Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,029)

Search Parameters:
Keywords = resource competition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1835 KiB  
Article
Methods for Enhancing Energy and Resource Efficiency in Sunflower Oil Production: A Case Study from Bulgaria
by Penka Zlateva, Angel Terziev, Nikolay Kolev, Martin Ivanov, Mariana Murzova and Momchil Vasilev
Eng 2025, 6(8), 195; https://doi.org/10.3390/eng6080195 - 6 Aug 2025
Abstract
The rising demand for energy resources and industrial goods presents significant challenges to sustainable development. Sunflower oil, commonly utilized in the food sector, biofuels, and various industrial applications, is notably affected by this demand. In Bulgaria, it serves as a primary source of [...] Read more.
The rising demand for energy resources and industrial goods presents significant challenges to sustainable development. Sunflower oil, commonly utilized in the food sector, biofuels, and various industrial applications, is notably affected by this demand. In Bulgaria, it serves as a primary source of vegetable fats, ranking second to butter in daily consumption. The aim of this study is to evaluate and propose methods to improve energy and resource efficiency in sunflower oil production in Bulgaria. The analysis is based on data from an energy audit conducted in 2023 at an industrial sunflower oil production facility. Reconstruction and modernization initiatives, which included the installation of high-performance, energy-efficient equipment, led to a 34% increase in energy efficiency. The findings highlight the importance of adjusting the technological parameters such as temperature, pressure, grinding level, and pressing time to reduce energy use and operational costs. Additionally, resource efficiency is improved through more effective raw material utilization and waste reduction. These strategies not only enhance the economic and environmental performance of sunflower oil production but also support sustainable development and competitiveness within the industry. The improvement reduces hexane use by approximately 2%, resulting in energy savings of 12–15 kWh/t of processed seeds and a reduction in CO2 emissions by 3–4 kg/t, thereby improving the environmental profile of sunflower oil production. Full article
(This article belongs to the Special Issue Interdisciplinary Insights in Engineering Research)
Show Figures

Figure 1

18 pages, 313 KiB  
Article
Sustainability and Profitability of Large Manufacturing Companies
by Iveta Mietule, Rasa Subaciene, Jelena Liksnina and Evalds Viskers
J. Risk Financial Manag. 2025, 18(8), 439; https://doi.org/10.3390/jrfm18080439 - 6 Aug 2025
Abstract
This study explores whether sustainability achievements—proxied through ESG (environmental, social, and governance) reporting—are associated with superior financial performance in Latvia’s manufacturing sector, where ESG maturity remains low and institutional readiness is still emerging. Building on stakeholder, legitimacy, signal, slack resources, and agency theories, [...] Read more.
This study explores whether sustainability achievements—proxied through ESG (environmental, social, and governance) reporting—are associated with superior financial performance in Latvia’s manufacturing sector, where ESG maturity remains low and institutional readiness is still emerging. Building on stakeholder, legitimacy, signal, slack resources, and agency theories, this study applies a mixed-method approach (that consists of two analytical stages) suited to the limited availability and reliability of ESG-related data in the Latvian manufacturing sector. Financial indicators from three large firms—AS MADARA COSMETICS, AS Latvijas Finieris, and AS Valmiera Glass Grupa—are compared with industry averages over the 2019–2023 period using independent sample T-tests. ESG integration is evaluated through a six-stage conceptual schema ranging from symbolic compliance to performance-driven sustainability. The results show that AS MADARA COSMETICS, which demonstrates advanced ESG integration aligned with international standards, significantly outperforms its industry in all profitability metrics. In contrast, the other two companies remain at earlier ESG maturity stages and show weaker financial performance, with sustainability disclosures limited to general statements and outdated indicators. These findings support the synergy hypothesis in contexts where sustainability is internalized and operationalized, while also highlighting structural constraints—such as resource scarcity and fragmented data—that may limit ESG-financial alignment in post-transition economies. This study offers practical guidance for firms seeking competitive advantage through strategic ESG integration and recommends policy actions to enhance ESG transparency and performance in Latvia, including performance-based reporting mandates, ESG data infrastructure, and regulatory alignment with EU directives. These insights contribute to the growing empirical literature on ESG effectiveness under constrained institutional and economic conditions. Full article
(This article belongs to the Section Business and Entrepreneurship)
23 pages, 394 KiB  
Article
Integrated ERP Systems—Determinant Factors for Their Adoption in Romanian Organizations
by Octavian Dospinescu and Sabin Buraga
Systems 2025, 13(8), 667; https://doi.org/10.3390/systems13080667 - 6 Aug 2025
Abstract
This study examines the factors influencing the adoption of enterprise resource planning (ERP) systems within Romanian organizations. The objective is to develop a comprehensive framework for ERP adoption decisions, thereby advancing the field of knowledge and offering managerial insights. To accomplish this research [...] Read more.
This study examines the factors influencing the adoption of enterprise resource planning (ERP) systems within Romanian organizations. The objective is to develop a comprehensive framework for ERP adoption decisions, thereby advancing the field of knowledge and offering managerial insights. To accomplish this research goal, a questionnaire is envisioned, employing various research hypotheses, and distributed to a representative sample. Quantitative econometric regression analysis is employed, considering potential factors such as user training and education, competitive pressures, user involvement and participation, decentralized ERP features, top management support, data quality, the quality of the ERP system, cost and budget considerations, and business process reengineering. Of the 12 factors analyzed, 9 were found to be relevant in terms of influence on the decision to adopt ERP systems, in the context of the Romanian market. The other three factors were found to be irrelevant, thus obtaining results partially different from other areas of the world. By validating the hypotheses and answering the research questions, this work addresses a research gap regarding the lack of a comprehensive understanding of the influencing factors that shape the adoption process of ERP systems in Romania. Full article
(This article belongs to the Special Issue Management Control Systems in the Era of Digital Transformation)
13 pages, 1194 KiB  
Review
Kiwifruit Peelability (Actinidia spp.): A Review
by Beibei Qi, Peng Li, Jiewei Li, Manrong Zha and Faming Wang
Horticulturae 2025, 11(8), 927; https://doi.org/10.3390/horticulturae11080927 (registering DOI) - 6 Aug 2025
Abstract
Kiwifruit (Actinidia spp.) is a globally important economic fruit with high nutritional value. Fruit peelability, defined as the mechanical ease of separating the peel from the fruit flesh, is a critical quality trait influencing consumer experience and market competitiveness and has emerged [...] Read more.
Kiwifruit (Actinidia spp.) is a globally important economic fruit with high nutritional value. Fruit peelability, defined as the mechanical ease of separating the peel from the fruit flesh, is a critical quality trait influencing consumer experience and market competitiveness and has emerged as a critical breeding target in fruit crop improvement programs. The present review systematically synthesized existing studies on kiwifruit peelability, and focused on its evolutionary trajectory, genotypic divergence, quantitative evaluation, possible underlying mechanisms, and artificial manipulation strategies. Kiwifruit peelability research has advanced from early exploratory studies in New Zealand (2010s) to systematic investigations in China (2020s), with milestones including the development of evaluation metrics and the identification of genetic resources. Genotypic variation exists among kiwifruit genera. Several Actinidia eriantha accessions and the novel Actinidia longicarpa cultivar ‘Guifei’ exhibit superior peelability, whereas most commercial Actinidia chinensis and Actinidia deliciosa cultivars exhibit poor peelability. Quantitative evaluation highlights the need for standardized metrics, with “skin-flesh adhesion force” and “peel toughness” proposed as robust, instrument-quantifiable indicators to minimize operational variability. Mechanistically, peelability is speculated to be governed by cell wall polysaccharide metabolism and phytohormone signaling networks. Pectin degradation and differential distribution during fruit development form critical “peeling zones”, whereas ethylene, abscisic acid, and indoleacetic acid may regulate cell wall remodeling and softening, collectively influencing skin-flesh adhesion. Owing to the scarcity of easy-to-peel kiwifruit cultivars, artificial manipulation methods, including manual peeling benchmarking, lye treatment, and thermal peeling, can be employed to further optimize kiwifruit peelability. Currently, shortcomings include incomplete genotype-phenotype characterization, limited availability of easy-peeling germplasms, and a fragmented understanding of the underlying mechanisms. Future research should focus on methodological innovation, germplasm development, and the elucidation of relevant mechanisms. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

30 pages, 3996 KiB  
Article
Incentive-Compatible Mechanism Design for Medium- and Long-Term/Spot Market Coordination in High-Penetration Renewable Energy Systems
by Sicong Wang, Weiqing Wang, Sizhe Yan and Qiuying Li
Processes 2025, 13(8), 2478; https://doi.org/10.3390/pr13082478 - 6 Aug 2025
Abstract
In line with the goals of “peak carbon emissions and carbon neutrality”, this study aims to develop a market-coordinated operation mechanism to promote renewable energy adoption and consumption, addressing the challenges of integrating medium- and long-term trading with spot markets in power systems [...] Read more.
In line with the goals of “peak carbon emissions and carbon neutrality”, this study aims to develop a market-coordinated operation mechanism to promote renewable energy adoption and consumption, addressing the challenges of integrating medium- and long-term trading with spot markets in power systems with high renewable energy penetration. A three-stage joint operation framework is proposed. First, a medium- and long-term trading game model is established, considering multiple energy types to optimize the benefits of market participants. Second, machine learning algorithms are employed to predict renewable energy output, and a contract decomposition mechanism is developed to ensure a smooth transition from medium- and long-term contracts to real-time market operations. Finally, a day-ahead market-clearing strategy and an incentive-compatible settlement mechanism, incorporating the constraints from contract decomposition, are proposed to link the two markets effectively. Simulation results demonstrate that the proposed mechanism effectively enhances resource allocation and stabilizes market operations, leading to significant revenue improvements across various generation units and increased renewable energy utilization. Specifically, thermal power units achieve a 19.12% increase in revenue, while wind and photovoltaic units show more substantial gains of 38.76% and 47.52%, respectively. Concurrently, the mechanism drives a 10.61% increase in renewable energy absorption capacity and yields a 13.47% improvement in Tradable Green Certificate (TGC) utilization efficiency, confirming its overall effectiveness. This research shows that coordinated optimization between medium- and long-term/spot markets, combined with a well-designed settlement mechanism, significantly strengthens the market competitiveness of renewable energy, providing theoretical support for the market-based operation of the new power system. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

23 pages, 2662 KiB  
Article
Genetic Resource Allocation Algorithm for Panel-Based Large Intelligent Surfaces
by Andreia Pereira, Filipe Conceição, Marco Gomes and Rui Dinis
Electronics 2025, 14(15), 3107; https://doi.org/10.3390/electronics14153107 - 4 Aug 2025
Viewed by 163
Abstract
The large intelligent surface (LIS) concept represents an architectural advance for enhancing the performance of 6G wireless communication systems. In this work, we address the problem of jointly selecting active panels and associating terminals to outputs of such active panels in a panel-based [...] Read more.
The large intelligent surface (LIS) concept represents an architectural advance for enhancing the performance of 6G wireless communication systems. In this work, we address the problem of jointly selecting active panels and associating terminals to outputs of such active panels in a panel-based LIS framework to maximise the minimum signal-to-interference-and-noise ratio (SINR) across all terminals. Due to the nature of the mixed-integer linear programming (MILP) formulation, we propose an alternative approach based on a genetic algorithm (GA) that efficiently explores the solution space through tailored crossover via column swapping and adaptive mutation. We compare the GA’s performance against the CPLEX solver under various configurations and time constraints. The performance results show that the GA provides competitive solutions with reduced computational complexity, showcasing its potential for scalable LIS implementations with complex resource allocation. Full article
Show Figures

Figure 1

28 pages, 6624 KiB  
Article
YoloMal-XAI: Interpretable Android Malware Classification Using RGB Images and YOLO11
by Chaymae El Youssofi and Khalid Chougdali
J. Cybersecur. Priv. 2025, 5(3), 52; https://doi.org/10.3390/jcp5030052 - 1 Aug 2025
Viewed by 322
Abstract
As Android malware grows increasingly sophisticated, traditional detection methods struggle to keep pace, creating an urgent need for robust, interpretable, and real-time solutions to safeguard mobile ecosystems. This study introduces YoloMal-XAI, a novel deep learning framework that transforms Android application files into RGB [...] Read more.
As Android malware grows increasingly sophisticated, traditional detection methods struggle to keep pace, creating an urgent need for robust, interpretable, and real-time solutions to safeguard mobile ecosystems. This study introduces YoloMal-XAI, a novel deep learning framework that transforms Android application files into RGB image representations by mapping DEX (Dalvik Executable), Manifest.xml, and Resources.arsc files to distinct color channels. Evaluated on the CICMalDroid2020 dataset using YOLO11 pretrained classification models, YoloMal-XAI achieves 99.87% accuracy in binary classification and 99.56% in multi-class classification (Adware, Banking, Riskware, SMS, and Benign). Compared to ResNet-50, GoogLeNet, and MobileNetV2, YOLO11 offers competitive accuracy with at least 7× faster training over 100 epochs. Against YOLOv8, YOLO11 achieves comparable or superior accuracy while reducing training time by up to 3.5×. Cross-corpus validation using Drebin and CICAndMal2017 further confirms the model’s generalization capability on previously unseen malware. An ablation study highlights the value of integrating DEX, Manifest, and Resources components, with the full RGB configuration consistently delivering the best performance. Explainable AI (XAI) techniques—Grad-CAM, Grad-CAM++, Eigen-CAM, and HiRes-CAM—are employed to interpret model decisions, revealing the DEX segment as the most influential component. These results establish YoloMal-XAI as a scalable, efficient, and interpretable framework for Android malware detection, with strong potential for future deployment on resource-constrained mobile devices. Full article
Show Figures

Figure 1

38 pages, 1465 KiB  
Article
Industry 4.0 and Collaborative Networks: A Goals- and Rules-Oriented Approach Using the 4EM Method
by Thales Botelho de Sousa, Fábio Müller Guerrini, Meire Ramalho de Oliveira and José Roberto Herrera Cantorani
Platforms 2025, 3(3), 14; https://doi.org/10.3390/platforms3030014 - 1 Aug 2025
Viewed by 286
Abstract
The rapid evolution of Industry 4.0 technologies has resulted in a scenario in which collaborative networks are essential to overcome the challenges related to their implementation. However, the frameworks to guide such collaborations remain underexplored. This study addresses this gap by proposing Business [...] Read more.
The rapid evolution of Industry 4.0 technologies has resulted in a scenario in which collaborative networks are essential to overcome the challenges related to their implementation. However, the frameworks to guide such collaborations remain underexplored. This study addresses this gap by proposing Business Rules and Goals Models to operationalize Industry 4.0 solutions through enterprise collaboration. Using the For Enterprise Modeling (4EM) method, the research integrates qualitative insights from expert opinions, including interviews with 12 professionals (academics, industry professionals, and consultants) from Brazilian manufacturing sectors. The Goals Model identifies five main objectives—competitiveness, efficiency, flexibility, interoperability, and real-time collaboration—while the Business Rules Model outlines 18 actionable recommendations, such as investing in digital infrastructure, upskilling employees, and standardizing information technology systems. The results reveal that cultural resistance, limited resources, and knowledge gaps are critical barriers, while interoperability and stakeholder integration emerge as enablers of digital transformation. The study concludes that successfully adopting Industry 4.0 requires technological investments, organizational alignment, structured governance, and collaborative ecosystems. These models provide a practical roadmap for companies navigating the complexities of Industry 4.0, emphasizing adaptability and cross-functional synergy. The research contributes to the literature on collaborative networks by connecting theoretical frameworks with actionable enterprise-level strategies. Full article
Show Figures

Figure 1

17 pages, 5553 KiB  
Article
Effects of Interspecific Competition on Habitat Shifts of Sardinops melanostictus (Temminck et Schlegel, 1846) and Scomber japonicus (Houttuyn, 1782) in the Northwest Pacific
by Siyuan Liu, Hanji Zhu, Jianhua Wang, Famou Zhang, Shengmao Zhang and Heng Zhang
Biology 2025, 14(8), 968; https://doi.org/10.3390/biology14080968 (registering DOI) - 1 Aug 2025
Viewed by 183
Abstract
As economically important sympatric species in the Northwest Pacific, the Japanese sardine (Sardinops melanostictus) and Chub mackerel (Scomber japonicus) exhibit significant biological interactions. Understanding the impact of interspecies competition on their habitat dynamics can provide crucial insights for the [...] Read more.
As economically important sympatric species in the Northwest Pacific, the Japanese sardine (Sardinops melanostictus) and Chub mackerel (Scomber japonicus) exhibit significant biological interactions. Understanding the impact of interspecies competition on their habitat dynamics can provide crucial insights for the sustainable development and management of these interconnected species resources. This study utilizes fisheries data of S. melanostictus and S. japonicus from the Northwest Pacific, collected from June to November between 2017 and 2020. We integrated various environmental parameters, including temperature at different depths (0, 50, 100, 150, and 200 m), eddy kinetic energy (EKE), sea surface height (SSH), chlorophyll-a concentration (Chl-a), and the oceanic Niño index (ONI), to construct interspecific competition species distribution model (icSDM) for both species. We validated these models by overlaying the predicted habitats with fisheries data from 2021 and performing cross-validation to assess the models’ reliability. Furthermore, we conducted correlation analyses of the habitats of these two species to evaluate the impact of interspecies relationships on their habitat dynamics. The results indicate that, compared to single-species habitat models, the interspecific competition species distribution model (icSDM) for these two species exhibit a significantly higher explanatory power, with R2 values increasing by up to 0.29; interspecific competition significantly influences the habitat dynamics of S. melanostictus and S. japonicus, strengthening the correlation between their habitat changes. This relationship exhibits a positive correlation at specific stages, with the highest correlations observed in June, July, and October, at 0.81, 0.80, and 0.88, respectively; interspecific competition also demonstrates stage-specific differences in its impact on the habitat dynamics of S. melanostictus and S. japonicus, with the most pronounced differences occurring in August and November. Compared to S. melanostictus, interspecific competition is more beneficial for the expansion of the optimal habitat (HIS ≥ 0.6) for S. japonicus and, to some extent, inhibits the habitat expansion of S. melanostictus. The variation in migratory routes and predatory interactions (with larger individuals of S. japonicus preying on smaller individuals of S. melanostictus) likely constitutes the primary factors contributing to these observed differences. Full article
(This article belongs to the Special Issue Adaptation of Living Species to Environmental Stress)
Show Figures

Figure 1

29 pages, 1125 KiB  
Article
Orchestrating Power: The Cultural–Institutional Nexus and the Rise of Digital Innovation Ecosystems in Great Power Rivalry
by Deganit Paikowsky, Dmitry Payson and Yaacov Falkov
Systems 2025, 13(8), 643; https://doi.org/10.3390/systems13080643 - 1 Aug 2025
Viewed by 356
Abstract
This article examines how digital innovation ecosystems have emerged as strategic institutions of power in contemporary world politics. It argues that, unlike Cold War technological rivalries driven by centralized, state-led control, today’s digital competition depends on states’ capacity to orchestrate scalable, multistakeholder ecosystems. [...] Read more.
This article examines how digital innovation ecosystems have emerged as strategic institutions of power in contemporary world politics. It argues that, unlike Cold War technological rivalries driven by centralized, state-led control, today’s digital competition depends on states’ capacity to orchestrate scalable, multistakeholder ecosystems. Using a cultural–institutional framework, we explain how differences in strategic culture and institutional governance impact the ecosystem’s vitality and performance. A qualitative comparative analysis of the United States, China, and Russia reveals that constructive orchestration, aligning state institutions with generative, commercial-to-national innovation flows, enhances digital leadership, whereas rigid, obstructive governance limits it. This highlights ecosystem governance as a critical dimension of statecraft in the digital age. The findings underscore that the positions of great powers in the global technological hierarchy depend not only on resources or capabilities but also on the effectiveness of ecosystem governance as an evolving instrument of geopolitical power. Full article
Show Figures

Figure 1

22 pages, 1119 KiB  
Article
Intergenerational Tacit Knowledge Transfer: Leveraging AI
by Bettina Falckenthal, Manuel Au-Yong-Oliveira and Cláudia Figueiredo
Societies 2025, 15(8), 213; https://doi.org/10.3390/soc15080213 - 31 Jul 2025
Viewed by 336
Abstract
The growing number of senior experts leaving the workforce (especially in more developed economies, such as in Europe), combined with the ubiquitous access to artificial intelligence (AI), is triggering organizations to review their knowledge transfer programs, motivated by both financial and management perspectives. [...] Read more.
The growing number of senior experts leaving the workforce (especially in more developed economies, such as in Europe), combined with the ubiquitous access to artificial intelligence (AI), is triggering organizations to review their knowledge transfer programs, motivated by both financial and management perspectives. Our study aims to contribute to the field by analyzing options to integrate intergenerational tacit knowledge transfer (InterGenTacitKT) with AI-driven approaches, offering a novel perspective on sustainable Knowledge and Human Resource Management in organizations. We will do this by building on previous research and by extracting findings from 36 in-depth semi-structured interviews that provided success factors for junior/senior tandems (JuSeTs) as one notable format of tacit knowledge transfer. We also refer to the literature, in a grounded theory iterative process, analyzing current findings on the use of AI in tacit knowledge transfer and triangulating and critically synthesizing these sources of data. We suggest that adding AI into a tandem situation can facilitate collaboration and thus aid in knowledge transfer and trust-building. We posit that AI can offer strong complementary services for InterGenTacitKT by fostering the identified success factors for JuSeTs (clarity of roles, complementary skill sets, matching personalities, and trust), thus offering organizations a powerful means to enhance the effectiveness and sustainability of InterGenTacitKT that also strengthens employee productivity, satisfaction, and loyalty and overall organizational competitiveness. Full article
Show Figures

Graphical abstract

9 pages, 1238 KiB  
Proceeding Paper
Optimization of Mold Changeover Times in the Automotive Injection Industry Using Lean Manufacturing Tools and Fuzzy Logic to Enhance Production Line Balancing
by Yasmine El Belghiti, Abdelfattah Mouloud, Samir Tetouani, Mehdi El Bouchti, Omar Cherkaoui and Aziz Soulhi
Eng. Proc. 2025, 97(1), 54; https://doi.org/10.3390/engproc2025097054 - 30 Jul 2025
Viewed by 187
Abstract
The main thrust of the study is the need to cut down the time taken for mold changes in plastic injection molding which is fundamental to the productivity and efficiency of the process. The research encompasses Lean Manufacturing, DMAIC, and SMED which are [...] Read more.
The main thrust of the study is the need to cut down the time taken for mold changes in plastic injection molding which is fundamental to the productivity and efficiency of the process. The research encompasses Lean Manufacturing, DMAIC, and SMED which are improved using fuzzy logic and AI for rapid changeover optimization on the NEGRI BOSSI 650 machine. A decrease in downtime by 65% and an improvement in the Process Cycle Efficiency by 46.8% followed the identification of bottlenecks, externalizing tasks, and streamlining workflows. AI-driven analysis could make on-the-fly adjustments, which would ensure that resources are better allocated, and thus sustainable performance is maintained. The findings highlight how integrating Lean methods with advanced technologies enhances operational agility and competitiveness, offering a scalable model for continuous improvement in industrial settings. Full article
Show Figures

Figure 1

17 pages, 91001 KiB  
Article
PONet: A Compact RGB-IR Fusion Network for Vehicle Detection on OrangePi AIpro
by Junyu Huang, Jialing Lian, Fangyu Cao, Jiawei Chen, Renbo Luo, Jinxin Yang and Qian Shi
Remote Sens. 2025, 17(15), 2650; https://doi.org/10.3390/rs17152650 - 30 Jul 2025
Viewed by 345
Abstract
Multi-modal object detection that fuses RGB (Red-Green-Blue) and infrared (IR) data has emerged as an effective approach for addressing challenging visual conditions such as low illumination, occlusion, and adverse weather. However, most existing multi-modal detectors prioritize accuracy while neglecting computational efficiency, making them [...] Read more.
Multi-modal object detection that fuses RGB (Red-Green-Blue) and infrared (IR) data has emerged as an effective approach for addressing challenging visual conditions such as low illumination, occlusion, and adverse weather. However, most existing multi-modal detectors prioritize accuracy while neglecting computational efficiency, making them unsuitable for deployment on resource-constrained edge devices. To address this limitation, we propose PONet, a lightweight and efficient multi-modal vehicle detection network tailored for real-time edge inference. PONet incorporates Polarized Self-Attention to improve feature adaptability and representation with minimal computational overhead. In addition, a novel fusion module is introduced to effectively integrate RGB and IR modalities while preserving efficiency. Experimental results on the VEDAI dataset demonstrate that PONet achieves a competitive detection accuracy of 82.2% mAP@0.5 while sustaining a throughput of 34 FPS on the OrangePi AIpro 20T device. With only 3.76 M parameters and 10.2 GFLOPs (Giga Floating Point Operations), PONet offers a practical solution for edge-oriented remote sensing applications requiring a balance between detection precision and computational cost. Full article
Show Figures

Figure 1

14 pages, 2284 KiB  
Article
Rhizobacteria’s Effects on the Growth and Competitiveness of Solidago canadensis Under Nutrient Limitation
by Zhi-Yun Huang, Ying Li, Hu-Anhe Xiong, Misbah Naz, Meng-Ting Yan, Rui-Ke Zhang, Jun-Zhen Liu, Xi-Tong Ren, Guang-Qian Ren, Zhi-Cong Dai and Dao-Lin Du
Agriculture 2025, 15(15), 1646; https://doi.org/10.3390/agriculture15151646 - 30 Jul 2025
Viewed by 186
Abstract
The role of rhizosphere bacteria in facilitating plant invasion is increasingly acknowledged, yet the influence of specific microbial functional traits remains insufficiently understood. This study addresses this gap by isolating two bacterial strains, Bacillus sp. ScRB44 and Pseudomonas sp. ScRB22, from the rhizosphere [...] Read more.
The role of rhizosphere bacteria in facilitating plant invasion is increasingly acknowledged, yet the influence of specific microbial functional traits remains insufficiently understood. This study addresses this gap by isolating two bacterial strains, Bacillus sp. ScRB44 and Pseudomonas sp. ScRB22, from the rhizosphere of the invasive weed Solidago canadensis. We assessed their nitrogen utilization capacity and indoleacetic acid (IAA) production capabilities to evaluate their ecological functions. Our three-stage experimental design encompassed strain promotion, nutrient stress, and competition phases. Bacillus sp. ScRB44 demonstrated robust IAA production and significantly improved the nitrogen utilization efficiency, significantly enhancing S. canadensis growth, especially under nutrient-poor conditions, and promoting a shift in biomass allocation toward the roots, thereby conferring a competitive advantage over native species. Conversely, Pseudomonas sp. ScRB22 exhibited limited functional activity and a negligible impact on plant performance. These findings underscore that the ecological impact of rhizosphere bacteria on invasive weeds is closely linked to their specific growth-promoting functions. By enhancing stress adaptation and optimizing resource allocation, certain microorganisms may facilitate the establishment of invasive weeds in adverse environments. This study highlights the significance of microbial functional traits in invasion ecology and suggests novel approaches for microbiome-based invasive weed management, with potential applications in agricultural soil health improvement and ecological restoration. Full article
(This article belongs to the Topic Microbe-Induced Abiotic Stress Alleviation in Plants)
Show Figures

Figure 1

23 pages, 3453 KiB  
Article
Robust Peak Detection Techniques for Harmonic FMCW Radar Systems: Algorithmic Comparison and FPGA Feasibility Under Phase Noise
by Ahmed El-Awamry, Feng Zheng, Thomas Kaiser and Maher Khaliel
Signals 2025, 6(3), 36; https://doi.org/10.3390/signals6030036 - 30 Jul 2025
Viewed by 277
Abstract
Accurate peak detection in the frequency domain is fundamental to reliable range estimation in Frequency-Modulated Continuous-Wave (FMCW) radar systems, particularly in challenging conditions characterized by a low signal-to-noise ratio (SNR) and phase noise impairments. This paper presents a comprehensive comparative analysis of five [...] Read more.
Accurate peak detection in the frequency domain is fundamental to reliable range estimation in Frequency-Modulated Continuous-Wave (FMCW) radar systems, particularly in challenging conditions characterized by a low signal-to-noise ratio (SNR) and phase noise impairments. This paper presents a comprehensive comparative analysis of five peak detection algorithms: FFT thresholding, Cell-Averaging Constant False Alarm Rate (CA-CFAR), a simplified Matrix Pencil Method (MPM), SVD-based detection, and a novel Learned Thresholded Subspace Projection (LTSP) approach. The proposed LTSP method leverages singular value decomposition (SVD) to extract the dominant signal subspace, followed by signal reconstruction and spectral peak analysis, enabling robust detection in noisy and spectrally distorted environments. Each technique was analytically modeled and extensively evaluated through Monte Carlo simulations across a wide range of SNRs and oscillator phase noise levels, from 100 dBc/Hz to 70 dBc/Hz. Additionally, real-world validation was performed using a custom-built harmonic FMCW radar prototype operating in the 2.4–2.5 GHz transmission band and 4.8–5.0 GHz harmonic reception band. Results show that CA-CFAR offers the highest resilience to phase noise, while the proposed LTSP method delivers competitive detection performance with improved robustness over conventional FFT and MPM techniques. Furthermore, the hardware feasibility of each algorithm is assessed for implementation on a Xilinx FPGA platform, highlighting practical trade-offs between detection performance, computational complexity, and resource utilization. These findings provide valuable guidance for the design of real-time, embedded FMCW radar systems operating under adverse conditions. Full article
Show Figures

Graphical abstract

Back to TopTop