CrossRef] [PubMed]
Parameters | Unit | ASP | MBR Summer and Winter Average |
---|---|---|---|
pH | - | 7.11 ± 0.25 | 7.50 ± 0.5 |
Conductivity | µS/cm | 6.920 ± 1.130 | 1.438 ± 142 |
BOD | mg/L | 386.25 ± 23.97 | 149.5 ± 10.75 |
COD | mg/L | 496.4 ± 19.15 | 192.5 ± 10.58 |
SS | mg/L | 247.5 ± 24.62 | 106 ± 5.44 |
TP | mg/L | 7.28 ± 1.43 | 3.18 ± 0.30 |
TN | mg/L | 31.5 ± 3.38 | 50.51 ± 1.80 |
Cl | mg/L | 6848 ± 463.11 | 2244 ± 73 |
Arsenic | mg/L | 0.055 ± 0.012 | 0.053 ± 0.011 |
Cadmium | mg/L | 0.038 ± 0.018 | 0.056 ± 0.008 |
Chromium (Cr6+) | mg/L | 0.05 ± 0.018 | 0.058 ± 0.023 |
Cobalt | mg/L | <0.005 | <0.005 |
Copper | mg/L | 0.059 ± 0.036 | 0.0695 ± 0.038 |
Lead | mg/L | 0.25 ± 0.032 | 0.3 ± 0.024 |
Nickel | mg/L | 0.26 ± 0.036 | 0.21 ± 0.033 |
Zinc | mg/L | 0.11 ± 0.026 | 0.18 ± 0.025 |
Parameters | Unit | ASP | MBR |
---|---|---|---|
pH | - | 7.39 ± 0.12 | 7.47 ± 0.2 |
Conductivity | µS/cm | 6430 ± 1490 | 1056 ± 110.3 |
BOD | mg/L | 18.45 ± 6.55 | 5.96 ± 2.6 |
COD | mg/L | 23.21 ± 5.19 | 11.17 ± 4.12 |
Coliform * | CFU/100 mL | 0 | 0 |
SS | mg/L | 21.79 ± 13.21 | 7.2 ± 2.3 |
TP | mg/L | 5.25 ± 0.75 | 1.43 ± 1.1 |
TN | mg/L | 19.66 ± 4.34 | 10.2 ± 6.1 |
NO3-N | mg/L | 17.8 ± 5.64 | 17.20 ± 4.89 |
Cl | mg/L | 457.79 ± 32.25 | 71.1 ± 18.4 |
Active chlorine | mg/L | 0.79 ± 0.12 | 0.35 ± 0.05 |
TDS | mg/L | 26.7 ± 6.12 | 9.44 ± 6.5 |
Arsenic | mg/L | 0.049 ± 0.029 | 0.023 ± 0.02 |
Cadmium | mg/L | 0.025 ± 0.025 | 0.0415 ± 0.008 |
Chromium (Cr6+) | mg/L | 0.029 ± 0.021 | 0.05 ± 0.023 |
Cobalt | mg/L | <0.005 | <0.005 |
Copper | mg/L | 0.054 ± 0.046 | 0.0625 ± 0.04 |
Lead | mg/L | 0.179 ± 0.121 | 0.15 ± 0.121 |
Nickel | mg/L | 0.15 ± 0.05 | 0.15 ± 0.05 |
Zinc | mg/L | 0.25 ± 0.025 | 0.08 ± 0.02 |
Parameters | Unit | Results | Classification of Treated Wastewater to Be Used in İrrigation (Table E7.1) | ||
---|---|---|---|---|---|
ASP | MBR | A | B | ||
pH | - | 7.39 ± 0.12 | 7.47 ± 0.2 | 6–9 | 6–9 |
BOD | mg/L | 18.45 ± 6.55 | 5.96 ± 2.6 | <20 | <30 |
Active chlorine | mg/L | 0.79 ± 0.12 | 0.35 ± 0.05 | >1 | >1 |
SS | mg/L | 21.79 ± 6.21 | 7.2 ± 2.3 | - | <30 |
Coliform * | CFU/100 mL | 0 | 0 | 0 | <200 |
Parameters | Unit | Results | Chemical Quality of Irrigation Water (Table E7.2) | |||
---|---|---|---|---|---|---|
ASP | MBR | (I) | (II) | (III) | ||
Conductivity | µS/cm | 6430 ± 1490 | 1056 ± 110.3 | <700 | 700–3000 | >3000 |
TDS | mg/L | 78 ± 15 | 73.3 ± 9.5 | <500 | 500–2000 | >2000 |
Cl | mg/L | 457.7 ± 32.2 | 71.1 ± 18.4 | <140 | 140–350 | >350 |
Na | mg/L | 321.1 ± 13.1 | 59.98 ± 14.1 | <3 | 3–9 | >9 |
Parameter | Unit | Results | Tolerance of Plants to Sodium (Table E7.4) | ||||
---|---|---|---|---|---|---|---|
ASP | MBR | Very Sensitive | Sensitive | Medium Tolerant | Tolerant | ||
SAR | mg/L | 26.7 ± 6.12 | 9.44 ± 6.5 | 2–8 | 8–18 | 18–46 | 46–102 |
Parameters | Unit | Results | Maximum Permissible Concentrations of Heavy Metals and Toxic Elements in İrrigation Water (Table E7.7) | ||
---|---|---|---|---|---|
ASP | MBR | Limit Values for Continuous İrrigation on All Kinds of Solids | Limit Values for İrrigation Less than 24 Years in Clay Soils with a pH Between 6.0 and 8.5 | ||
Al | mg/L | <0.7 | <0.7 | 5.0 | 20.0 |
As | mg/L | 0.049 ± 0.029 | 0.023 ± 0.02 | 0.1 | 2.0 |
Be | mg/L | <0.0005 | <0.005 | 0.1 | 0.5 |
Cd | mg/L | 0.025 ± 0.025 | 0.0415 ± 0.008 | 0.01 | 0.05 |
Cr | mg/L | 0.029 ± 0.021 | 0.05 ± 0.021 | 0.1 | 1.0 |
Co | mg/L | <0.005 | <0.005 | 0.05 | 5.0 |
Cu | mg/L | 0.054 ± 0.046 | 0.0625 ± 0.04 | 0.2 | 5.0 |
F | mg/L | <0.2 | <0.2 | 1.0 | 15.0 |
Fe | mg/L | <0.2 | <0.2 | 5.0 | 20.0 |
Pb | mg/L | 0.179 ± 0.121 | 0.15 ± 0.121 | 5.0 | 10.0 |
Li | mg/L | <0.015 | 0.001 | 2.5 | 2.5 |
Mn | mg/L | <0.05 | <0.05 | 0.2 | 10.0 |
Mo | mg/L | <0.005 | <0.005 | 0.01 | 0.05 |
Ni | mg/L | 0.15 ± 0.05 | 0.15 ± 0.05 | 0.2 | 2.0 |
Se | mg/L | <0.005 | <0.005 | 0.02 | 0.02 |
V | mg/L | <0.001 | 0.003 | 0.1 | 1.0 |
Zn | mg/L | 0.025 ± 0.025 | 0.08 ± 0.02 | 2.0 | 10.0 |
Parameters | Unit | Results | Nutrient Levels that May Be Present in the Recovered Wastewater (Table E7.9) | ||
---|---|---|---|---|---|
ASP | MBR | ASP | MBR | ||
TN | mg/L | 19.66 ± 4.34 | 10.2 ± 6.1 | 15–35 | 7–18 |
NO3-N | mg/L | 17.8 ± 5.64 | 7.20 ± 2.82 | 10–30 | 5–11 |
TP | mg/L | 5.25 ± 0.75 | 1.43 ± 1.1 | 4–10 | 0.3–5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiz, H.G.; Arslan, H. Comparison Study of Urban Wastewater Treatment Using Conventional Biologic Treatment and Submerged Membrane Bioreactor Processes. Water 2025, 17, 1810. https://doi.org/10.3390/w17121810
Hiz HG, Arslan H. Comparison Study of Urban Wastewater Treatment Using Conventional Biologic Treatment and Submerged Membrane Bioreactor Processes. Water. 2025; 17(12):1810. https://doi.org/10.3390/w17121810
Chicago/Turabian StyleHiz, Halis Gazi, and Hüdaverdi Arslan. 2025. "Comparison Study of Urban Wastewater Treatment Using Conventional Biologic Treatment and Submerged Membrane Bioreactor Processes" Water 17, no. 12: 1810. https://doi.org/10.3390/w17121810
APA StyleHiz, H. G., & Arslan, H. (2025). Comparison Study of Urban Wastewater Treatment Using Conventional Biologic Treatment and Submerged Membrane Bioreactor Processes. Water, 17(12), 1810. https://doi.org/10.3390/w17121810